Tagged: LBNL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:52 pm on January 17, 2019 Permalink | Reply
    Tags: A next-generation cosmic microwave background experiment known as CMB-S4, LBNL, POLARBEAR-2/Simons Array experiments in Chile, Scientists Team Up With Industry to Mass-Produce Detectors for Next-Gen Cosmic Experiment, The commercial fabrication effort is intended to benefit this CMB-S4 experiment, ultraprecise magnetic field sensors known as SQUIDs (superconducting quantum interference devices), Ultrasensitive detectors key in sleuthing universe’s mysteries   

    From Lawrence Berkeley National Lab: “Scientists Team Up With Industry to Mass-Produce Detectors for Next-Gen Cosmic Experiment” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    January 17, 2019

    Berkeley Lab researcher leads effort to take specialized superconducting sensor-making processes into commercial production.

    1
    Crews work at the site of the POLARBEAR-2/Simons Array experiments in Chile. There are plans to combine data at this site with data collected near the South Pole for a next-generation cosmic microwave background experiment known as CMB-S4. (Credit: POLARBEAR Collaboration)

    Chasing clues about the infant universe in relic light known as the cosmic microwave background, or CMB, scientists are devising more elaborate and ultrasensitive detector arrays to measure the properties of this light with increasing precision.

    CMB per ESA/Planck

    To meet the high demand for these detectors that will drive next-generation CMB experiments, and for similar detectors to serve other scientific needs, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) are pushing to commercialize the manufacturing process so that these detectors can be mass-produced quickly and affordably.

    Ultrasensitive detectors key in sleuthing universe’s mysteries

    The type of detector they are working to commercialize incorporates sensors that, when chilled to far-below-freezing temperatures, operate at the very edge of superconductivity – a state in which there is zero electrical resistance. Incorporated in the detector design is transition-edge sensor (TES) technology that can be tailored for ultrahigh sensitivity to temperature changes, among other measurements.

    The team is also working to commercialize the production of ultraprecise magnetic field sensors known as SQUIDs (superconducting quantum interference devices).

    2
    Superconducting SQUID

    In the current TES detector design, each detector array is fabricated on a silicon wafer and contains about 1,000 detectors. Hundreds of thousands of these detectors will be needed for a massive next-generation CMB experiment, dubbed CMB-S4.

    The SQUID amplifiers are designed to enable low-noise readout of signals from the detectors. They are intended to be seated near the detectors to simplify the assembly process and the operation of the next-generation detector arrays.

    More exacting measurements of the CMB light’s properties, including specifics on its polarization – directionality in the light – can help scientists peer more deeply into the universe’s origins, which in turn can lead to more accurate models and a richer understanding of the modern universe.

    Berkeley Lab researchers have a long history of pioneering achievements in the in-house design and development of new detectors for particle physics, nuclear physics, and astrophysics experiments. And while the detectors can be built in-house, scientists also considered the fact that commercial firms have access to state-of-the-art, high-throughput microfabricating machines and expertise in larger-scale manufacturing processes.

    So Aritoki Suzuki, a staff scientist in Berkeley Lab’s Physics Division, for the past several years has been working to transfer highly specialized detector fabrication techniques needed for new physics experiments to industry. The goal is to determine if it’s possible to produce a high volume of detector wafers more quickly, and at lower cost, than is possible at research labs.

    “What we are building here is a general technique to make superconducting devices at a company to benefit areas like astrophysics, the search for dark matter, quantum computing, quantum information science, and superconducting circuits in general,” said Suzuki, who has been working on advanced detector R&D for about a decade.

    This breed of sensors has also been enlisted in the hunt for a theorized nuclear process called neutrinoless double-beta decay that could help solve a riddle about the abundance of matter over antimatter in the universe, and whether the ghostly neutrino particle is its own antiparticle.

    Progress in transferring detector technology

    Progress toward commercial production of the specialized detectors has been promising. “We have demonstrated that detector performance from commercially fabricated detectors meet the requirements of typical CMB experiments,” Suzuki said.

    Work is underway to build the prototype detectors for a planned CMB experiment in Chile known as the Simons Observatory that may incorporate the commercially produced detectors.

    About 3 miles above sea level, in the Atacama Desert of Northern Chile, researchers have worked on successive generations of TES-based detector arrays for CMB-related experiments including POLARBEAR, POLARBEAR-2, the Simons Array, and the Simons Observatory.

    A detector array for two telescopes that are part of the POLARBEAR-2 and Simons Array experiments is now being fabricated at UC Berkeley’s Marvell Nanofabrication Laboratory by Berkeley Lab and UC Berkeley researchers. The effort will ultimately produce 7,600 detectors apiece for three telescopes. The first telescope in the Simons Array has just begun its commissioning run.

    The Simons Observatory project, which is now in a design and prototyping phase, will require about 80,000 detectors, half of which will be fabricated at the Marvell Nanofabrication Laboratory.

    3
    A POLARBEAR-2/Simons Array detector array. Multiple detector modules (right) will be tiled together to form a focal plane (left) containing 7,600 detectors. At the base of the detector modules are electronics components for detector data readout. (Credit: POLARBEAR Collaboration)

    These experiments are driving toward a CMB-S4 experiment that will combine detector arrays in Chile and near the South Pole to better resolve the cosmic microwave background and possibly help determine whether the universe underwent a brief period of incredible expansion known as inflation in its formative moments.

    The commercial fabrication effort is intended to benefit this CMB-S4 experiment, which will require a total of about 500,000 detectors. The current design calls for about 400 detector wafers that will each feature more than 1,000 detectors arranged on hexagonal silicon wafers measuring about six inches across. The wafers are designed to be tiled together in telescope arrays.

    Suzuki, who is part of a scientific board working on CMB-S4 along with other Berkeley Lab scientists, is collaboring with Adrian Lee, another board member who is also a physicist at Berkeley Lab and a UC Berkeley physics professor. It was Lee who pioneered microfabrication techniques at UC Berkeley to help speed the production of TES-containing detectors.

    In addition to the detector production at UC Berkeley’s nanofabrication laboratory, researchers have also built specialized superconducting readout electronics in a nearly dustless clean room space within the Microsystems Laboratory at Berkeley Lab.

    Before the introduction of higher-throughput manufacturing processes, detectors “were made one by one, by hand,” Suzuki noted.

    Suzuki labored to develop the latest 6-inch wafer design, which offers a production throughput advantage over the previously used 4-inch wafer designs. Older wafers had only about 100 detectors, which would have required the production of many more wafers to fully outfit a CMB-S4 experiment.

    The current detector design incorporates niobium, a superconducting metal, and other uncommon metals like palladium and manganese-doped aluminum alloy.

    “These are very unique metals that normally companies don’t touch. We use them to achieve the unique properties that we desire for these detectors,” Suzuki said.

    The effort has benefited from a Laboratory Directed Research and Development grant that Lee received in 2015 to explore commercial fabrication of the detectors. Also, the research team has received support from the federally supported Small Business Innovation Research program, and Suzuki has also received support from the DOE Early Career Research Program.

    3

    Suzuki has worked with Hypres Inc. of New York and STAR Cryoelectronics of Santa Fe, New Mexico, on the fabrication processes for the detectors, and worked with the University of New Mexico and STAR Cryoelectronics on the SQUID amplifiers. Suzuki said that working with the companies has been a productive process. “They gave us a lot of ideas,” he said, to help improve and streamline the processes.

    The industry-produced SQUID amplifiers will be used in one of the telescopes of the POLARBEAR-2/Simons Array experiment, Suzuki noted, and the design of these amplifiers could drive improvements in the readout electronics of a CMB-S4 experiment.

    As a next step in the effort to commercially fabricate detectors, a test run is planned this year to demonstrate fabrication quality and throughput.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

    DOE Seal

    Advertisements
     
  • richardmitnick 3:38 pm on January 3, 2019 Permalink | Reply
    Tags: , , , Electron spin, LBNL, SARPES detector, ,   

    From Lawrence Berkeley National Lab: “Revealing Hidden Spin: Unlocking New Paths Toward High-Temperature Superconductors” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    January 3, 2019

    Theresa Duque
    tnduque@lbl.gov
    (510) 495-2418

    Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission.

    1
    A research team led by Berkeley Lab’s Alessandra Lanzara (second from left) used a SARPES (spin- and angle-resolved photoemission spectroscopy) detector to uncover a distinct pattern of electron spins within the material. Co-lead authors are Kenneth Gotlieb (second from right) and Chiu-Yun Lin (right). The study’s co-authors include Chris Jozwiak of Berkeley Lab’s Advanced Light Source (left). (Credit: Peter DaSilva/Berkeley Lab)

    In the 1980s, the discovery of high-temperature superconductors known as cuprates upended a widely held theory that superconductor materials carry electrical current without resistance only at very low temperatures of around 30 Kelvin (or minus 406 degrees Fahrenheit). For decades since, researchers have been mystified by the ability of some cuprates to superconduct at temperatures of more than 100 Kelvin (minus 280 degrees Fahrenheit).

    Now, researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have unveiled a clue into the cuprates’ unusual properties – and the answer lies within an unexpected source: the electron spin. Their paper describing the research behind this discovery was published on Dec. 13 in the journal Science.

    Adding electron spin to the equation

    Every electron is like a tiny magnet that points in a certain direction. And electrons within most superconductor materials seem to follow their own inner compass. Rather than pointing in the same direction, their electron spins haphazardly point every which way – some up, some down, others left or right.

    2
    With the spin resolution enabled by SARPES, Berkeley Lab researchers revealed magnetic properties of Bi-2212 that have gone unnoticed in previous studies. (Credit: Kenneth Gotlieb, Chiu-Yun Lin, et al./Berkeley Lab)

    When scientists are developing new kinds of materials, they usually look at the materials’ electron spin, or the direction in which the electrons are pointing. But when it comes to making superconductors, condensed matter physicists haven’t traditionally focused on spin, because the conventionally held view was that all of the properties that make these materials unique were shaped only by the way in which two electrons interact with each other through what’s known as “electron correlation.”

    But when a research team led by Alessandra Lanzara, a faculty scientist in Berkeley Lab’s Materials Sciences Division and a Charles Kittel Professor of Physics at UC Berkeley, used a unique detector to measure samples of an exotic cuprate superconductor, Bi-2212 (bismuth strontium calcium copper oxide), with a powerful technique called SARPES (spin- and angle-resolved photoemission spectroscopy), they uncovered something that defied everything they had ever known about superconductors: a distinct pattern of electron spins within the material.

    “In other words, we discovered that there was a well-defined direction in which each electron was pointing given its momentum, a property also known as spin-momentum locking,” said Lanzara. “Finding it in high-temperature superconductors was a big surprise.”

    A new map for high-temperature superconductors

    In the world of superconductors, “high temperature” means that the material can conduct electricity without resistance at temperatures higher than expected but still in extremely cold temperatures far below zero degrees Fahrenheit. That’s because superconductors need to be extraordinarily cold to carry electricity without any resistance. At those low temperatures, electrons are able to move in sync with each other and not get knocked by jiggling atoms, causing electrical resistance.

    And within this special class of high-temperature superconductor materials, cuprates are some of the best performers, leading some researchers to believe that they have potential use as a new material for building super-efficient electrical wires that can carry power without any loss of electron momentum, said co-lead author Kenneth Gotlieb, who was a Ph.D. student in Lanzara’s lab at the time of the discovery. Understanding what makes some exotic cuprate superconductors such as Bi-2212 work at temperatures as high as 133 Kelvin (about -220 degrees Fahrenheit) could make it easier to realize a practical device.

    Among the very exotic materials that condensed matter physicists study, there are two kinds of electron interactions that give rise to novel properties for new materials, including superconductors, said Gotlieb. Scientists who have been studying cuprate superconductors have focused on just one of those interactions: electron correlation.

    The other kind of electron interaction found in exotic materials is “spin-orbit coupling” – the way in which the electron’s magnetic moment interacts with atoms in the material.

    Spin-orbit coupling was often neglected in the studies of cuprate superconductors, because many assumed that this kind of electron interaction would be weak when compared to electron correlation, said co-lead author Chiu-Yun Lin, a researcher in the Lab’s Materials Sciences Division and a Ph.D. student in the Department of Physics at UC Berkeley. So when they found the unusual spin pattern, Lin said that although they were pleasantly surprised by this initial finding, they still weren’t sure whether it was a “true” intrinsic property of the Bi-2212 material, or an external effect caused by the way the laser light interacted with the material in the experiment.

    Shining a light on electron spin with SARPES

    Over the course of nearly three years, Gotlieb and Lin used the SARPES detector to thoroughly map out the spin pattern at Lanzara’s lab. When they needed higher photon energies to excite a wider range of electrons within a sample, the researchers moved the detector next door to Berkeley Lab’s synchrotron, the Advanced Light Source (ALS), a U.S. DOE Office of Science User Facility that specializes in lower energy, “soft” X-ray light for studying the properties of materials.

    LBNL/ALS

    The SARPES detector was developed by Lanzara, along with co-authors Zahid Hussain, the former ALS Division Deputy, and Chris Jozwiak, an ALS staff scientist. The detector allowed the scientists to probe key electronic properties of the electrons such as valence band structure.

    After tens of experiments at the ALS, where the team of researchers connected the SARPES detector to Beamline 10.0.1 so they could access this powerful light to explore the spin of the electrons moving with much higher momentum through the superconductor than those they could access in the lab, they found that Bi-2212’s distinct spin pattern – called “nonzero spin – was a true result, inspiring them to ask even more questions. “There remains many unsolved questions in the field of high-temperature superconductivity,” said Lin. “Our work provides new knowledge to better understand the cuprate superconductors, which can be a building block to resolve these questions.”

    Lanzara added that their discovery couldn’t have happened without the collaborative “team science” of Berkeley Lab, a DOE national lab with historic ties to nearby UC Berkeley. “This work is a typical example of where science can go when people with expertise across the scientific disciplines come together, and how new instrumentation can push the boundaries of science,” she said.

    Co-authors with Gotlieb, Lin, and Lanzara are Maksym Serbyn of the Institute of Science and Technology Austria, Wentao Zhang of Shanghai Jiao Tong University, Christopher L. Smallwood of San Jose State University, Christopher Jozwiak of Berkeley Lab, Hiroshi Eisaki of the National Institute of Advanced Industrial Science and Technology of Japan, Zahid Hussain of Berkeley Lab, and Ashvin Vishwanath, formerly of UC Berkeley and now with Harvard University and a Faculty Scientist in Berkeley Lab’s Materials Sciences Division.

    The work was supported by the DOE Office of Science.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

    DOE Seal

     
  • richardmitnick 1:45 pm on December 17, 2018 Permalink | Reply
    Tags: , , LBNL, Lux Zeplin project, PMT's-photomultiplier tubes, ,   

    From Brown University: “Massive new dark matter detector gets its ‘eyes’” 

    Brown University
    From Brown University

    1
    The detector’s “eyes”
    Powerful light sensors assembled at Brown into two large arrays will keep watch on the LUX-ZEPLIN dark matter detector, looking for the tell-tale flashes of light that indicate interaction of a dark matter particle inside the detector. Credit: Nick Dentamaro

    LBNL Lux Zeplin project at SURF

    December 17, 2018
    Kevin Stacey

    Brown University researchers have assembled two massive arrays of photomultiplier tubes, powerful light sensors that will serve as the “eyes” for the LUX-ZEPLIN dark matter detector, which will start its search for dark matter particles in 2020.

    The LUX-ZEPLIN (LZ) dark matter detector, which will soon start its search for the elusive particles thought to account for a majority of matter in the universe, had the first of its “eyes” delivered late last week.

    The first of two large arrays of photomultiplier tubes (PMTs) — powerful light sensors that can detect the faintest of flashes — arrived last Thursday at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, where LZ is scheduled to begin its dark matter search in 2020. The second array will arrive in January. When the detector is completed and switched on, the PMT arrays will keep careful watch on LZ’s 10-ton tank of liquid xenon, looking for the telltale twin flashes of light produced if a dark matter particle bumps into a xenon atom inside the tank.

    The two arrays, each about 5 feet in diameter and holding a total of 494 PMTs, were shipped to South Dakota via truck from Providence, Rhode Island, where a team of researchers and technicians from Brown University spent the past six months painstakingly assembling them.

    “The delivery of these arrays is the pinnacle of an enormous assembly effort that we’ve executed here in our cleanroom at the Brown Department of Physics,” said Rick Gaitskell, a professor of physics at Brown University who oversaw the construction of the arrays. “For the last two years, we’ve been making sure that every piece that’s going into the devices is working as expected. Only by doing that can we be confident that everything will perform the way we want when the detector is switched on.”

    The Brown team has worked with researchers and engineers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and from Imperial College London to design, procure, test, and assemble all of the components of the array. Testing of the PMTs, which are manufactured by the Hamamatsu Corporation in Japan, was performed at Brown and at Imperial College “The PMTs have already qualified for significant air miles, even before they started their 2,000-mile journey by road from Rhode Island to South Dakota,” Gaitskell said.

    “The PMTs have already qualified for significant air miles, even before they started their 2,000-mile journey by road from Rhode Island to South Dakota,” Gaitskell said.

    Catching a WIMP

    Nobody knows exactly what dark matter is. Scientists can see the effects of its gravity in the rotation of galaxies and in the way light bends as it travels across the universe, but no one has directly detected a dark matter particle. The leading theoretical candidate for a dark matter particle is the WIMP, or weakly interacting massive particle. WIMPs can’t be seen because they don’t absorb, emit or reflect light. And they interact with normal matter only on very rare occasions, which is why they’re so hard to detect even when millions of them may be traveling through the Earth and everything on it each second.

    The LZ experiment, a collaboration of more than 250 scientists worldwide, aims to capture one of those fleetingly rare WIMP interactions, and thereby characterize the particles thought to make up more than 80 percent of the matter in the universe. The detector will be the most sensitive ever built, 50 times more sensitive than the LUX detector, which wrapped up its dark matter search at SURF in 2016.

    3
    This rendering shows a cutaway view of the LZ xenon tank (center), with PMT arrays at the top and bottom of the tank. (Credit: Greg Stewart/SLAC National Accelerator Laboratory)

    The PMT arrays are a critical part of the experiment. Each PMT is a six-inch-long cylinder that is roughly the diameter of a soda can. To form arrays large enough to monitor the entire LZ xenon target, hundreds of PMTs are assembled together within a circular titanium matrix. The array that will sit on top of the xenon target has 253 PMTs, while the lower array has 241.

    PMTs are designed to amplify weak light signals. When individual photons (particles of light) enter a PMT, they strike a photocathode. If the photon has sufficient energy, it causes the photocathode to eject one or more electrons. Those electrons strike then an electrode, which ejects more electrons. By cascading through a series of electrodes the original signal is amplified by over a factor of a million to create a detectable signal.

    LZ’s PMT arrays will need every bit of that sensitivity to catch the flashes associated with a WIMP interaction.

    “We could be looking for events emitting as few as 20 photons in a huge tank containing 10 tons of xenon, which is something that the human visual system wouldn’t be able to do,” Gaitskell said. “But it’s something these arrays can do, and we’ll need them to do it in order to see the signal from rare particle events.”

    The photons are produced by what’s known as a nuclear recoil event, which produces two distinct flashes. The first comes at the moment a WIMP bumps into a xenon nucleus. The second, which comes a few hundred microseconds afterward, is produced by the ricochet of the xenon atom that was struck. It bounces into the atoms surrounding it, which knocks a few electrons free. The electrons are then drifted by an electric field to the top of the tank, where they reach a thin layer of xenon gas that converts them into light.

    In order for those tiny flashes to be distinguishable from unwanted background events, the detector needs to be protected from cosmic rays and other kinds of radiation, which also cause liquid xenon to light up. That’s why the experiment takes place underground at SURF, a former gold mine, where the detector will be shielded by about a mile of rock to limit interference.

    A clean start

    The need to limit interference is also the reason that the Brown University team was obsessed with cleanliness while they assembled the arrays. The team’s main enemy was plain old dust.

    “When you’re dealing with an instrument that’s as sensitive as LZ, suddenly things you wouldn’t normally care about become very serious,” said Casey Rhyne, a Brown graduate student who had a leading role in building the arrays. “One of the biggest challenges we had to confront was minimizing ambient dust levels during assembly.”

    Each dust particle carries a minuscule amount of radioactive uranium and thorium decay products. The radiation is vanishingly small and poses no threat to people, but too many of those specks inside the LZ detector could be enough to interfere with a WIMP signal.

    4
    Much of the assembly work was done while the arrays sat inside PALACE, an ultraclean enclosure designed to keep the arrays dust-free. Nick Detamaro

    In fact, the dust budget for the LZ experiment calls for no more than one gram of dust in the entire 10-ton instrument. Because of all their nooks and crannies, the PMT arrays could be significant dust contributors if pains were not taken to keep them clean throughout construction.

    The Brown team performed most of its work in a “class 1,000” cleanroom, which allows no more than 1,000 microscopic dust particles per cubic foot of space. And within that cleanroom was an even more pristine space that the team dubbed “PALACE (PMT Array Lifting And Commissioning Enclosure).” PALACE was essentially an ultraclean exoskeleton where much of the actual array assembly took place. PALACE was a “class 10” space — no more than 10 dust particles bigger than one hundredth the width of a human hair per cubic foot.

    But the radiation concerns didn’t stop at dust. Before assembly of the arrays began, the team prescreened every part of every PMT tube to assess radiation levels.

    “We had Hamamatsu send us all of the materials that they were going to use for the PMT construction, and we put them in an underground germanium detector,” said Samuel Chan, a graduate student and PMT system team leader. “This detector is very good at detecting the radiation that the construction materials are emitting. If the intrinsic radiation levels were low enough in these materials, then we told Hamamatsu to go ahead and use them in the manufacture of these PMTs.”

    7
    A PMT is carefully inserted into the array inside PALACE. Nick Dentamaro

    The team is hopeful that all the work contributed over the past six months will pay dividends when LZ starts its WIMP search.

    “Getting everything right now will have a huge impact less than two years from now when we switch on the completed detector and we’re taking data,” Gaitskell said. “We’ll be able to see directly from that data how good of a job we and other people have done.”

    Given the major increase in dark matter search sensitivity that the LUX-ZEPLIN detector can deliver compared to previous experiments, the team hopes that this detector will finally identify and characterize the vast sea of stuff that surrounds us all. So far, the dark stuff has remained maddeningly elusive.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Brown

    Brown U Robinson Hall
    Located in historic Providence, Rhode Island and founded in 1764, Brown University is the seventh-oldest college in the United States. Brown is an independent, coeducational Ivy League institution comprising undergraduate and graduate programs, plus the Alpert Medical School, School of Public Health, School of Engineering, and the School of Professional Studies.

    With its talented and motivated student body and accomplished faculty, Brown is a leading research university that maintains a particular commitment to exceptional undergraduate instruction.

    Brown’s vibrant, diverse community consists of 6,000 undergraduates, 2,000 graduate students, 400 medical school students, more than 5,000 summer, visiting and online students, and nearly 700 faculty members. Brown students come from all 50 states and more than 100 countries.

    Undergraduates pursue bachelor’s degrees in more than 70 concentrations, ranging from Egyptology to cognitive neuroscience. Anything’s possible at Brown—the university’s commitment to undergraduate freedom means students must take responsibility as architects of their courses of study.

     
  • richardmitnick 2:08 pm on December 4, 2018 Permalink | Reply
    Tags: , , , , , , LBNL,   

    From Lawrence Berkeley National Lab: “Topping Off a Telescope with New Tools to Explore Dark Energy” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    December 4, 2018
    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 486-5582


    In this time-lapse video, crews at the Mayall Telescope near Tucson, Arizona, lift and install the top-end components for the Dark Energy Spectroscopic Instrument, or DESI. The components, which include a stack of six lenses and other structures for positioning and support, weigh about 12 tons. DESI, scheduled to begin its sky survey next year, is designed to produce the largest 3-D map of the universe and produce new clues about the nature of dark energy. (Credit: Robert T. Sparks, NOAO/AURA)

    Key components for the sky-mapping Dark Energy Spectroscopic Instrument (DESI), weighing about 12 tons, were hoisted atop the Mayall Telescope at Kitt Peak National Observatory (KPNO) near Tucson, Arizona, and bolted into place Wednesday, marking a major project milestone.

    LBNL/DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018

    NOAO/Mayall 4 m telescope at Kitt Peak, Arizona, USA, Altitude 2,120 m (6,960 ft)

    Kitt Peak National Observatory of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft)

    DESI will create the largest 3-D map of the universe by gathering light from tens of millions of galaxies after its scheduled startup in late 2019. It is designed to provide more precise measurements of dark energy, which is accelerating the universe’s expansion and looms as one of the universe’s biggest mysteries.

    “Earlier this year we removed the old top-end of the Mayall Telescope, and Wednesday’s installation brings this telescope back to life with a new purpose,” said DESI Director Michael Levi of the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), which is leading the project’s international collaboration. “The more than 23,000 pounds of instrumentation that was installed represents the final top-end assembly.”

    The new top-end components include a 3.4-ton barrel-shaped, steel-framed structure, known as a corrector, that houses a precisely stacked array of large (the largest is 1.1 meters in diameter), delicate lenses.

    Also, the corrector is attached to a 1.1-ton six-axis “hexapod” that enables precise alignment adjustments; a surrounding ring, cage, and vanes support structure that weighs an additional 5.2 tons; and about 2 tons of other materials, including placeholder weights for DESI’s focal plane (see a related video), which is still under assembly and hasn’t yet arrived on site.

    A team at Fermi National Accelerator Laboratory built the corrector, hexapod, and other top-end support structures. The structures are designed to align the lenses with an accuracy of tens of microns (millionths of a meter) – similar to the width of the thinnest human hair.

    DESI involves more than 450 researchers from more than 70 institutions around the globe. KPNO is part of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy under a cooperative agreement with the National Science Foundation.

    The corrector will enable a larger field of view – covering an area more than 40 times larger than the telescope’s previous corrector, and more than 40 times the size of the full moon as seen from Earth’s surface – for a series of 5,000 robotically positioned fiber-optic cables that will gather light from sequences of targeted galaxies. This light will be analyzed to gather information about their distance and the rate at which the galaxies are moving away from us. Its large field of view will allow DESI to map one-third of the night sky during its planned 5-year survey.

    Each of the corrector’s six lenses began as a large, thick piece of glass made by either Corning Glass in New York, Ohara Corp. in Japan, or Schott AG in Germany (see a related video).

    One of the lenses housed in the corrector is among the largest to ever be fielded on a telescope, noted Berkeley Lab’s David Schlegel, a DESI project scientist. The lenses traveled the world for polishings and coatings at several companies, and were installed and precisely aligned inside the corrector barrel in a basement at the University College London last spring.

    The corrector was then disassembled for transport and flown on a chartered transport plane from England to Tucson, Arizona. Then, it was trucked to the Kitt Peak summit, at an elevation of 6,800 feet. Once reassembled, the corrector was connected to its mechanical support system.

    In June, a 250-foot mobile crane was used to lift the old top-end off of the telescope and out of the dome. A 50-ton crane in the dome of the Mayall Telescope was used to lift all the DESI top-end components up to the dome floor from the ground level, where they were assembled. The same dome crane was then used to lift the assembled DESI top-end into position atop the telescope.

    David Sprayberry, the KPNO site director for DESI, said, “This was a complex lift that went without a hitch. We had a dozen of our technical personnel ensuring that the new top-end would be positioned exactly onto the center of the telescope. I’m very proud of my team for pulling this off flawlessly.”

    Early next year, researchers will mount a set of cameras and other instruments onto DESI’s focal plane to test how the lenses perform across the entire imaging field. This commissioning camera array was built at Ohio State University.

    “This will be a real test to determine if all the lenses are working together perfectly,” said Paul Martini, a professor at Ohio State University who oversaw the development of the commissioning camera.

    Then, other DESI systems will be tested over the next several months until the entire instrument is ready to begin its sky survey.

    DESI is supported by the U.S. Department of Energy’s Office of Science; the U.S. National Science Foundation, Division of Astronomical Sciences under contract to the National Optical Astronomy Observatory; the Science and Technologies Facilities Council of the United Kingdom; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation; the National Council of Science and Technology of Mexico; the Ministry of Economy of Spain; and DESI member institutions. The DESI scientists are honored to be permitted to conduct astronomical research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham Nation.

    Current DESI Member Institutions include: Aix-Marseille University; Argonne National Laboratory; Barcelona-Madrid Regional Participation Group; Brookhaven National Laboratory; Boston University; Carnegie Mellon University; CEA-IRFU, Saclay; China Participation Group; Cornell University; Durham University; École Polytechnique Fédérale de Lausanne; Eidgenössische Technische Hochschule, Zürich; Fermi National Accelerator Laboratory; Granada-Madrid-Tenerife Regional Participation Group; Harvard University; Korea Astronomy and Space Science Institute; Korea Institute for Advanced Study; Institute of Cosmological Sciences, University of Barcelona; Lawrence Berkeley National Laboratory; Laboratoire de Physique Nucléaire et de Hautes Energies; Mexico Regional Participation Group; National Optical Astronomy Observatory; Ohio University; Siena College; SLAC National Accelerator Laboratory; Southern Methodist University; Swinburne University; The Ohio State University; Universidad de los Andes; University of Arizona; University of California, Berkeley; University of California, Irvine; University of California, Santa Cruz; University College London; University of Michigan at Ann Arbor; University of Pennsylvania; University of Pittsburgh; University of Portsmouth; University of Queensland; University of Rochester; University of Toronto; University of Utah; University of Zurich; UK Regional Participation Group; Yale University. For more information, visit desi.lbl.gov.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

    DOE Seal

     
  • richardmitnick 12:33 pm on December 3, 2018 Permalink | Reply
    Tags: a major Lab research initiative called “Beyond Moore’s Law, , , LBNL, , Ramamoorthy Ramesh   

    From Lawrence Berkeley National Lab: “Berkeley Lab Takes a Quantum Leap in Microelectronics” Ramamoorthy Ramesh 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    December 3, 2018
    Julie Chao
    JHChao@lbl.gov
    (510) 486-6491

    1
    (Courtesy Ramamoorthy Ramesh)
    A Q&A with Ramamoorthy Ramesh on the need for next-generation computer chips

    Ramamoorthy Ramesh, a Lawrence Berkeley National Laboratory (Berkeley Lab) scientist in the Materials Sciences Division, leads a major Lab research initiative called “Beyond Moore’s Law,” which aims to develop next-generation microelectronics and computing architectures.

    Moore’s Law – which holds that the number of transistors on a chip will double about every two years and has held true in the industry for the last four decades – is coming to an inevitable end as physical limitations are reached. Major innovations will be required to sustain advances in computing. Working with industry leaders, Berkeley Lab’s approach spans fundamental materials discovery, materials physics, device development, algorithms, and systems architecture.

    In collaboration with scientists at Intel Corp., Ramesh proposes a new memory in logic device for replacing or augmenting conventional transistors. The work is detailed in a new Nature paper described in this UC Berkeley news release [blog post will follow]. Here Ramesh discusses the need for a quantum leap in microelectronics and how Berkeley Lab plans to play a role.

    Q. Why is the end of Moore’s Law such an urgent problem?

    If we look around, at the macro level there are two big global phenomena happening in electronics. One is the Internet of Things. It basically means every building, every car, every manufacturing capability is going to be fully accessorized with microelectronics. So, they’re all going to be interconnected. While the exact size of this market (in terms of number of units and their dollar value) is being debated, there is agreement that it is growing rapidly.

    The second big revolution is artificial intelligence/machine learning. This field is in its nascent stages and will find applications in diverse technology spaces. However, these applications are currently limited by the memory wall and the limitations imposed by the efficiency of computing. Thus, we will need more powerful chips that consume much lower energy. Driven by these emerging applications, there is the potential for the microelectronics market to grow exponentially.

    Semiconductors have been progressively shrinking and becoming faster, but they are consuming more and more power. If we don’t do anything to curb their energy consumption, the total energy consumption of microelectronics will jump from 4 percent to about 20 percent of primary energy. As a point of reference, today transportation consumes 24 percent of U.S. energy, manufacturing another 24 percent, and buildings 38 percent; that’s almost 90 percent. This could become almost like transportation. So, we said, that’s a big number. We need to go to a totally new technology and reduce energy consumption by several orders of magnitude.

    Q. So energy consumption is the main driver for the need for semiconductor innovation?

    No, there are two other factors. One is national security. Microelectronics and computing systems are a critical part of our national security infrastructure. And the other is global competitiveness. China has been investing hundreds of billions of dollars into making these fabs. Previously only U.S. companies made them. For two years, the fastest computer in the world was built in China. So this is a strategic issue for the U.S.

    Q. What is Berkeley Lab doing to address the problem?

    Berkeley lab is pursuing a “co-design” framework using exemplar demonstration pathways. In our co-design framework, the four key components are: (1) computational materials discovery and device scale modeling (led by Kristin Persson and Lin-wang Wang), (2) materials synthesis and materials physics (led by Peter Fischer), (3) scale up of synthesis pathways (led by Patrick Naulleau), and (4) circuit architecture and algorithms (led by John Shalf). These components are all working together to identify the key elements of an “attojoule” (10-18 Joules) logic-in-memory switch, where attojoule refers to the energy consumption per logic operation.

    One key outcome of the Berkeley Lab co-design framework is to understand the fundamental scientific issues that will impact the attojoule device, which will be about six orders of magnitude lower in energy compared to today’s state-of-the-art CMOS transistors, which work at around 50 picojoules (10-12 Joules) per logic operation.

    This paper presents the key elements of a pathway by which such an attojoule switch can be designed and fabricated using magnetoelectric multiferroics and more broadly, using quantum materials. There are still scientific as well as technological challenges.

    Berkeley Lab’s capabilities and facilities are well suited to tackle these challenges. We have nanoscience and x-ray facilities such as the Molecular Foundry and Advanced Light Source, big scientific instruments, which will be critical and allow us to rapidly explore new materials and understand their electronic, magnetic, and chemical properties.

    Another is the Materials Project, which enables discovery of new materials using a computational approach. Plus there is our ongoing work on deep UV lithography, which is carried out under the aegis of the Center for X-Ray Optics. This provides us with a perfect framework to address how we can do device processing at large scales.

    All of this will be done in collaboration with faculty and students at UC Berkeley and our partners in industry, as this paper illustrated.

    Q. What is the timeline?

    It will take a decade. There’s still a lot of work to be done. Your computer today operates at 3 volts. This device in the Nature paper proposes something at 100 millivolts. We need to understand the physics a lot better. That’s why a place like Berkeley Lab is so important.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

    DOE Seal

     
  • richardmitnick 1:17 pm on November 28, 2018 Permalink | Reply
    Tags: , LBNL, , , Superheavy elements man made elements   

    From Lawrence Berkeley National Lab: “FIONA Measures the Mass Number of 2 Superheavy Elements: Moscovium and Nihonium” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    November 28, 2018

    First results from Berkeley Lab’s new tool confirm predicted measurements.

    LBNL FIONA


    FIONA is a new system at Berkeley Lab’s 88-Inch-Cyclotron that enables direct mass number measurements of superheavy elements. (Credit: Marilyn Chung/Berkeley Lab)

    A team led by nuclear physicists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first direct measurements of the mass numbers for the nuclei of two superheavy elements: moscovium, which is element 115, and nihonium, element 113.

    They obtained the results using FIONA, a new tool at Berkeley Lab that is designed to resolve the nuclear and atomic properties of the heaviest elements. The results are detailed in the Nov. 28 edition of the Physical Review Letters journal.

    FIONA is an acronym that means: “For the Identification Of Nuclide A,” with “A” representing the scientific symbol for an element’s mass number – the total number of protons and neutrons in an atom’s nucleus. Protons are positively charged and the proton count is also known as the atomic number; neutrons have a neutral charge. Superheavy elements are human-made and have a higher atomic number than those found in naturally occurring elements.

    The global rush for mass numbers

    Gathering and validating this first data from FIONA had been a top priority for the Lab’s 88-Inch Cyclotron and Nuclear Science Division since FIONA’s commissioning wrapped up in early 2018. Cyclotron staff worked with visiting and in-house scientists to conduct FIONA’s first experimental run, which spanned five weeks.

    “It is very exciting to see FIONA come online, as it is extremely important to pin down the masses of superheavy elements,” said Barbara Jacak, Nuclear Science Division director. “Until now the mass assignments have been made with circumstantial evidence rather than by direct measurement.”

    Jackie Gates, a staff scientist in Berkeley Lab’s Nuclear Science Division who played a leading role in the conception, construction, and testing of FIONA, and who leads FIONA’s mass-number-determination efforts, said, “There has been a lot of interest in making an experimental measurement of superheavy mass numbers.”

    Gates added that this effort to measure superheavy elements’ mass numbers is of global interest, with teams from Argonne National Laboratory and Japan’s nuclear research program among those also making mass measurements of superheavy elements using slightly different approaches or tools.

    Guy Savard, a senior scientist at Argonne National Laboratory, designed, built, and contributed several components for FIONA. He also aided in the commissioning of FIONA and in its first scientific campaign.

    Roderick Clark, a senior scientist in Berkeley Lab’s Nuclear Science Division, said, “Everyone is coming together in this grand race. This can open up a whole range of physics of these heavy and superheavy samples,” as well as new studies of the structure and chemistry of these exotic elements, and a deeper understanding of how they bond with other elements.

    “If we can measure the mass of one of these superheavy elements, you can nail down the entire region,” Clark said.

    A new chapter in heavy element research

    The mass number and atomic number (or “Z”) – a measure of the total number of protons in an atom’s nucleus – of superheavy elements have relied on the accuracy of nuclear mass models. So it’s important to have a reliable way to measure these numbers with experiments in case there is a problem with models, noted Ken Gregorich, a recently retired senior scientist in Berkeley Lab’s Nuclear Science Division who worked closely with Gates to build and commission FIONA.

    For example, superheavy elements could possibly exhibit unexpected nuclear shapes or densities of protons and neutrons that aren’t accounted for in the models, he said.

    Berkeley Lab has made enormous contributions to the field of heavy-element research: Lab scientists have played a role in the discovery of 16 elements on the periodic table, dating back to the synthesis of neptunium in 1940, and have also supplied hundreds of isotope identifications. Isotopes are different forms of elements that share the same number of protons but have a different number of neutrons in their nuclei.

    FIONA (see related article) is an add-on to the Berkeley Gas-filled Separator (BGS). For decades, the BGS has separated heavy elements from other types of charged particles that can act as unwanted “noise” in experiments. FIONA is designed to trap and cool individual atoms, separate them based on their mass and charge properties, and deliver them to a low-noise detector station on a timescale of 20 milliseconds, or 20 thousandths of a second.

    ‘One atom a day’

    “We can make one atom a day, give or take,” of a desired superheavy element, Gregorich noted. In its early operation, FIONA was specifically tasked with trapping individual moscovium atoms. “We have about a 14 percent chance of trapping each atom,” he added. So researchers had hoped to capture a single measurement of moscovium’s mass number per week.

    Moscovium was discovered in 2015 in Russia by a joint U.S.-Russian team that included scientists from Lawrence Livermore National Laboratory, and the discovery of nihonium is credited to a team in Japan in 2004. The element names were formally approved in 2016.

    To produce moscovium, scientists at the 88-Inch Cyclotron bombarded a target composed of americium, an isotope of an element discovered by Berkeley Lab’s Glenn T. Seaborg and others in 1944, with a particle beam produced from the rare isotope calcium-48. The needed half-gram of calcium-48 was provided by the DOE Isotope Program.

    There is a distinct looping signature for each atom trapped and measured by FIONA – a bit like watching a fixed point on a bicycle tire as the bicycle rolls forward. The trajectory of this looping behavior is related to the atomic “mass-to-charge ratio” – the timing and position of the energy signal measured in the detector tells scientists the mass number.

    Ideally, the measurement includes several steps in the particle’s decay chain: Moscovium has a half-life of about 160 milliseconds, meaning an atom has a 50 percent chance to decay to another element known as a “daughter” element in the decay chain every 160 milliseconds. Capturing its energy signature at several steps in this decay chain can confirm which parent atom began this cascade.

    “We have been trying to establish the mass number and the proton number here for many years now,” said Paul Fallon, a senior scientist in Berkeley Lab’s Nuclear Science Division who leads the division’s low-energy program. Detector sensitivity has steadily improved, as has the ability to isolate individual atoms from other noise, he noted. “Now, we have our first definitive measurements.”

    Confirming the mass numbers of element 113 and element 115

    In FIONA’s first scientific run, researchers identified one moscovium atom and its related decay daughters, and one nihonium atom and its decay daughters. The measurements of the atoms and the decay chains confirm the predicted mass numbers for both elements.

    While researchers had been seeking only to create and measure the properties of a moscovium atom, they were also able to confirm a measurement for nihonium after a moscovium atom decayed into nihonium before reaching FIONA.

    “The success of this first measurement is incredibly exciting,” said Jennifer Pore, a postdoctoral fellow who was involved in FIONA’s commissioning experiments. “The unique capabilities of FIONA have sparked a new renaissance of superheavy element research at the 88-Inch Cyclotron.”

    Gregorich credited the efforts of staff at the 88-Inch Cyclotron – including mechanical, electrical, operations, and control systems experts – for maximizing FIONA experimental time during its initial five-week scientific run.

    He noted particular contributions from other BGS and FIONA group members, including Greg Pang, a former project scientist who was involved in FIONA’s construction and testing; Jeff Kwarsick, a graduate student whose Ph.D. thesis is focused on FIONA results; and Nick Esker, a former graduate student whose Ph.D. work focused on the mass separator technique incorporated by FIONA.

    Plans for new measurements and the addition of ‘SHEDevil’

    Fallon said that another scientific run is planned for FIONA within the next six months, during which nuclear physics researchers may pursue a new round of measurements for moscovium and nihonium, or for other superheavy elements.

    There are also plans to install and test a new tool, dubbed “SHEDevil” (for Super Heavy Element Detector for Extreme Ventures In Low statistics) that will help scientists learn the shape of superheavy atoms’ nuclei by detecting gamma rays produced in their decay. These gamma rays will provide clues to the arrangement of neutrons and protons in the nuclei.

    Researchers from Berkeley Lab, UC Berkeley, Argonne National Laboratory, Lawrence Livermore National Laboratory, the University of Chicago, and TRIUMF in Canada participated in this work, which was supported by the U.S. Department of Energy’s Office of Science.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

    DOE Seal

     
  • richardmitnick 2:07 pm on November 12, 2018 Permalink | Reply
    Tags: A research team has adapted a powerful electron-based imaging technique to obtain an image of atomic-scale structure in a synthetic polymer., Before these high-resolution images the arrangement and variation of the different types of crystal structures was unknown, , Cryogenic electron microscopy, Images of individual atoms in polymers had only been realized in computer simulations and illustrations, LBNL, , Peptoids are synthetically produced molecules that mimic biological molecules including chains of amino acids known as peptides, , Researchers achieved resolution of about 2 angstroms which is two-tenths of nanometer (billionth of a meter), Scientists Bring Polymers Into Atomic-Scale Focus, There are still mysteries about polymers at the atomic scale,   

    From Lawrence Berkeley National Lab and UC Berkeley: “Scientists Bring Polymers Into Atomic-Scale Focus” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    November 12, 2018
    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 486-5582

    1
    This image shows a rendering (gray and pink) of the molecular structure of a peptoid polymer that was studied by a team led by Berkeley Lab and UC Berkeley. The successful imaging of a polymer’s atomic-scale structure could inform new designs for plastics, like those that form the water bottles shown in the background. (Credit: Berkeley Lab, Charles Rondeau/PublicDomainPictures.net)

    From water bottles and food containers to toys and tubing, many modern materials are made of plastics. And while we produce about 110 million tons per year of synthetic polymers like polyethylene and polypropylene worldwide for these plastic products, there are still mysteries about polymers at the atomic scale.

    Because of the difficulty in capturing images of these materials at tiny scales, images of individual atoms in polymers have only been realized in computer simulations and illustrations, for example.

    Now, a research team led by Nitash Balsara, a senior faculty scientist in the Materials Sciences Division at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and professor of chemical and biomolecular engineering at UC Berkeley, has adapted a powerful electron-based imaging technique to obtain an image of atomic-scale structure in a synthetic polymer. The team included researchers from Berkeley Lab and UC Berkeley.

    The research could ultimately inform polymer fabrication methods and lead to new designs for materials and devices that incorporate polymers.

    In their study, published in the American Chemical Society’s Macromolecules journal, the researchers detail the development of a cryogenic electron microscopy imaging technique, aided by computerized simulations and sorting techniques, that identified 35 arrangements of crystal structures in a peptoid polymer sample. Peptoids are synthetically produced molecules that mimic biological molecules, including chains of amino acids known as peptides.

    2
    The simulated atomic-scale structure (top) and the averaged atomic-scale imaging (bottom) of a peptoid polymer sample. The sale bar is 10 angstroms, or 1 billionth of a meter. (Credit: Berkeley Lab, UC Berkeley)

    The sample was robotically synthesized at Berkeley Lab’s Molecular Foundry, a DOE Office of Science User Facility for nanoscience research. Researchers formed sheets of crystallized polymers measuring about 5 nanometers (billionths of a meter) in thickness when dispersed in water.

    “We conducted our experiments on the most perfect polymer molecules we could make,” Balsara said – the peptoid samples in the study were extremely pure compared to typical synthetic polymers.

    The research team created tiny flakes of peptoid nanosheets, froze them to preserve their structure, and then imaged them using an electron beam. An inherent challenge in imaging materials with a soft structure, such as polymers, is that the beam used to capture images also damages the samples.

    The direct cryogenic electron microscopy images, obtained using very few electrons to minimize beam damage, are too blurry to reveal individual atoms. Researchers achieved resolution of about 2 angstroms, which is two-tenths of nanometer (billionth of a meter), or about double the diameter of a hydrogen atom.

    They achieved this by taking over 500,000 blurry images, sorting different motifs into different “bins,” and averaging the images in each bin. The sorting methods they used were based on algorithms developed by the structural biology community to image the atomic structure of proteins.

    “We took advantage of technology that the protein-imaging folks had developed and extended it to human-made, soft materials,” Balsara said. “Only when we sorted them and averaged them did that blurriness become clear.”

    Before these high-resolution images, Balsara said, the arrangement and variation of the different types of crystal structures was unknown.

    “We knew that there were many motifs, but they are all different from each other in ways we didn’t know,” he said. “In fact, even the dominant motif in the peptoid sheet was a surprise.”

    3
    Researchers developed a colorized map (right) to show the distribution of different types of crystal structures (left) that they found in the polymer peptoid sample. The scale bar in the map image is 50 nanometers, or 50 billionths of a meter. (Credit: Berkeley Lab, UC Berkeley)

    Balsara credited Ken Downing, a senior scientist in Berkeley Lab’s Molecular Biophysics and Integrated Bioimaging Division who passed away in August, and Xi Jiang, a project scientist in the Materials Sciences Division, for capturing the high-quality images that were central to the study and for developing the algorithms necessary to achieve atomic resolution in the polymer imaging.

    Their expertise in cryogenic electron microscopy was complemented by Ron Zuckermann’s ability to synthesize model peptoids, David Prendergast’s knowledge of molecular dynamics simulations needed to interpret the images, Andrew Minor’s expertise in imaging metals at the atomic scale, and Balsara’s experience in the field of polymer science.

    At the Molecular Foundry, Zuckermann directs the Biological Nanostructures facility, Prendergast directs the Theory facility, and Minor directs the National Center for Electron Microscopy and is also a professor of materials science and engineering at UC Berkeley. Much of the cryo-electron imaging was carried out at UC Berkeley’s Krios microscopy facility.

    Balsara said that his own research into using polymers for batteries and other electrochemical devices could benefit from the research, as seeing the position of polymer atoms could greatly aid in the design of materials for these devices.

    Atomic-scale images of polymers used in everyday life may need more sophisticated, automated filtering mechanisms that rely on machine learning, for example.

    “We should be able to determine the atomic-scale structure of a wide variety of synthetic polymers such as commercial polyethylene and polypropylene, leveraging rapid developments in areas such as artificial intelligence, using this approach,” Balsara said.

    Determining crystal structures can provide vital information for other applications, such as the development of drugs, as different crystal motifs could produce quite different binding properties and therapeutic effects, for example.

    The work was conducted within the Soft Matter Electron Microscopy Program at Berkeley Lab, which is supported by the U.S. Department of Energy’s Office of Science; and by the Bay Area Cryo-EM Consortium.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

    DOE Seal

     
  • richardmitnick 1:11 pm on November 7, 2018 Permalink | Reply
    Tags: A new high-resolution gamma-ray detector system, , , , , , GRETA, GRETINA, LBNL   

    From Lawrence Berkeley National Lab: “A Next Step for GRETA: A Better Gamma-Ray Detector” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    November 7, 2018
    Glenn Roberts Jr.
    glennemail@gmail.com

    A rendering of GRETA, the Gamma-Ray Energy Tracking Array. (Credit Berkeley Lab)

    A new high-resolution gamma-ray detector system – designed to reveal new details about the structure and inner workings of atomic nuclei, and to elevate our understanding of matter and the stellar creation of elements – has passed an important project milestone.

    When this system – the Gamma-Ray Energy Tracking Array, or GRETA – is combined with an existing detector array called GRETINA (for Gamma-Ray Energy Tracking In-beam Nuclear Array), it will create a full spherical array. Gamma rays are highly penetrating, highly energetic forms of light that are emitted from excited nuclear states.

    LBNL GRETINA installed at National Superconducting Cyclotron Laboratory at Michigan State University

    GRETINA was completed in 2011 and has demonstrated the power of a gamma-ray tracking detector for nuclear physics. The U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has had a leadership role in GRETINA and now GRETA. The GRETA project includes researchers at Argonne and Oak Ridge national laboratories and at Michigan State University.

    Once complete, the detector system will reside first at Michigan State University’s Facility for Rare Isotope Beams (FRIB), a future DOE Office of Science User Facility that is under construction. FRIB will support the DOE Office of Science’s mission.

    “GRETA will be a flagship instrument and a major workhorse for science at FRIB,” said Paul Fallon, GRETA project director and a senior staff scientist at Berkeley Lab.

    GRETA will be used to study nuclear reactions in real time. It can study the creation of new nuclei as a high-energy beam smacks a target, for example – and detail the path of individual gamma rays through the detector, which is useful for reconstructing events to learn more about the properties of the event that triggered it.

    “GRETA will have up to 100 times greater sensitivity than existing detectors for certain experiments,” Fallon added. “It will have both a high-efficiency and a high-energy resolution in measuring gamma-ray energies.”

    Experiments that utilize GRETA will help to establish the limits on how many protons and neutrons can pack into an atomic nucleus and determine the structure of atomic nuclei.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 1:25 pm on October 31, 2018 Permalink | Reply
    Tags: DOE to Build Next-Generation Supercomputer at Lawrence Berkeley National Laboratory, LBNL, , Saul Perlmutter   

    From Lawrence Berkeley National Lab: “DOE to Build Next-Generation Supercomputer at Lawrence Berkeley National Laboratory” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    October 30, 2018
    Dan Krotz
    dakrotz@lbl.gov
    (510) 486-4019

    New Pre-Exascale System Will Be Named ‘Perlmutter’ in Honor of Lab’s Nobel Prize-Winning Astrophysicist.

    1
    Saul Perlmutter

    The U.S. Department of Energy announced today that the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has signed a $146 million contract with Cray for the facility’s next-generation supercomputer, a pre–exascale machine slated to be delivered in 2020. Named “Perlmutter” in honor of Nobel Prize-winning astrophysicist Saul Perlmutter, it is the first NERSC system specifically designed to meet the needs of large-scale simulations as well as data analysis from experimental and observational facilities.

    The new supercomputer represents DOE Office of Science’s commitment to extreme-scale science, developing new energy sources, improving energy efficiency, and discovering new materials. It will be a heterogeneous system comprising both CPU-only and GPU-accelerated cabinets that will more than triple the computational power currently available at NERSC.

    “Continued leadership in high performance computing is vital to America’s competitiveness, prosperity, and national security,” said U.S. Secretary of Energy Rick Perry in making the announcement.

    This new supercomputer has a total contract value of $146 million, including multiple years of service and support, and will more than triple the computational power currently available at NERSC. It represents DOE Office of Science’s commitment to extreme-scale science, developing new energy sources, improving energy efficiency, and discovering new materials. In addition, the new system has a number of innovative capabilities that will facilitate analyzing massive data sets from scientific experimental facilities, a growing challenge for scientists across multiple disciplines.

    “This agreement maintains U.S. leadership in HPC, both in the technology and in the scientific research that can be accomplished with such powerful systems, which is essential to maintaining economic and intellectual leadership,” said Barbara Helland, Associate Director of the Office of Advanced Scientific Computing Research at DOE Office of Science. “This agreement is a step forward in preparing the Office of Science user community for the kinds of computing systems we expect to see in the exascale era.”

    “I’m delighted to hear that the next supercomputer will be especially capable of handling large and complex data analysis. So it’s a great honor to learn that this system will be called Perlmutter,” Dr. Perlmutter said. “Though I also realize I feel some trepidation since we all know what it’s like to be frustrated with our computers, and I hope no one will hold it against me after a day wrestling with a tough data set and a long computer queue! I have at least been assured that no one will have to type my ten-character last name to log in.”

    “We are very excited about the Perlmutter system,” said NERSC Director Sudip Dosanjh. “It will provide a significant increase in capability for our users and a platform to continue transitioning our very broad workload to energy efficient architectures. The system is optimized for science, and we will collaborate with Cray, NVIDIA and AMD to ensure that Perlmutter meets the computational and data needs of our users. We are also launching a major power and cooling upgrade in Berkeley Lab’s Shyh Wang Hall, home to NERSC, to prepare the facility for Perlmutter.”

    The new supercomputer will be a heterogeneous system comprising both CPU-only and GPU-accelerated cabinets. It will include a number of innovations designed to meet the diverse computational and data analysis needs of NERSC’s user base and speed their scientific productivity. That includes a new Cray system interconnect, code-named Slingshot, that is designed for data-centric computing; as well as NVIDIA GPUs with new Tensor Core technology, direct liquid cooling, and an all-flash scratch filesystem which will move data at a rate of more than 4 terabytes/sec.

    “As a premier computing facility for the DOE, NERSC is driving scientific innovations that will help change the world, and we’re honored to partner with them in their efforts,” said Pete Ungaro, president and CEO of Cray. “We have collaborated very closely with the teams at Berkeley Lab to develop and implement our next-generation supercomputing and storage technology, which will enable a new era of access and flexibility in modeling, simulation, AI and analytics. We’re looking forward to seeing the many scientific discoveries that result from the work done on Perlmutter.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    University of California Seal

    DOE Seal

     
  • richardmitnick 4:27 pm on October 30, 2018 Permalink | Reply
    Tags: , , BELLA, , , LBNL, , the Berkeley Lab Laser Accelerator   

    From Lawrence Berkeley National Lab: “Berkeley Lab Joins Other Labs and Universities in LaserNetUS, A New Nationwide High-Intensity Laser Network” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    October 30, 2018
    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 486-5582

    Network will provide more access to petawatt-class laser at Berkeley Lab’s BELLA Center.

    A view of BELLA, the Berkeley Lab Laser Accelerator. (Credit Roy Kaltschmidt-Berkeley Lab)

    To help foster the broad applicability of high-intensity lasers, the Department of Energy’s Lawrence Berkeley­ National Laboratory (Berkeley Lab) is a partner in a new research network called LaserNetUS.

    The network will provide U.S. scientists increased access to the unique high-intensity laser facilities at the Berkeley Lab Laser Accelerator (BELLA) Center and at eight other institutions: the University of Texas at Austin, Ohio State University, Colorado State University, the University of Michigan, the University of Nebraska-Lincoln, the University of Rochester, SLAC National Accelerator Laboratory, and Lawrence Livermore National Laboratory.

    The initiative is funded by DOE’s Fusion Energy Sciences program (FES) within the Office of Science and includes institutions nationwide operating high-intensity, ultra­fast lasers.

    LaserNetUS includes the BELLA petawatt laser at Berkeley Lab’s Accelerator Technology and Applied Physics Division, as well as other leading high-power lasers in the U.S.

    10
    Hui Chen looks through the Titan target chamber at LLNL’s Jupiter Laser Facility. The Jupiter Laser is part of LaserNetUS, an effort to restore high-intensity research in the U.S.

    National Ignition Facility at LLNL

    Rochester joins new nationwide high-intensity laser network.

    U Rochester Laboratory for Laser Energetics

    U Rochester OMEGA EP Laser System

    U Rochester Omega Laser

    3
    UT Austin is home to one of the most powerful lasers in the country, the Texas Petawatt Laser. The university will receive $1.2 million to fund its part of the LaserNetUS network.

    4
    Ohio State First Light on Scarlet Laser 400 TW Upgrade

    5
    Colorado State University-The CSU Advanced Beam Laboratory’s ultra high-intensity laser and target chamber, now part of LaserNetUS.

    6
    University of Nebraska-Lincoln is founding member of laser-science network – A technician aligns a laser at the University of Nebraska-Lincoln’s Extreme Light Laboratory. The university is one of nine founding members of the LaserNetUS network.

    SLAC joins new LaserNetUS network to boost high-intensity laser research.
    6
    SLAC’s Matter in Extreme Conditions Instrument at the Linac Coherent Light Source will offer optical laser-only time to visiting scientists as a part of the LaserNetUS network. High intensity lasers at MEC coupled with the LCLS X-ray laser have been used to study extremely hot, dense matter found at the centers of stars and giant planets. (SLAC National Accelerator Laboratory)

    Expanding access to key capabilities

    “High-intensity and ultrafast lasers have come to be essential tools in many of the sciences, and in engineering applications as well,” said James Symons, Berkeley Lab’s associate laboratory director for its Physical Sciences Area.

    They have a broad range of uses in basic research, manufacturing, and medicine. For example, they can be used to recreate some of the most extreme conditions in the universe, such as those found in supernova explosions and near black holes. They can generate high-energy particles for high-energy physics research (being explored at the BELLA Center) or intense X-ray pulses to probe matter as it evolves on ultrafast timescales. Also, lasers and laser-based systems can cut materials precisely, generate intense neutron bursts to evaluate aging aircraft components, and potentially deliver tightly focused radiation therapy to tumors, among other uses.

    The petawatt-class lasers of the LaserNetUS partners generate light with at least 1 million billion watts of power. A petawatt is nearly 100 times the output of all the world’s power plants, and yet these lasers achieve this threshold in the briefest of bursts. Using a technology called “chirped pulse amplification,” which was pioneered by two of the winners of this year’s Nobel Prize in physics, these lasers fire off bursts of light shorter than a tenth of a trillionth of a second.

    Maintaining U.S. leadership in a fast-moving global endeavor

    The U.S. was the dominant innovator and user of high-intensity laser technology in the 1990s, but now Europe and Asia have taken the lead, according to a recent report from the National Academies of Sciences, Engineering, and Medicine titled “Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light.” Currently, 80 to 90 percent of the world’s high-intensity ultrafast laser systems are overseas, and all of the highest-power research lasers that are currently in construction or have already been built are also overseas. The report’s authors recommended establishing a national network of laser facilities to emulate successful efforts in Europe. LaserNetUS was established for exactly that purpose.

    LaserNetUS will hold a nationwide call for proposals for access to the network’s facilities. The proposals will be peer reviewed by an independent proposal review panel. This call will allow any researcher in the U.S. to get time on one of the high intensity lasers at the LaserNetUS host institutions.

    Wim Leemans, director of Berkeley Lab’s Accelerator Technology and Applied Physics Division and of the BELLA Center, said, “This has the potential for huge leverage of existing and future investments in laser facilities. Researchers across the U.S. have great ideas for discovery science that depend on lasers, and LaserNetUS can connect them with beamtime at sources that meet their needs.”

    The group held its first annual meeting at the University of Nebraska, home of the Extreme Light Lab, in August 2018, and will hold a nationwide call for user proposals to access the network’s facilities. The proposals will be peer-reviewed by an independent panel. This process will allow any researcher in the U.S. to request time on one of the high-intensity lasers at the LaserNetUS host institutions.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: