Tagged: Laser Technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:54 pm on October 3, 2022 Permalink | Reply
    Tags: "Researchers use light to control magnetic fields at nanoscale", , Laser Technology, , , Precisely manipulating magnetic order within a material., , The fact that we can now use light to manipulate electrons in this way means we have unprecedented control over this magnetic order., The Pritzker School of Molecular Engineering, , This new technique provides a handy way to manipulate electron correlation making the study of the correlated phases much more practical than it has been in the past., This work has implications for both studying the emergence of the correlated phase as well as designing new optoelectronic and spintronic devices., This work offers a jumping off point for a plethora of new studies., Using nanoscale low-power laser beams to precisely control magnetism within a 2-D semiconductor.   

    From The Pritzker School of Molecular Engineering At The University of Chicago: “Researchers use light to control magnetic fields at nanoscale” 

    From The Pritzker School of Molecular Engineering

    At

    U Chicago bloc

    The University of Chicago

    9.30.22
    Sarah C.P. Williams

    1
    Researchers from the University of Chicago’s Pritzker School of Molecular Engineering (PME) discovered how to use a laser beam (red) to control the spin of electrons (purple) within a 2-D semiconductor, letting them precisely manipulate magnetic order within the material. (Photo courtesy of High Lab)

    In thin, two-dimensional semiconductors, electrons move, spin and synchronize in unusual ways. For researchers, understanding the way these electrons carry out their intricate dances— and learning to manipulate their choreography—not only lets them answer fundamental physical questions, but can yield new types of circuits and devices.

    One correlated phase that such electrons can take on is magnetic order, in which they align their spin in the same direction. Traditionally, the ability to manipulate magnetic order within a 2-D semiconductor has been limited; scientists have used unwieldy, external magnetic fields, which limit technological integration and potentially conceal interesting phenomena.

    Now, researchers from the University of Chicago’s Pritzker School of Molecular Engineering (PME) have discovered how to use nanoscale, low-power laser beams to precisely control magnetism within a 2-D semiconductor. Their approach, described online in the journal Science Advances [below], has implications for both studying the emergence of the correlated phase as well as designing new optoelectronic and spintronic devices.

    “The fact that we can now use light to manipulate electrons in this way means we have unprecedented control over this magnetic order,” said Asst. Prof. Alex High, the senior author of the new work.

    Controllable magnets

    High’s lab focused on transition metal dichalcogenides (TMDs), a family of semiconductors that can be exfoliated into single, two-dimensional flakes, measuring just three atoms thick. Scientists had previously hypothesized that electrons within TMDs could assume a correlated phase, with their spin aligned in the same direction to lower the system energy—this ferromagnetic phase is what we colloquially call magnetism. Generating or modeling this transition to the correlated state, however, has been difficult.

    High has long been interested in how light can be controlled and, in turn, can alter states of matter. His team wondered whether, instead of external magnetic fields, miniscule beams of light could be used to create a correlated magnetic phase. They aimed a tightly-focused laser beam, less than a micron (one-thousandth of a millimeter) in diameter at a monolayer TMD. They flashed the laser for nanoseconds at a time, while also monitoring the TMD with an optical probe that let them track the activity of its electrons.

    The probe revealed that the pulsing laser was impacting the spin-polarization of electrons within a 5 micron by 8 micron area of the TMD, spreading a correlated phase outward from the laser. In other words, the electrons were aligning their spin; the researchers could control the magnetic order of electrons within the tiny area.

    “This new technique provides us a handy way to manipulate electron correlation, making the study of the correlated phases much more practical than it has been in the past,” said postdoctoral fellow Kai Hao, co-first author of the paper.

    “One of the things that makes this really attractive is the rather straightforward nature of it,” said graduate student Andrew Kindseth, who also contributed to the new work. “In many ways, it’s as simple as just shining a circularly polarized laser on this material.”

    A New Research Platform

    The new technique for controlling magnetism in atomically thin semiconductors offers a jumping off point for a plethora of new studies, the researchers said.

    Besides magnetic phases, TMD systems have also been hypothesized to form more exotic correlated electronic phases such as Wigner crystals, charge density waves, Mott states and superconductivity. The capability to locally manipulate the electron spins in TMDs within an ultrashort timescale and with nanoscale precision may provide previously inaccessible information, which will further aid the theoretical study of these exotic phases.

    On the application side, there is an urgent need for novel optoelectronic and spintronic devices to meet the explosive growth in the information industry. The demonstration of efficient optical control of spin order has great potential for device applications. Immediate impacts include building on-chip spin sources, tunable optical isolators, and efficient fan-out in spintronic circuits.

    “The capability to optically manipulate magnetic memory and generate spin amplification in TMDs – materials widely studied for next-generation technologies – will push optoelectronics and spintronics in new directions,” said graduate student Robert Shreiner, a co-first author of the paper.

    Science paper:
    Science Advances

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Pritzker School of Molecular Engineering is the first school of engineering at the University of Chicago. It was founded as the Institute for Molecular Engineering in 2011 by the university in partnership with Argonne National Laboratory. When the program was raised to the status of a school in 2019, it became the first school dedicated to molecular engineering in the United States. It is named for a major benefactor, the Pritzker Foundation.

    The scientists, engineers, and students at PME use scientific research to pursue engineering solutions. The school does not have departments. Instead, it organizes its research around interdisciplinary “themes”: immuno-engineering, quantum engineering, autonomous materials, and water and energy. PME works toward technological advancements in areas of global importance, including sustainable energy and natural resources, immunotherapy-based approaches to cancer, “unhackable” communications networks, and a clean global water supply. The school plans to expand its research areas to address more issues of global importance.

    IME was established in 2011, after three years of discussion and review. It was the largest academic program founded by the University of Chicago since 1988, when the Harris School of Public Policy Studies was established.

    Matthew Tirrell was appointed founding Pritzker Director of IME in July 2011. The Pritzker Directorship honors the Pritzker Foundation, which donated a large gift in support of the institute. Tirrell is a researcher in biomolecular engineering and nanotechnology. His honors include election to The National Academy of Engineering, The American Academy of Arts and Sciences, and The National Academy of Sciences. He became dean of PME in 2019.

    The William Eckhardt Research Center (WERC), which houses the school and part of the Physical Sciences Division, was constructed between 2011 and 2015. The WERC was named for alumnus William Eckhardt, in recognition of his donation to support scientific research at the university.

    In 2019, the school received more than $23.1 million in research funding. From 2011 to 2019, faculty at the school have filed 69 invention disclosures and have created six companies.

    On May 28, 2019, the University of Chicago announced a $100 million commitment from the Pritzker Foundation to support the institute’s transition to a school—the first school of molecular engineering in the U.S. The Pritzker Foundation helped establish the school with a new donation of $75 million, adding to an earlier $25 million donation that supported the institute and the construction of the Pritzker Nanofabrication Facility. In 2019, PME became the university’s first new school in three decades.

    PME offers a graduate program in molecular engineering for both Master and Ph.D. students, as well as an undergraduate major and minor in molecular engineering offered with the College of the University of Chicago.

    The institute began accepting applications to its doctoral program in fall 2013. The first class of graduate students was matriculated the following fall. In 2019, the school had 28 faculty members, 91 undergraduate students, 134 graduate students, and 75 postdoctoral fellows.

    The graduate program curriculum includes various science and engineering disciplines, product design, entrepreneurship, and communication. The program is interdisciplinary, featuring a connected art program called STAGE Lab. STAGE Lab creates plays and films in the context of scientific research at PME.

    The undergraduate major was added in spring 2015. It was the first engineering major offered at the University of Chicago. In 2018, the first undergraduate class received degrees in molecular engineering. When the school was established in 2019, it announced plans to expand its undergraduate offerings.

    David Awschalom, a professor at PME, said the school has contributed to Chicago becoming a hub for quantum education and research. PME offers an advanced degree in quantum science and engineering. It also partnered with Harvard University to launch the Quantum Information Science and Engineering Network, a graduate student training program in quantum science and engineering. Participating students are paired with two mentors—one from academia and one from industry. The program was funded by a $1.6 million award from the National Science Foundation.

    The school’s partnership with The DOE’s Argonne National Laboratory provides additional opportunities for research and innovation. Argonne’s facilities include the Advanced Photon Source, the Argonne Leadership Computing Facility, and the Center for Nanoscale Materials. The lab also has experience licensing new technology for industrial and commercial applications.
    PME’s educational outreach initiatives include K-12 programs with events and internships throughout the year. In 2019, with the establishment of PME, the school also launched a partnership with City Colleges of Chicago. The multi-year program connects City College students interested in STEM fields with PME faculty and labs, with the goal of enabling these students to transfer into four-year STEM degree programs.

    U Chicago Campus

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with University of Chicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    University of Chicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory, DOE’s Fermi National Accelerator Laboratory , and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory and DOE’s Argonne National Laboratory, as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    Research

    According to the National Science Foundation, University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages DOE’s Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages DOE’s Fermi National Accelerator Laboratory, a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory in Sunspot, New Mexico.
    _____________________________________________________________________________________

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).
    _____________________________________________________________________________________

    Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center is located on Chicago’s campus.

     
  • richardmitnick 4:22 pm on September 19, 2022 Permalink | Reply
    Tags: "Interaction Detection with Attosecond Perfection", , , Laser Technology, Mina Bionta,   

    From “Physics” : “Interaction Detection with Attosecond Perfection” 

    About Physics

    From “Physics”

    9.16.22
    Rachel Berkowitz

    1
    Mina Bionta/SLAC.

    Mina Bionta explores how light interacts with matter by capturing snapshots of those interactions on the timescale of the light’s oscillations.

    Despite growing up in a two-physicist household, Mina Bionta didn’t always want to go into physics. As a child she dabbled in other sciences, trying to forge her own path, but by the time she finished high school her views on being a physicist had changed. Bionta went on to study physics at university, completing several summer internships at different labs. “A lot of my opportunities came from cold-emailing professors to see if they would hire me,” she says. One of those opportunities was at The DOE’s SLAC National Accelerator Laboratory in California. At the time, in 2009, SLAC’s Linac Coherent Light Source (LCLS)—the world’s first x-ray free electron laser—was just starting up, and Bionta spent her internship there syncing the system to optical lasers to prepare it for taking snapshots of atoms and molecules on ultrafast timescales.

    Bionta loved the light-matter interaction experiments enabled by SLAC’s x-ray laser and ended up doing a Ph.D. on the topic of ultrafast-laser-induced emission of electrons from metallic nanostructures. Since then, she’s been developing spectroscopy tools that use these rapid emissions to understand how light interacts with materials. In August Bionta finished a postdoc at the Massachusetts Institute of Technology and in October she will return to SLAC as a staff scientist. There she plans to develop new ways to monitor the interaction of x-ray and visible light pulses with matter. Physics Magazine spoke with Bionta about why she loves lasers and ultrafast optics experiments.

    What’s your favorite thing about working with lasers?

    I like that the interaction of a laser with a material can lead to so many different phenomena, such as phase transitions, nonlinear behaviors, and chemical reactions. Light-matter interactions are also very pure: light supplies only energy to the matter, and scientists can control exactly how much energy goes into the system just by changing simple parameters, such as the color of the light.

    What laser problem are you currently working on?

    My team and I have been developing a tiny device that can trace the shape of ultrafast laser pulses before and after they interact with any material that transmits laser light. The method should allow us to probe how these pulses interact with a material—for example, how they transfer energy to a photovoltaic film—without damaging that material.

    Why is measuring those interactions important?

    It’s important for the understanding of a material’s electronic and atomic properties. There are two ways scientists measure light-matter interactions. One way is to measure the light’s absorption spectrum after it has interacted with a material. But that approach can be problematic: if the interaction induces a phenomenon with very fast dynamics, such as a chemical reaction, the sharp peaks expected in the absorption spectrum from the different material components can blend into one large hump.

    The other way is to directly measure the phase and amplitude of the light before and after it interacts with a material by measuring the light’s waveform over time. These measurements are difficult, as they require the measurement technique to have extremely precise time resolution. But we can get this precision by inducing the emission of extremely fast bursts of electrons.

    How do you do that?

    Via a neat trick that involves nanometer-sized antennae. Our device, which is the size of a microchip, consists of several of these nanoantennae. The antennae’s shapes are carefully designed to amplify the electric field of incoming light. The device is placed on top of or next to a material of interest. That material is then excited by the ultrafast pulsed laser, and information about how that laser interacts with the sample is read out with the device.

    When a laser pulse enters a nanoantenna, the field at the tip becomes so strong that it causes the tip to eject a burst of electrons. Fire multiple laser pulses at a tip and the result is a rapid series of short intense electron bursts, with each burst containing information about the light entering the tip. The time resolution of the bursts is less than a half-cycle of the illuminating laser pulse, which for our experiments is less than a femtosecond. So we can monitor these bursts to probe light-matter interactions with fast time resolution.

    How exactly do you monitor the bursts?

    Every incoming laser pulse drives the nanoantennae to emit a burst of electrons. The electrons in each of these bursts are collected by a nanowire that sits perpendicular to the antennae array. The nanowire carries a current that is also driven by the laser’s electric field. The interaction of the nanowire with an electron burst shifts the current’s intensity, giving us time-dependent information about the waveform of the light. We map out those current changes on an external detector.

    Why do scientists want this information?

    To follow how light-dependent phenomena occur on very fast timescales. For example, plant scientists might use our technique to study the transfer of energy from sunlight to plant cells. But the technique isn’t just for biological samples. It’s for medicine, photovoltaics, food safety, gas sensing, and drug discovery. The device can be used to study nonlinear phenomena in condensed matter systems, such as high-harmonic generation, the dynamics of excitons in photovoltaic systems, and the spectroscopic signatures of individual molecules.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments.

     
  • richardmitnick 3:58 pm on September 19, 2022 Permalink | Reply
    Tags: "Compact Electron Accelerator Reaches New Speeds with Nothing But Light", , Colorado State University, , , Laser Technology, Laser wakefield acceleration, , The DOE's SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS),   

    From The University of Maryland And Colorado State University: “Compact Electron Accelerator Reaches New Speeds with Nothing But Light” 

    From The University of Maryland

    And

    Colorado State University

    9.2.22
    Dina Genkina

    1
    An image from a simulation in which a laser pulse (red) drives a plasma wave, accelerating electrons in its wake. The bright yellow spot is the area with the highest concentration of electrons. In an experiment, scientists used this technique to accelerate electrons to nearly the speed of light over a span of just 20 centimeters. (Credit Bo Miao/Institute of Research Electronics and Applied Physics)

    Scientists harnessing precise control of ultrafast lasers have accelerated electrons over a 20-centimeter stretch to speeds usually reserved for particle accelerators the size of 10 football fields.

    A team at the University of Maryland (UMD) headed by Professor of Physics and Electrical and Computer Engineering Howard Milchberg, in collaboration with the team of Jorge J. Rocca at Colorado State University, achieved this feat using two laser pulses sent through a jet of hydrogen gas. The first pulse tore apart the hydrogen, punching a hole through it and creating a channel of plasma. That channel guided a second, higher power pulse that scooped up electrons out of the plasma and dragged them along in its wake, accelerating them to nearly the speed of light in the process. With this technique, the team accelerated electrons to almost 40% of the energy achieved at massive facilities like the kilometer-long Linac Coherent Light Source (LCLS), the accelerator at The DOE’s SLAC National Accelerator Laboratory. The paper was published in the journal Physical Review X [below] on September 16, 2022

    “This is the first multi-GeV electron accelerator powered entirely by lasers,” says Milchberg, who is also affiliated with the Institute of Research Electronics and Applied Physics at UMD. “And with lasers becoming cheaper and more efficient, we expect that our technique will become the way to go for researchers in this field.”

    Motivating the new work are accelerators like LCLS, a kilometer-long runway that accelerates electrons to 13.6 billion electron volts (GeV)—the energy of an electron that’s moving at 99.99999993% the speed of light. LCLS’s predecessor is behind three Nobel-prize-winning discoveries about fundamental particles. Now, a third of the original accelerator has been converted to the LCLS, using its super-fast electrons to generate the most powerful X-ray laser beams in the world.

    Scientists use these X-rays to peer inside atoms and molecules in action, creating videos of chemical reactions. These videos are vital tools for drug discovery, optimized energy storage, innovation in electronics, and much more.

    Accelerating electrons to energies of tens of GeV is no easy feat. SLAC’s linear accelerator gives electrons the push they need using powerful electric fields propagating in a very long series of segmented metal tubes. If the electric fields were any more powerful, they would set off a lightning storm inside the tubes and seriously damage them. Being unable to push electrons harder, researchers have opted to simply push them for longer, providing more runway for the particles to accelerate. Hence the kilometer-long slice across northern California. To bring this technology to a more manageable scale, the UMD and CSU teams worked to boost electrons to nearly the speed of light using—fittingly enough—light itself.

    “The goal ultimately is to shrink GeV-scale electron accelerators to a modest size room,” says Jaron Shrock, a graduate student in physics at UMD and co-first author on the work. “You’re taking kilometer-scale devices, and you have another factor of 1000 stronger accelerating field. So, you’re taking kilometer-scale to meter scale, that’s the goal of this technology.”

    Creating those stronger accelerating fields in a lab employs a process called laser wakefield acceleration, in which a pulse of tightly focused and intense laser light is sent through a plasma, creating a disturbance and pulling electrons along in its wake.

    “You can imagine the laser pulse like a boat,” says Bo Miao, a postdoctoral fellow in physics at the University of Maryland and co-first author on the work. “As the laser pulse travels in the plasma, because it is so intense, it pushes the electrons out of its path, like water pushed aside by the prow of a boat. Those electrons loop around the boat and gather right behind it, traveling in the pulse’s wake.”

    Laser wakefield acceleration was first proposed in 1979 [Physical Review Letters] and demonstrated in 1995. But the distance over which it could accelerate electrons remained stubbornly limited to a couple of centimeters. What enabled the UMD and CSU team to leverage wakefield acceleration more effectively than ever before was a technique the UMD team pioneered [Physical Review Research] to tame the high-energy beam and keep it from spreading its energy too thin. Their technique punches a hole through the plasma, creating a waveguide that keeps the beam’s energy focused.

    “A waveguide allows a pulse to propagate over a much longer distance,” Shrock explains. “We need to use plasma because these pulses are so high energy, they’re so bright, they would destroy a traditional fiber optic cable. Plasma cannot be destroyed because in some sense it already is.”

    Their technique creates something akin to fiber optic cables—the things that carry fiber optic internet service and other telecommunications signals—out of thin air. Or, more precisely, out of carefully sculpted jets of hydrogen gas.

    A conventional fiber optic waveguide consists of two components: a central “core” guiding the light, and a surrounding “cladding” preventing the light from leaking out. To make their plasma waveguide, the team uses an additional laser beam and a jet of hydrogen gas. As this additional “guiding” laser travels through the jet, it rips the electrons off the hydrogen atoms and creates a channel of plasma. The plasma is hot and quickly starts expanding, creating a lower density plasma “core” and a higher density gas on its fringe, like a cylindrical shell. Then, the main laser beam (the one that will gather electrons in its wake) is sent through this channel. The very front edge of this pulse turns the higher density shell to plasma as well, creating the “cladding.”

    “It’s kind of like the very first pulse clears an area out,” says Shrock, “and then the high-intensity pulse comes down like a train with somebody standing at the front throwing down the tracks as it’s going.”

    Using UMD’s optically generated plasma waveguide technique, combined with the CSU team’s high-powered laser and expertise, the researchers were able to accelerate some of their electrons to a staggering 5 GeV. This is still a factor of 3 less than SLAC’s massive accelerator, and not quite the maximum achieved with laser wakefield acceleration (that honor belongs to a team at The DOE’s Lawrence Berkeley National Labs). However, the laser energy used per GeV of acceleration in the new work is a record, and the team says their technique is more versatile: It can potentially produce electron bursts thousands of times per second (as opposed to roughly once per second), making it a promising technique for many applications, from high energy physics to the generation of X-rays that can take videos of molecules and atoms in action like at LCLS. Now that the team has demonstrated the success of the method, they plan to refine the setup to improve performance and increase the acceleration to higher energies.

    “Right now, the electrons are generated along the full length of the waveguide, 20 centimeters long, which makes their energy distribution less than ideal,” says Miao. “We can improve the design so that we can control where they are precisely injected, and then we can better control the quality of the accelerated electron beam.”

    While the dream of LCLS on a tabletop is not a reality quite yet, the authors say this work shows a path forward. “There’s a lot of engineering and science to be done between now and then,” Shrock says. “Traditional accelerators produce highly repeatable beams with all the electrons having similar energies and traveling in the same direction. We are still learning how to improve these beam attributes in multi-GeV laser wakefield accelerators. It’s also likely that to achieve energies on the scale of tens of GeV, we will need to stage multiple wakefield accelerators, passing the accelerated electrons from one stage to the next while preserving the beam quality. So there’s a long way between now and having an LCLS type facility relying on laser wakefield acceleration.”

    Science papers:
    Physical Review Letters 1979
    Physical Review Research 2020
    Physical Review X

    In addition to Milchberg, Rocca, Shrock and Miao, authors on the paper included Linus Feder, formerly a graduate student in physics at UMD and now a postdoctoral researcher at the University of Oxford, Reed Hollinger, John Morrison, Huanyu Song, and Shoujun Wang, all research scientists at CSU, Ryan Netbailo, a graduate student in electrical and computer engineering at CSU, and Alexander Picksley, formerly a graduate student in physics at the University of Oxford and now a postdoctoral researcher at Lawrence Berkeley National Lab.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    From Colorado State University is a public research university. The university is the state’s land grant university, and the flagship university of the Colorado State University System.

    The current enrollment is approximately 37,198 students, including resident and non-resident instruction students and the University is planning on having 42,000 students by 2020. The university has approximately 2,000 faculty in eight colleges and 55 academic departments. Bachelor’s degrees are offered in 65 fields of study, with master’s degrees in 55 fields. Colorado State confers doctoral degrees in 40 fields of study, in addition to a professional degree in veterinary medicine.

    U Maryland Campus

    The University of Maryland is a public land-grant research university. Founded in 1856, The University of Maryland is the flagship institution of the University System of Maryland. It is also the largest university in both the state and the Washington metropolitan area, with more than 41,000 students representing all fifty states and 123 countries, and a global alumni network of over 388,000. Its twelve schools and colleges together offer over 200 degree-granting programs, including 92 undergraduate majors, 107 master’s programs, and 83 doctoral programs. The University of Maryland is a member of The Association of American Universities and competes in intercollegiate athletics as a member of the Big Ten Conference.

    The University of Maryland’s proximity to the nation’s capital has resulted in many research partnerships with the federal government; faculty receive research funding and institutional support from agencies such as The National Institutes of Health (US), The National Aeronautics and Space Administration, The National Institute of Standards and Technology, The Food and Drug Administration, The National Security Agency, and The Department of Homeland Security. It is classified among “R1: Doctoral Universities – Very high research activity” and is labeled a “Public Ivy”, denoting a quality of education comparable to the private Ivy League. The University of Maryland is ranked among the top 100 universities both nationally and globally by several indices, including its perennially top-ranked criminology and criminal justice department.

    In 2016, the University of Maryland-College Park and The University of Maryland- Baltimore formalized their strategic partnership after their collaboration successfully created more innovative medical, scientific, and educational programs, as well as greater research grants and joint faculty appointments than either campus has been able to accomplish on its own. According to The National Science Foundation, the university spent a combined $1.1 billion on research and development in 2019, ranking it 14th overall in the nation and 8th among all public institutions. As of 2021, the operating budget of the University of Maryland is approximately $2.2 billion.

    On March 6, 1856, the forerunner of today’s University of Maryland was chartered as the Maryland Agricultural College. Two years later, Charles Benedict Calvert (1808–1864), a future U.S. Representative (Congressman) from the sixth congressional district of Maryland, 1861–1863, during the American Civil War and descendant of the first Lord Baltimores, colonial proprietors of the Province of Maryland in 1634, purchased 420 acres (1.7 km^2) of the Riversdale Mansion estate nearby today’s College Park, Maryland. Later that year, Calvert founded the school and was the acting president from 1859 to 1860. On October 5, 1859, the first 34 students entered the Maryland Agricultural College. The school became a land grant college in February 1864.

    Following the Civil War, in February 1866, the Maryland legislature assumed half ownership of the school. The college thus became in part a state institution. By October 1867, the school reopened with 11 students. In 1868, the former Confederate admiral Franklin Buchanan was appointed President of the school, and in his tenure of just over a year, he reorganized it, established a system of strict economy in its business transactions, applied some of its revenues for the paying off of its debts, raised its standards, and attracted patrons through his personal influence: enrollment grew to 80 at the time of his resignation, and the school’s debt was soon paid off. In 1873, Samuel Jones, a former Confederate Major General, became president of the college.

    Twenty years later, the federally funded Agricultural Experiment Station was established there. During the same period, state laws granted the college regulatory powers in several areas—including controlling farm disease, inspecting feed, establishing a state weather bureau and geological survey, and housing the board of forestry. Morrill Hall (the oldest instructional building still in use on campus) was built the following year.

    The state took control of the school in 1916, and the institution was renamed Maryland State College. That year, the first female students enrolled at the school. On April 9, 1920, the college became part of the existing University of Maryland, replacing St. John’s College, Annapolis as the university’s undergraduate campus. In the same year, the graduate school on the College Park campus awarded its first PhD degrees and the university’s enrollment reached 500 students. In 1925 the university was accredited by The Association of American Universities.

    By the time the first black students enrolled at the university in 1951, enrollment had grown to nearly 10,000 students—4,000 of whom were women. Prior to 1951, many black students in Maryland were enrolled at The University of Maryland-Eastern Shore.

    In 1957, President Wilson H. Elkins made a push to increase academic standards at the university. His efforts resulted in the creation of one of the first Academic Probation Plans. The first year the plan went into effect, 1,550 students (18% of the total student body) faced expulsion.

    On October 19, 1957, Queen Elizabeth II of the United Kingdom attended her first and only college football game at the University of Maryland after expressing interest in seeing a typical American sport during her first tour of the United States. The Maryland Terrapins beat the North Carolina Tar Heels 21 to 7 in the historical game now referred to as “The Queen’s Game”.

    Phi Beta Kappa established a chapter at UMD in 1964. In 1969, the university was elected to The Association of American Universities. The school continued to grow, and by the fall of 1985 reached an enrollment of 38,679. Like many colleges during the Vietnam War, the university was the site of student protests and had curfews enforced by the National Guard.

    In a massive restructuring of the state’s higher education system in 1988, the school was designated as the flagship campus of the newly formed University of Maryland System (later changed to the University System of Maryland in 1997), and was formally named the University of Maryland-College Park. All of the five campuses in the former network were designated as distinct campuses in the new system. However, in 1997 the Maryland General Assembly passed legislation allowing the University of Maryland-College Park to be known simply as The University of Maryland, recognizing the campus’ role as the flagship institution of the University System of Maryland.

    The other University System of Maryland institutions with the name “University of Maryland” are not satellite campuses of the University of Maryland-College Park. The University of Maryland-Baltimore, is the only other school permitted to confer certain degrees from the “University of Maryland”.

    In 1994, the National Archives at College Park completed construction and opened on a parcel of land adjoining campus donated by the University of Maryland, after lobbying by President William Kirwan and congressional leaders to foster academic collaboration between the institutions.

    In 2004, the university began constructing the 150-acre (61 ha) “M Square Research Park,” which includes facilities affiliated with The Department of Defense , Food and Drug Administration, and the new National Center for Weather and Climate Prediction, affiliated with The National Oceanic and Atmospheric Administration. In May 2010, ground was broken on a new $128-million, 158,068-square-foot (14,685.0 m^2) Physical Science Complex, including an advanced quantum science laboratory.

    The university’s Great Expectations campaign from 2006 to 2012 exceeded $1 billion in private donations.

    The university suffered multiple data breaches in 2014. The first resulted in the loss of over 300,000 student and faculty records. A second data breach occurred several months later. The second breach was investigated by the FBI and Secret Service and found to be done by David Helkowski. Despite the attribution, no charges were filed. As a result of the data breaches, the university offered free credit protection for five years to the students and faculty affected.

    In 2012, the University of Maryland-College Park and the University of Maryland- Baltimore united under the MPowering the State initiative to leverage the strengths of both institutions. The University of Maryland Strategic Partnership Act of 2016 officially formalized this partnership.

    The University of Maryland’s University District Plan, developed in 2011 under President Wallace Loh and the College Park City Council, seeks to make the City of College Park a top 20 college town by 2020 by improving housing and development, transportation, public safety, local pre-K–12 education, and supporting sustainability projects. As of 2018, the university is involved with over 30 projects and 1.5 million square feet of development as part of its Greater College Park Initiative, worth over $1 billion in public-private investments. The university’s vision is to revitalize the campus to foster a dynamic and innovative academic environment, as well as to collaborate with the surrounding neighborhoods and local government to create a vibrant downtown community for students and faculty

    In October 2017, the university received a record-breaking donation of $219.5 million from the A. James & Alice B. Clark Foundation, ranking among the largest philanthropic gifts to a public university in the country.

    As of February 12, 2020, it has been announced that Darryll J. Pines will be the 34th President of the University of Maryland-College Park effective July 1, 2020. Darryll J. Pines is the dean of the A. James Clark School of Engineering and the Nariman Farvardin Professor of Aerospace Engineering since January 2009. Darryll J. Pines has been with the University of Maryland College Park for 25 years since he arrived in 1995 and started as an assistant professor.

    In 2021, the university announced it had achieved its record goal of $1.5 billion raised in donations since 2018 as part of its Fearless Ideas: The Campaign for Maryland for investments in faculty, students, research, scholarships, and capital projects.

    The university hosts “living-learning” programs which allow students with similar academic interests to live in the same residential community, take specialized courses, and perform research in those areas of expertise. An example is the Honors College, which is geared towards undergraduate students meeting high academic requirements and consists of several of the university’s honors programs. The Honors College welcomes students into a community of faculty and undergraduates. The Honors College offers seven living and learning programs: Advanced Cybersecurity Experience for Students, Design Cultures and Creativity, Entrepreneurship and Innovation, Honors Humanities, Gemstone, Integrated Life Sciences, and University Honors.

    Advanced Cybersecurity Experience for Students (ACES), started in 2013, is directed by Michel Cukier and run by faculty and graduate students. ACES students are housed in Prince Frederick Hall and take a 14 credit, two year curriculum that educates future leaders in the field of cybersecurity. ACES also offers a complementary two-year minor in cybersecurity.

    Design Cultures and Creativity (DCC), started in 2009, is directed by artist Jason Farman and run by faculty and graduate students. The DCC program encourages students to explore the relationship between emerging media, society, and creative practices. DCC students are housed in Prince Frederick residence hall together and take a 16 credit, two year interdisciplinary curriculum which culminates in a capstone.

    Entrepreneurship and Innovation Program (EIP) is a living and learning program for Honors College freshmen and sophomores, helping build entrepreneurial mindsets, skill sets, and relationships for the development of solutions to today’s problems. Through learning, courses, seminars, workshops, competitions, and volunteerism, students receive an education in entrepreneurship and innovation. In collaboration with faculty and mentors who have launched new ventures, all student teams develop an innovative idea and write a product plan.

    Honors Humanities is the honors program for beginning undergraduates with interests in the humanities and creative arts. The selective two-year living-learning program combines a small liberal arts college environment with the resources of a large research university.

    Gemstone is a multidisciplinary four-year research program for select undergraduate honors students of all majors. Under guidance of faculty mentors and Gemstone staff, teams of students design, direct and conduct research, exploring the interdependence of science and technology with society.

    Integrated Life Sciences (ILS) is the honors program for students interested in all aspects of biological research and biomedicine. The College of Computer, Mathematical, and Natural Sciences has partnered with the Honors College to create the ILS program, which offers nationally recognized innovations in the multidisciplinary training of life science and pre-medical students. The objective of the ILS experience is to prepare students for success in graduate, medical, dental, or other professional schools.

    University Honors (UH) is the largest living-learning program in the Honors College and allows students the greatest independence in shaping their education. University Honors students are placed into a close-knit community of the university’s faculty and other undergraduates, committed to acquiring a broad and balanced education. Students choose from over 130 seminars exploring interdisciplinary topics in three broad areas: Contemporary Issues and Challenges, Arts and Sciences in Today’s World, and Using the World as a Classroom.

    The College Park Scholars programs are two-year living-learning programs for first- and second-year students. Students are selected to enroll in one of 12 thematic programs: Arts; Business, Society, and the Economy; Environment, Technology, and Economy; Global Public Health; International Studies; Life Sciences; Media, Self, and Society; Public Leadership; Science and Global Change; Science, Discovery, and the Universe; Science, Technology, and Society. Students live in dormitories in the Cambridge Community on North Campus.

    The nation’s first living-learning entrepreneurship program, Hinman CEOs, is geared toward students who are interested in starting their own business. Students from all academic disciplines live together and are provided the resources to explore business ventures.

    The QUEST (Quality Enhancement Systems and Teams) Honors Fellows Program engages undergraduate students from business, engineering, and computer, mathematical, and physical sciences. QUEST Students participate in courses focused on cross-functional collaboration, innovation, quality management, and teamwork. The Department of Civil & Environmental Engineering (CEE) has also been long considered an outstanding engineering division of the university since its inception in 1908.

    Other living-learning programs include: CIVICUS, a two-year program in the College of Behavioral and Social Sciences based on the five principles of civil society; Global Communities, a program that immerses students in a diverse culture (students from all over the world live in a community), and the Language House, which allows students pursuing language courses to live and practice with other students learning the same language.

    The Mock Trial Team engages in intercollegiate mock trial competition. The team, which first began competing in 1990, has won five national championships (2008, 2000, 1998, 1996, 1992), which ranks the most of any university, and was also the national runner-up in 1992 and 1993.

    Research

    On October 14, 2004, the university added 150 acres (61 ha) in an attempt to create the largest research park inside the Washington, D.C., Capital Beltway, formerly known as “M Square,” and now known as the “Discovery District”.

    Many of the faculty members have funding from federal agencies such as the National Science Foundation, the National Institutes of Health, NASA, the Department of Homeland Security, the National Institute of Standards and Technology, and the National Security Agency. These relationships have created numerous research opportunities for the university including:

    Taking the lead in the nationwide research initiative into the transmission and prevention of human and avian influenza.
    Creating a new research center to study the behavioral and social foundations of terrorism with funding from the U.S. Department of Homeland Security
    Launching the joint NASA-University of Maryland Deep Impact spacecraft in early January 2005.

    The University of Maryland Libraries provide access to scholarly information resources required to meet the missions of the university.

    The University of Maryland is an international center for the study of language, hosting the largest community of language scientists in North America, including more than 200 faculty, researchers, and graduate students, who collectively comprise the Maryland Language Science Center. Since 2008 the university has hosted an NSF-IGERT interdisciplinary graduate training program that has served as a catalyst for broader integrative efforts in language science, with 50 participating students and contributions from 50 faculty. The University of Maryland is also home to two key ‘migrator’ centers that connect basic research to critical national needs in education and national security: the Center for Advanced Study of Language (CASL) and the National Foreign Language Center.

    The Center for American Politics and Citizenship provides citizens and policy-makers with research on issues related to the United States’ political institutions, processes, and policies. CAPC is a non-partisan, non-profit research institution within the Department of Government and Politics in the College of Behavioral and Social Sciences.

    The Space Systems Laboratory researches human-robotic interaction for astronautics applications, and includes the only neutral buoyancy facility at a university.

    The Joint Quantum Institute conducts theoretical and experimental research on quantum and atomic physics. The institute was founded in 2006 as a collaboration between the University of Maryland and the National Institute of Standards and Technology (NIST).

    The Center for Technology and Systems Management (CTSM) aims to advance the state of technology and systems analysis for the benefit of people and the environment. The focus is on enhancing safety, efficiency and effectiveness by performing reliability, risk, uncertainty or decision analysis studies.

    The Joint Global Change Research Institute was formed in 2001 by the University of Maryland and the DOE’s Pacific Northwest National Laboratory. The institute focuses on multidisciplinary approaches of climate change research.

    The Center for Advanced Life Cycle Engineering (CALCE) was formed in 1985 at the University of Maryland. CALCE is dedicated to providing a knowledge and resource base to support the development of electronic components, products and systems.

    The National Consortium for the Study of Terrorism and Responses to Terrorism (START) launched in 2005 as one of the Centers of Excellence supported by the Department of Homeland Security in the United States. START is focused on the scientific study of the causes and consequences of terrorism in the United States and around the world.

    The university is tied for 58th in the 2021 U.S. News & World Report rankings of “National Universities” across the United States, and it is ranked tied for 19th nationally among public universities. The Academic Ranking of World Universities ranked Maryland as 43rd in the world in 2015. The 2017–2018 Times Higher Education World University Rankings placed Maryland 69th in the world. The 2016/17 QS World University Rankings ranked Maryland 131st in the world.

    The university was ranked among Peace Corps’ 25 Top Volunteer-Producing Colleges for the tenth consecutive year in 2020. The University of Maryland is ranked among Teach for America’s Top 20 Colleges and Universities, contributing the greatest number of graduating seniors to its 2017 teaching corps. Kiplinger’s Personal Finance ranked the University 10th for in-state students and 16th for out-of-state students in its 2019 Best College Value ranking. Money Magazine ranked the university 1st in the state of Maryland for public colleges in its 2019 Best College for Your Money ranking.

    For the fourth consecutive year in 2015, the university is ranked 1st in the U.S. for the number of Boren Scholarship recipients – with 9 students receiving awards for intensive international language study. The university is ranked as a Top Producing Institution of Fulbright U.S. Students and Scholars for the 2017–2018 academic year by the United States Department of State’s Bureau of Educational and Cultural Affairs.

    In 2017, the University of Maryland was ranked among the top 50 universities in the 2018 Best Global Universities Rankings by U.S. News & World Report based on its high academic research performance and global reputation.

    In 2021, the university was ranked among the top 10 universities in The Princeton Review’s annual survey of the Top Schools for Innovation & Entrepreneurship; this was the sixth consecutive such ranking.

    WMUC-FM (88.1 FM) is the university non-commercial radio station, staffed by UMD students and volunteers. WMUC is a freeform radio station that broadcasts at 10 watts. Its broadcasts can be heard throughout the Washington metropolitan area. Notable WMUC alumni include Connie Chung, Bonnie Bernstein, Peter Rosenberg and Aaron McGruder.

     
  • richardmitnick 8:38 am on September 15, 2022 Permalink | Reply
    Tags: "First light at the most powerful laser in the U.S.", "ZEUS": Zetawatt-Equivalent Ultrashort pulse laser System, , , , , , In this first run the ZEUS team is starting at a power of 30 terawatts (30 trillion watts) or about 3% of the current most powerful lasers in the U.S. and 1% of ZEUS’s eventual maximum power., Laser Technology, , , The first test using the target area for ZEUS’s signature experiment is anticipated in 2023., , The ZEUS laser at the University of Michigan has begun its commissioning experiments.   

    From The University of Michigan: “First light at the most powerful laser in the U.S.” 

    U Michigan bloc

    From The University of Michigan

    9.14.22
    Kate McAlpine

    The ZEUS laser at the University of Michigan has begun its commissioning experiments.


    The ZEUS Laser – the most powerful laser in the U.S.
    The ZEUS laser system will be the most powerful laser in the United States, located exclusively at the University of Michigan. Funded by the National Science Foundation, it will be a destination for researchers studying extreme plasmas around the U.S. and internationally.

    The laser that will be the most powerful in the United States is preparing to send its first pulses into an experimental target at the University of Michigan.

    Funded by the National Science Foundation, it will be a destination for researchers studying extreme plasmas around the U.S. and internationally.

    Called ZEUS, the Zetawatt-Equivalent Ultrashort pulse laser System, it will explore the physics of the quantum universe as well as outer space, and it is expected to contribute to new technologies in medicine, electronics and national security.

    “ZEUS will be the highest peak power laser in the U.S. and among the most powerful laser systems in the world. We’re looking forward to growing the research community and bringing in people with new ideas for experiments and applications,” said Karl Krushelnick, director of the Center for Ultrafast Optical Science, which houses ZEUS, and the Henry J. Gomberg Collegiate Professor of Engineering.

    The first target area to get up and running is the high-repetition target area, which runs experiments with more frequent but lower power laser pulses. Michigan alum Franklin Dollar, an associate professor of physics and astronomy at the University of California-Irvine, is the first user, and his team is exploring a new kind of X-ray imaging.

    They will use ZEUS to send infrared laser pulses into a gas target of helium, turning it into plasma. That plasma accelerates electrons to high energies, and those electron beams then wiggle to produce very compact X-ray pulses.

    Dollar’s team investigates how to make and use these new kinds of X-ray sources. Because soft tissues absorb X-rays at very similar rates, basic medical X-ray machines have to deliver high doses of radiation before they can distinguish between a tumor and healthy tissue, he said.

    But during his doctoral studies under Krushelnick, Dollar used ZEUS’s predecessor to image a damselfly, showing the promise of laser-like X-ray pulses. Different soft tissues within the damselfly’s carapace delayed X-rays to different degrees, creating interference patterns in the X-ray waves. Those patterns revealed the soft structures with very short X-ray pulses—a few millionths of a billionth of a second—and hence small X-ray doses.

    “We could see every little organ as well as the tiny micro hairs on its leg,” Dollar said. “It’s very exciting to think of how we could use these laser-like X-rays to do low-dose imaging, taking advantage of the fact that they’re laser-like rather than having to rely on the absorption imaging of the past.”

    In this first run, the ZEUS team is starting at a power of 30 terawatts (30 trillion watts), about 3% of the current most powerful lasers in the U.S. and 1% of ZEUS’s eventual maximum power.

    “During the experiment here, we’ll put the first light through to the target chamber and develop towards that 300 terawatt level,” said John Nees, a research scientist in electrical and computer engineering.

    Nees leads the building of the laser alongside Anatoly Maksimchuk, a research scientist in electrical and computer engineering, who leads the development of the experimental areas.

    2
    (From left) Laser engineer Lauren Weinberg, research scientist John Nees and research engineer Galina Kalinchenko pose for photos while working on the ZEUS laser at the NSF ZEUS laser facility in a Michigan Engineering lab. Image credit: Marcin Szczepanski, Michigan Engineering.

    Dollar’s team plans to return late in the fall for another run, aiming for the full power intended for the high repetition target area, 500 terawatts. The maximum power of 3 petawatts, or quadrillion watts, will go to different target areas to be completed later. The first test using the target area for ZEUS’s signature experiment is anticipated in 2023.

    That experiment will use the laser to generate a beam of high-speed electrons and then run the electrons directly into the laser pulses. For the electrons, that simulates a zetawatt laser pulse—a million times more powerful than ZEUS’s 3 petawatts. In addition to probing the foundations of our understanding of the quantum universe, ZEUS will enable researchers to study what’s going on inside some of the most extreme objects in space.

    “Magnetars, which are neutron stars with extremely strong magnetic fields around them, and objects like active galactic nuclei surrounded by very hot plasma—we can recreate the microphysics of hot plasma in extremely strong fields in the laboratory,” said Louise Willingale, associate director of ZEUS and an associate professor of electrical and computer engineering.

    ZEUS offers not only scientific and technological opportunities, but with the discipline-wide effort to grow the laser physics workforce, it creates career opportunities as well. Dollar brought his whole team to get the hands-on experience of a commissioning experiment at a world-class laser.

    “At Michigan Engineering, we’re fortunate to have some of the strongest academic and research capabilities in the world, and we’re leveraging that strength to improve the lives of real people. ZEUS exemplifies our commitment to fundamental science—using engineering to understand matter at its most basic levels and then using that knowledge to build solutions to real-world problems,” said Alec D. Gallimore, the Robert J. Vlasic Dean of Engineering.

    The first experiment milestone feels especially hard-earned because of the way the pandemic disrupted construction early on, when the team was still reconfiguring the building to accommodate a much larger laser. Project manager Franko Bayer reconsidered the schedules, identifying work that could be done in parallel rather than in sequence, to keep as close as possible to the initial timelines.

    “Our team at ZEUS is very excited that our hard work paid off, and despite all the post-pandemic equipment delivery delays, we are on schedule to our original timeline. This experiment is the beginning to gradually ramp up the power until full commissioning in the fall of 2023,” Bayer said.

    Krushelnick is also a professor of nuclear engineering and radiological sciences and electrical and computer engineering. Gallimore is also the Richard F. and Eleanor A. Towner Professor of Engineering, an Arthur F. Thurnau Professor and a professor of aerospace engineering.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    The University of Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, The University of Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, The University of Michigan signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, The University of Michigan ‘s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The University of Michigan is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s The University of Michigan researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    The University of Michigan is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The The University of Michigan library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. The University of Michigan was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the The University of Michigan library system.

    In the late 1960s The University of Michigan, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by The University of Michigan. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 9:44 am on September 13, 2022 Permalink | Reply
    Tags: "The laser breakthrough that could make tech even faster", , , Laser Technology, Lasers have become a major part of our day-to-day lives.,   

    From The University of Queensland (AU) : “The laser breakthrough that could make tech even faster” 

    u-queensland-bloc

    From The University of Queensland (AU)

    9.12.22

    Dr Martin Plöschner
    m.ploschner@uq.edu.au
    +61 431 134

    1
    The laser breakthrough that could make tech even faster. Credit: The University of Queensland.

    Lasers have become a major part of our day-to-day lives.

    From phones and tablets to self-driving cars and data communication – even the information you’re reading right now is likely being delivered to you via lasers.

    2
    Autonomous cars use laser technology to scan for hazards. Image: C.Castilla / Adobe Stock.

    The technology’s applications are so broad even the researchers who deal with lasers daily are continuously amazed.

    Among them is University of Queensland Research Fellow Dr Martin Plöschner from the School of Information Technology and Electrical Engineering (ITEE).

    “I’ve been working with lasers for the past 15 years and yet I’m often surprised to find them in the most unexpected places,” Dr Plöschner said.

    “In many of their applications, lasers operate in part of the spectrum which is invisible to our eyes.

    “And what the eyes can’t see, the mind often doesn’t know about.

    One such hidden application of lasers is optical data communication – where laser light zips through optical fibres to deliver information.

    But the ever-increasing demand for faster and more frequent access to data is pushing optical fibre networks around the world to their limit – the so-called ‘capacity crunch’.

    Dr Joel Carpenter from UQ’s ITEE said the laser light pulses relayed along the glass or plastic fibres travel at different speeds and can overlap, slowing down the process.

    “Imagine yelling to a friend through a long concrete pipe,” Dr Carpenter said.

    “Your message will distort depending on how much the pipe echoes, and you’ll also have to wait for the echoes to die down from one message before you can send the next.

    “It’s a similar problem in large groups of computer servers, with the amount of echo dependent on the shape and colour of the lasers being launched into the optical fibre.”

    Measuring the properties of lasers is vital to making improvements, but there has been no method to fully capture this complexity.

    Until now.

    Dr Plöschner, Dr Carpenter and their team – with expertise in laser beam manipulation, shaping and characterization – were keen to solve the problem.

    They partnered with leading laser manufacturer II-VI Inc. and spent three years working on a way to make lasers faster and improve their performance.

    1
    The laser tool developed by the UQ team. Image: Dr Martin Plöschner.

    They developed a tool that measures the output of vertical-cavity surface-emitting lasers (VCSELs) and allows the examination of the large amounts of data their light carries.

    “The system itself is about the size of a shoebox and is simply inserted into the path of the laser beam,” Dr Plöschner said.

    “It can tell us how the laser beam evolves in time and changes its shape and colour.

    The results can now be used to improve the next generation of lasers.

    “Our tool will make it possible to identify the beam features that contribute to ‘pulse spreading’ in the optical link, which slows down data,” Dr Plöschner said.

    “Laser engineers can then design lasers without these rogue features, leading to optical links with higher speed and longer distance of operation.

    “And any tool that can facilitate faster data transfer over longer distances is helpful.”

    Dr Plöschner said improved laser technology is set to benefit a range of industries, from telecommunications to security and car manufacturing.

    “Autonomous cars use lasers to make a 3D image of the scene to help them navigate through traffic or reverse park in a tight spot,” he said.

    “And you’re scanned by hundreds of tiny lasers every time you use facial recognition to unlock your smartphone.

    “It comes as no surprise then that there’s a huge demand to make lasers with improved performance.

    The research has been published in Nature Communications.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-queensland-campus

    The University of Queensland (AU) is a public research university located primarily in Brisbane, the capital city of the Australian state of Queensland. Founded in 1909 by the Queensland parliament, UQ is one of the six sandstone universities, an informal designation of the oldest university in each state. The University of Queensland was ranked second nationally by the Australian Research Council in the latest research assessment and equal second in Australia based on the average of four major global university league tables. The University of Queensland is a founding member of edX, Australia’s leading Group of Eight and the international research-intensive Association of Pacific Rim Universities.

    The main St Lucia campus occupies much of the riverside inner suburb of St Lucia, southwest of the Brisbane central business district. Other University of Queensland campuses and facilities are located throughout Queensland, the largest of which are the Gatton campus and the Mayne Medical School. University of Queensland’s overseas establishments include University of Queensland North America office in Washington D.C., and the University of Queensland-Ochsner Clinical School in Louisiana, United States.

    The university offers associate, bachelor, master, doctoral, and higher doctorate degrees through a college, a graduate school, and six faculties. University of Queensland incorporates over one hundred research institutes and centres offering research programs, such as the Institute for Molecular Bioscience, Boeing Research and Technology Australia Centre, the Australian Institute for Bioengineering and Nanotechnology, and the University of Queensland Dow Centre for Sustainable Engineering Innovation. Recent notable research of the university include pioneering the invention of the HPV vaccine that prevents cervical cancer, developing a COVID-19 vaccine that was in human trials, and the development of high-performance superconducting MRI magnets for portable scanning of human limbs.

    The University of Queensland counts two Nobel laureates (Peter C. Doherty and John Harsanyi), over a hundred Olympians winning numerous gold medals, and 117 Rhodes Scholars among its alumni and former staff. University of Queensland’s alumni also include The University of California-San Francisco,The University of Queensland (AU) Chancellor Sam Hawgood, the first female Governor-General of Australia Dame Quentin Bryce, former President of King’s College London (UK) Ed Byrne, member of United Kingdom’s Prime Minister Council for Science and Technology Max Lu, Oscar and Emmy awards winner Geoffrey Rush, triple Grammy Award winner Tim Munro, the former CEO and Chairman of Dow Chemical, and current Director of DowDuPont Andrew N. Liveris.

    Research

    The University of Queensland has a strong research focus in science, medicine and technology. The university’s research advancement includes pioneering the development of the cervical cancer vaccines, Gardasil and Cervarix, by University of Queensland Professor Ian Frazer. In 2009, the Australian Cancer Research Foundation reported that University of Queensland had taken the lead in numerous areas of cancer research.

    In the Commonwealth Government’s Excellence in Research for Australia 2012 National Report, University of Queensland’s research is rated above world standard in more broad fields than at any other Australian university (in 22 broad fields), and more University of Queensland researchers are working in research fields that ERA has assessed as above world standard than at any other Australian university. University of Queensland research in biomedical and clinical health sciences, technology, engineering, biological sciences, chemical sciences, environmental sciences, and physical sciences was ranked above world standard (rating 5).

    In 2015, University of Queensland is ranked by Nature Index as the research institution with the highest volume of research output in both interdisciplinary journals Nature and Science within the southern hemisphere, with approximately twofold more output than the global average.

    In 2020 Clarivate named 34 UQ professors to its list of Highly Cited Researchers.

    Aside from disciplinary-focused teaching and research within the academic faculties, the university maintains a number of interdisciplinary research institutes and centres at the national, state and university levels. For example, the Asia-Pacific Centre for the Responsibility to Protect, the University of Queensland Seismology Station, Heron Island Research Station and the Institute of Modern Languages.

    With the support from the Queensland Government, the Australian Government and major donor The Atlantic Philanthropies, The University of Queensland dedicates basic, translational and applied research via the following research-focused institutes:

    Institute for Molecular Bioscience – within the Queensland Bioscience Precinct which houses scientists from the CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) and the Community for Open Antimicrobial Drug Discovery

    Translational Research Institute, which houses The University of Queensland’s Diamantina Institute, School of Medicine and the Mater Medical Research Institute
    Australian Institute for Bioengineering and Nanotechnology
    Institute for Social Science Research
    Sustainable Mineral Institute
    Global Change Institute
    Queensland Alliance for Environmental Health Science
    Queensland Alliance for Agriculture and Food Innovation
    Queensland Brain Institute
    Centre for Advanced Imaging
    Boeing Research and Technology Australia Centre
    UQ Dow Centre

    The University of Queensland plays a key role in Brisbane Diamantina Health Partners, Queensland’s first academic health science system. This partnership currently comprises Children’s Health Queensland, Mater Health Services, Metro North Hospital and Health Service, Metro South Health, QIMR Berghofer Medical Research Institute, The Queensland University of Technology (AU), The University of Queensland and the Translational Research Institute.

    International partnerships

    The University of Queensland has a number of agreements in place with many of her international peers, including: Princeton University, The University of Pennsylvania, The University of California, Washington University in St. Louis, The University of Toronto (CA), McGill University (CA), The University of British Columbia (CA), Imperial College London (UK), University College London (UK), The University of Edinburgh (SCT), Balsillie School of International Affairs (CA), Sciences Po (FR), Ludwig Maximilians University of Munich [Ludwig-Maximilians-Universität München](DE), Technical University of Munich [Technische Universität München] (DE), The University of Zürich [Universität Zürich ](CH), The University of Auckland (NZ), The National University of Singapore [universiti kebangsaan singapura] (SG), Nanyang Technological University [Universiti Teknologi Nanyang](SG),Peking University [北京大学](CN), The University of Hong Kong [香港大學] (HKU) (HK), The University of Tokyo[(東京大] (JP), The National Taiwan University [國立臺灣大學](TW), and The Seoul National University [서울대학교](KR).

     
  • richardmitnick 10:51 am on September 10, 2022 Permalink | Reply
    Tags: , , , , Laser Technology, , , "Purdue researchers suggest novel way to generate a light source made from entangled photons", This research shows promise in establishing the measurement of entangled photons down to the attosecond and possibly even zeptosecond., The team proposed a method to generate entangled photons at extreme-ultraviolet (XUV) wavelengths where no such source currently exists., "AMO": atomic molecular and optical physics program, "XUV': extreme-ultraviolet wavelengths   

    From Purdue University: “Purdue researchers suggest novel way to generate a light source made from entangled photons” 

    From Purdue University

    9.7.22

    Cheryl Pierce,
    Communications Specialist
    pierce81@purdue.edu

    1
    In a recent publication in Physical Review Research, Purdue researchers propose an unconventional way to generate light made from entangled photons. In the graphic above, photons meet the electrons of a helium atom, which then emits two entangled photons. Graphic by: Cheryl Pierce with elements from Adobe Stock.

    This research shows promise in establishing the measurement of entangled photons down to the attosecond and possibly even zeptosecond.

    Entanglement is a strange phenomenon in quantum physics where two particles are inherently connected to each other no matter the distance between them. When one is measured, the other measurement is instantly a given. Researchers from Purdue University have proposed a novel, unconventional approach to generate a special light source made up of entangled photons. On Sept. 6, 2022, they published their findings in Physical Review Research [below].

    The team proposed a method to generate entangled photons at extreme-ultraviolet (XUV) wavelengths where no such source currently exists. Their work provides a road map on how to generate these entangled photons and use them to track the dynamics of electrons in molecules and materials on the incredibly short timescales of attoseconds.

    “The entangled photons in our work are guaranteed to arrive at a given location within a very short duration of attoseconds, as long as they travel the same distance,” says Dr. Niranjan Shivaram, assistant professor of Physics and Astronomy. “This correlation in their arrival time makes them very useful to measure ultrafast events. One important application is in attosecond metrology to push the limits of measurement of the shortest time scale phenomena. This source of entangled photons can also be used in quantum imaging and spectroscopy, where entangled photons have been shown to enhance the ability to gain information, but now at XUV and even X-ray wavelengths.”

    The authors of the publication are all from the Purdue University Department of Physics and Astronomy and work with the Purdue Quantum Science and Engineering Institute (PQSEI). They are Dr. Yimeng Wang, recent graduate of Purdue University; Siddhant Pandey, PhD candidate in the field of experimental ultrafast spectroscopy; Dr. Chris H. Greene, Albert Overhauser Distinguished Professor of Physics and Astronomy; and Dr. Shivaram.

    “The Department of Physics and Astronomy at Purdue has a strong atomic, molecular and optical (AMO) physics program, which brings together experts in various subfields of AMO,” says Shivaram. “Chris Greene’s expert knowledge of theoretical atomic physics combined with Niranjan’s background in the relatively young field of experimental attosecond science led to this collaborative project. While many universities have AMO programs, Purdue’s AMO program is uniquely diverse in that it has experts in multiple subfields of AMO science.”

    Each researcher played a significant role in this ongoing research. Greene initially suggested the idea of using photons emitted by helium atoms as a source of entangled photons and Shivaram suggested applications to attosecond science and proposed experimental schemes. Wang and Greene then developed the theoretical framework to calculate entangled photon emission from helium atoms, while Pandey and Shivaram made estimates of entangled photon emission/absorption rates and worked out the details of the proposed attosecond experimental schemes.

    The publication marks the beginning of this research for Shivaram and Greene. In this publication, the authors propose the idea and work out the theoretical aspects of the experiment. Shivaram and Greene plan to continue to collaborate on experimental and further theoretical ideas. Shivaram’s lab, the Ultrafast Quantum Dynamics Group, is currently building an apparatus to experimentally demonstrate some of these ideas. According to Shivaram, the hope is that other researchers in attosecond science will begin working on these ideas. A concerted effort by many research groups could further increase the impact of this work. Eventually, they hope to get the timescale of entangled photons down to the zeptosecond, 10^-21 seconds.

    “Typically, experiments on attosecond timescales are performed using attosecond laser pulses as ‘strobes’ to ‘image’ the electrons. Current limits on these pulses are around 40 attoseconds. Our proposed idea of using entangled photons could push this down to a few attoseconds or zeptoseconds,” says Shivaram.

    In order to understand the timing, one must understand that electrons play a fundamental role in determining the behavior of atoms, molecules and solid materials. The timescale of motion of electrons is typically in the femtosecond (one millionth of a billionth of a second – 10^-15 seconds) and attosecond (one billionth of a billionth of a second, or 10^-18 seconds) scale. According to Shivaram, gaining insight into the dynamics of electrons and tracking their motion on these ultrashort timescales is essential.

    “The goal of the field of ultrafast science is to make such ‘movies’ of electrons and then use light to control the behavior of these electrons to engineer chemical reactions, make materials with novel properties, make molecular-scale devices, etc.,” he says. “This is light-matter interaction at its most basic level, and the possibilities for discovery are many. A single zeptosecond is 10^-21 seconds. A thousand zeptoseconds is an attosecond. Researchers are only now beginning to explore zeptosecond phenomena, though it is experimentally out of reach due to lack of zeptosecond laser pulses. Our unique approach of using entangled photons instead of photons in laser pulses could allow us to reach the zeptosecond regime. This will require considerable experimental effort and is likely possible on the timescale of five years.”

    Science paper:
    Physical Review Research

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 11:23 am on September 7, 2022 Permalink | Reply
    Tags: "LPA": Laser plasma accelerator, "Upgraded Laser Facility Paves the Way for Next-Generation Particle Accelerators", , , , , Laser Technology, , , , Seismic Engineering,   

    From The DOE’s Lawrence Berkeley National Laboratory: “Upgraded Laser Facility Paves the Way for Next-Generation Particle Accelerators” 

    From The DOE’s Lawrence Berkeley National Laboratory

    9.7.22
    Alison Hatt

    1
    Accelerator Technology & Applied Physics Division scientists Marlene Turner and Anthony Gonsalves perform work on the laser table where the petawatt laser is split into the two beamlines. Well-positioned mirrors enable femtosecond overlap of the two lasers on target. (Credit: Marilyn Sargent/Berkeley Lab)

    Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have completed a major expansion of one of the world’s most powerful laser systems, creating new opportunities in accelerator research for the future of high-energy physics and other fields. The expansion created a second beamline for the petawatt laser at the Berkeley Lab Laser Accelerator (BELLA) Center, enabling the development of next-generation particle accelerators for applications in science, medicine, security, and industry. The second beamline came online this summer and is the culmination of several years of planning, design, and engineering by the BELLA and engineering teams.

    “We are happy to see construction completed and are very eager to begin the wide variety of exciting experiments that are enabled by the second beamline,” said Eric Esarey, Director of the BELLA Center.

    Using light to move particles

    Traditional accelerators use radio-frequency electromagnetic fields to gradually speed particles up over distances of tens of kilometers and tend to be huge and very expensive as a result. For example, the Large Hadron Collider at CERN, the famous international particle accelerator, accelerates particles along a circular path over 16 miles long, a monumental achievement costing billions of dollars to build and operate.

    At the BELLA Center, scientists accelerate charged particles with electric fields generated by a high-powered laser interacting with a plasma, creating what’s known as a laser-plasma accelerator (LPA). The team uses a one-petawatt laser that produces a beam of very short pulses or “bullets” of light, one per second, each of which is about a hundred times more powerful than a typical lightning bolt. When the laser beam passes through plasma (a gas-like soup of charged particles), it sets up a moving wave, and a charged particle placed in that wave is then propelled forward, like a surfer on an ocean wave. This “wakefield” approach can produce rates of acceleration up to one thousand times greater than conventional accelerators, making LPAs a promising candidate for the next generation of smaller, less expensive accelerators.

    A powerful tool for accelerator technology development

    The second beamline was designed to be highly tunable, able to produce a wide range of laser-spot sizes, with pulse durations and pulse energies that can be varied independently. The two beamlines are intended to be used in tandem, making the system a powerful and versatile tool for science and accelerator technology development. To create the new beamline, the team split off a portion of the main laser beam and ran it through a series of optics to generate a second beam of short, powerful pulses of light that can create a second wakefield.

    In particular, the system was designed to enable the team’s vision of staging multiple LPA modules in order to reach the high electron-beam energies needed for particle colliders, using the wakefield of the second beamline to further accelerate particles coming off the first. Initial experiments to achieve this goal are currently underway. In their longer-term vision, the team proposes stacking additional laser-powered modules to create accelerators of extremely high energies, enabling the next generation of physics discoveries at a fraction of the cost and size.

    As an example, methods to enhance the energy efficiency of LPAs can also be explored with the dual beamlines. The second beamline laser pulse can be configured to absorb any leftover energy in the first beamline plasma that is unused by the acceleration process and then sent to an energy recovery system. Marlene Turner, a scientist in the BELLA Center, received a prestigious early career award from DOE to work on this concept. “Without the second beamline, my research, which aims to decrease the power consumption and environmental impact of future plasma colliders, would not be possible,” said Turner.

    The dual beamlines can be used in other configurations as well. For example, the second beamline can be used to accelerate particles to scatter off those from the first beamline, enabling physicists to probe the exotic physics that arise.

    “The precision that these two laser beamlines bring, combining femtosecond timing and micron-scale spatial accuracy, is unprecedented at petawatt-class peak power levels, and will enable experiments on LPA staging as well as other advances in plasma acceleration such as laser tailoring of plasma accelerating structures, laser-based methods of particle injection, high energy photon production by laser scattering, and fundamental studies in high field quantum electrodynamics, ” said Tony Gonsalves, the lead scientist on the BELLA petawatt team. “It’s a big deal.”

    3
    (Left): Two deformable mirrors. In addition to arrival time and pulse length control of both beam lines, these mirrors allow for independently shaping the focal spot mode, which is critical for optimized staged acceleration. (Right) In the newly-commissioned second beam line, the laser beam travels through the large white tubes into the laser-plasma accelerator vacuum system. Marlene Turner (foreground) and postdoctoral scholar Alex Picksley check for alignment. (Credit: Marilyn Sargent/Berkeley Lab)

    The power of team science

    Berkeley Lab is known as a powerhouse of team science, and this new BELLA project exemplified this ethos. At any one time, the core team working on this project includes ten to fifteen mechanical engineers, electrical engineers, and research scientists, as well as a rotating cast of other key players, including radiological safety specialists and seismic engineers. This has ensured that the two-laser-beamline upgrade not only creates state of the art science, but is executed in a safe, well-engineered, and durable manner that will enable continued productivity for many years to come.

    The team encountered their fair share of challenges due to the COVID-19 pandemic, which temporarily shut their facility down. After it reopened, the team had to work in shifts, using a ticketing system to maintain safe density of workers. Just bringing in a team of French engineers to install a compressor chamber took the better part of a year due to pandemic-related restrictions.

    “It’s been a long road to get this going, and a much longer road because of COVID,” said Gonsalves. “If you were to count how many people have touched this project, it’d be a very large number. We’re lucky to have this impressive infrastructure of people at the Lab to make a project like this possible.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 8:17 am on September 2, 2022 Permalink | Reply
    Tags: "Physicists Broke The Speed of Light With Pulses Inside Hot Plasma", , Laser Technology, , , ,   

    From “Science Alert (AU)” : “Physicists Broke The Speed of Light With Pulses Inside Hot Plasma” 

    ScienceAlert

    From “Science Alert (AU)”

    1
    (zf L/Getty Images)

    9.2.22
    Mike McRae

    Most of us grow up familiar with the prevailing law that limits how quickly information can travel through empty space: the speed of light, which tops out at 300,000 kilometers (186,000 miles) per second.

    While photons themselves are unlikely to ever break this speed limit, there are features of light which don’t play by the same rules.

    Manipulating them won’t hasten our ability to travel to the stars, but they could help us clear the way to a whole new class of laser technology.

    Physicists in the US have shown that, under certain conditions, waves made up of groups of photons can move faster than light.

    Researchers have been playing hard and fast with the speed limit of light pulses for a while, speeding them up and even slowing them to a virtual stand-still using various materials like cold atomic gases, refractive crystals, and optical fibers.

    But impressively, last year, researchers from The DOE’s Lawrence Livermore National Laboratory in California and The University of Rochester in New York managed it inside hot swarms of charged particles, fine-tuning the speed of light waves within plasma to anywhere from around one-tenth of light’s usual vacuum speed to more than 30 percent faster.

    This is both more – and less – impressive than it sounds.

    To break the hearts of those hoping it’ll fly us to Proxima Centauri and back in time for tea, this superluminal travel is well within the laws of physics. Sorry.

    A photon’s speed is locked in place by the weave of electrical and magnetic fields referred to as electromagnetism. There’s no getting around that, but pulses of photons within narrow frequencies also jostle in ways that create regular waves.

    The rhythmic rise and fall of whole groups of light waves moves through stuff at a rate described as group velocity, and it’s this ‘wave of waves’ that can be tweaked to slow down or speed up, depending on the electromagnetic conditions of its surrounds.

    By stripping electrons away from a stream of hydrogen and helium ions with a laser, the researchers were able to change the group velocity of light pulses sent through them by a second light source, putting the brakes on or streamlining them by adjusting the gas’s ratio and forcing the pulse’s features to change shape.

    The overall effect was due to refraction from the plasma’s fields and the polarized light from the primary laser used to strip them down. The individual light waves still zoomed along at their usual pace, even as their collective dance appeared to accelerate.

    From a theoretical standing, the experiment helps flesh out the physics of plasmas and put new constraints on the accuracy of current models.

    Practically speaking, this is good news for advanced technologies waiting in the wings for clues on how to get around obstacles preventing them from being turned into reality.

    Lasers would be the big winners here, especially the insanely powerful variety. Old-school lasers rely on solid-state optical materials, which tend to get damaged as the energy cranks up. Using streams of plasma to amplify or change light characteristics would get around this issue, but to make the most of it we really need to model their electromagnetic characteristics.

    It’s no coincidence that Lawrence Livermore National Laboratory is keen to understand the optical nature of plasmas, being home to some of the world’s most impressive laser technology.

    Ever more powerful lasers are just what we need for a whole bunch of applications, from ramping up particle accelerators to improving clean fusion technology.

    It might not help us move through space any faster, but it’s these very discoveries that will hasten us towards the kind of future we all dream of.

    This research was published in Physical Review Letters.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 7:53 am on August 31, 2022 Permalink | Reply
    Tags: "Look at life in lab", , , , Harvard Quantum Initiative’s Summer Research Program, HQI launched in 2018 with the aim of expanding research and development and education in a rapidly expanding field that is key to future innovations and major technological advancement., Laser Technology, , , , Research projects in quantum science including quantum information and systems and materials and engineering., Students lead research projects and sample day-to-day routine of working scientist in Quantum Initiative summer program., , The program is about students getting the opportunity to work in a quantum lab just as a regular member of the lab.   

    From “The Harvard Gazette” : “Look at life in lab” 

    From “The Harvard Gazette”

    At

    Harvard University

    8.26.22
    Juan Siliezar

    1
    Andrew Winnicki, a rising senior studying physics and math, works with lasers in the Doyle Lab. Credit: Rose Lincoln/Harvard Staff Photographer.

    Students lead research projects and sample day-to-day routine of working scientist in Quantum Initiative summer program.

    Denisse Córdova Carrizales spent her summer, quite literally, bringing the heat.

    On a typical day Córdova Carrizales, who begins her senior year this fall, would arrive at the lab of condensed-matter physicist Julia Mundy at about 9 a.m. and don a white protective suit. The physics concentrator’s research involved working with chemical compounds heated in an oven to temperatures as high as 1,200 degrees Fahrenheit. Her job was to X-ray samples and perform electrical tests in a sealed container. If the material showed potential as a superconductor, she’d do further testing.

    Córdova Carrizales was part of the first group of fellows in the Harvard Quantum Initiative’s Summer Research Program. The program, which is in its inaugural year, supported 10 undergraduate researchers from June to mid-August as they worked full-time in labs belonging to members of HQI.

    The fellowship is designed for students with any level of prior research experience and provides advising and stipends to help them spend the summer in the Cambridge area. It also provides opportunities for the students to present their work and network with colleagues and peers. They work with supervising faculty and members of labs to design and pursue research projects in quantum science, including quantum information, systems, materials, and engineering.

    The program offers the fellows a glimpse at the real-world lives of research scientists — and it’s not always as exciting as some might think. Córdova Carrizales says her process is repetitive and often nothing comes from the experiments, but it forces her to continually rethink and tweak what she’s doing. Fascinated, challenged, and “borderline addicted” to the work, she described the summer experience as giving her some technical expertise and a confidence boost as a scientist.

    “This summer in general has made me realize that I really do enjoy research and do want to go on,” Córdova Carrizales said. “It helped me feel more confident about doing research. I’ve gotten to lead my own project. It has all made me feel very capable.”

    “The program is about students getting the opportunity to work in a quantum lab just as a regular member of the lab, as if they were a graduate student or a postdoc,” said John Doyle, Henry B. Silsbee Professor of Physics, who co-directs HQI. “Having undergraduate students do actual work in a lab is crucial to their education and their professional development. What we’ve been able to do is provide a very easy on-ramp for our students to have this experience.”

    HQI launched in 2018 with the aim of expanding research, development, and education in a rapidly expanding field that is key to future innovations and major technological advancement.

    Creation of the undergraduate research program was largely spearheaded by Mundy, an HQI member and assistant professor of physics and applied physics. A Harvard College alumna, she knows firsthand the power of such experiences for undergraduates, especially in areas that build on prior lab work. Those experiences, she said, were critical in shaping her career as a researcher in quantum materials.

    “The summer between junior and senior year was completely pivotal for me,” Mundy said. “It wasn’t the first research experience I had, but it was a really special one because it’s right when you’re thinking about going to grad school and what [line of research to focus on]. It’s really exciting to see a new generation of undergraduates have the same experiences.”

    Students in this year’s program are working on a range of projects, from optimizing quantum technology to decoding errors in quantum computers to building lasers that can more easily cut materials such as graphene. Córdova Carrizales, for example, designed a project looking for a new family of materials that could lead to superconductors that can operate at higher temperatures. It’s a Holy Grail in condensed-matter physics because of the door they would open to long-term, sustainable electric energy.

    Andrew Winnicki, a rising senior from Quincy House studying physics and math, is part of the Doyle lab. He is using a laser array to control a molecule that one day could be used as a qubit in quantum computers.

    “It’s unpredictable and exciting, because sometimes the experiment will throw something at us that we need to figure out how to deal with,” Winnicki said. “I’ve added many new techniques to my experimental tool kit, like different laser and optics setups, or skills such as designing electronics and machining hardware that will go inside of the vacuum chambers. It’s all been a big part of my growth as a scientist.”


    What is quantum physics? Credit: Harvard University.

    Mincheol Park — an international student from South Korea who has a joint concentration in chemistry, physics, and math — is working on the theoretical side of quantum science. The rising junior is trying to produce a protocol to implement error-correcting codes for quantum processors that exist today. He’s valued the mentorship working full-time in the lab of physicist Mikhail Lukin. Park said he’s learned a lot from graduate students in the lab about how to prioritize work and what to do when something isn’t working. It also helps to hear about their career paths.

    “It’s really good that I am able to learn this kind of lifestyle this early after my second year of college,” Park said.

    The HQI undergraduate fellowship hosts a series of lunches for the fellows to network with other fellows and learn about each other’s work, as well as unwind and bond over their shared summer experience. There is also a poster session where the students present their work to the larger HQI community.

    “It was an unexpected community this summer,” said Cassia Lee, a rising junior in Eliot House concentrating in chemistry and physics. “It’s easy to focus on your work and be in your own bubble, but it was really good to take a step back and see what everyone is doing.”

    Standing at the poster session amid the different projects and diverse group of students, Doyle reflected on another of the key points of the fellowship: students pushing themselves to their limits and beyond.

    “Generally, students are able to rise to whatever level of capabilities they have,” Doyle said. “In the lab, there is no upper limit. They can go as far as they want.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University (US) had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel