Tagged: Larry Zamick of Rutgers University Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:29 pm on May 16, 2018 Permalink | Reply
    Tags: Larry Zamick of Rutgers University Physics, Marquis Who's Who,   

    From Rutgers via Marquis Who’s Who: “Larry Zamick, Ph.D., Presented with the Albert Nelson Marquis Lifetime Achievement Award by Marquis Who’s Who” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University


    Marquis Who’s Who

    Fred Marks

    2Marquis Who’s Who, the world’s premier publisher of biographical profiles, is proud to present Larry Zamick, Ph.D., with the Albert Nelson Marquis Lifetime Achievement Award. An accomplished listee, Dr. Zamick celebrates many years’ experience in his professional network, and has been noted for achievements, leadership qualities, and the credentials and successes he has accrued in his field. As in all Marquis Who’s Who biographical volumes, individuals profiled are selected on the basis of current reference value. Factors such as position, noteworthy accomplishments, visibility, and prominence in a field are all taken into account during the selection process.

    With more than 55 years of industry experience to his credit, Dr. Zamick has been recognized as a distinguished professor with the department of physics and astronomy at Rutgers University, The State University of New Jersey, since 2014. Prior to this position, he held multiple positions at Rutgers, including as a senior professor from 1977 to 2014, professor from 1970 to 1977, and associate professor from 1966 to 1970. Dr. Zamick began his career as an instructor at Princeton University from 1961 to 1966.

    Before embarking on his professional path, Dr. Zamick pursued an education at the University of Manitoba, earning a Bachelor of Science in physics in 1957. He concluded his studies at the Massachusetts Institute of Technology in 1961, graduating with a Doctor of Philosophy in physics. Following these accomplishments, Dr. Zamick found success within his areas of expertise, having contributed many articles and scientific papers to esteemed publications and journals.

    Beyond his efforts within the field, Dr. Zamick has contributed to numerous endeavors outside of his professional circles. From 2002 to 2012, he worked with harbor dogs for Animal Rescue Force, Inc., in East Brunswick, NJ. From 2004 to 2006, he served as secretary in support for research associates with Universidad Autónoma del Estado de Spain. On the program advisory committee for Los Alamos, Dr. Zamick has maintained membership with the New Jersey Beekeeping Association.

    In light of his exceptional undertakings, Dr. Zamick has accrued several accolades and honors throughout his impressive career. He has been presented with the Morris Belkin Award from the Weizmann Institute in 2011 and the United States-Israel Binational Award in 1981. Likewise, he was recognized as a grantee of the U.S. Department of Energy from 1986 to 2005, the North Atlantic Treaty Organization in 1987 and 2001, and the National Science Foundation in 1981 and from 1967 to 1986. A fellow of the American Physical Society, he was honored as a senior fellow of the Alexander von Humboldt-Foundation in 1986. Additionally, Dr. Zamick was selected for inclusion in many editions of Who’s Who in America.

    In recognition of outstanding contributions to his profession and the Marquis Who’s Who community, Dr. Zamick has been featured on the Albert Nelson Marquis Lifetime Achievement website. Please visit http://www.ltachievers.com for more information about this honor.

    Since 1899, when A. N. Marquis printed the First Edition of Who’s Who in America®, Marquis Who’s Who® has chronicled the lives of the most accomplished individuals and innovators from every significant field of endeavor, including politics, business, medicine, law, education, art, religion and entertainment. Today, Who’s Who in America® remains an essential biographical source for thousands of researchers, journalists, librarians and executive search firms around the world. Marquis® now publishes many Who’s Who titles, including Who’s Who in America®, Who’s Who in the World®, Who’s Who in American Law®, Who’s Who in Medicine and Healthcare®, Who’s Who in Science and Engineering®, and Who’s Who in Asia®. Marquis® publications may be visited at the official Marquis Who’s Who® website at http://www.marquiswhoswho.com.

    See the full article here .

    Follow Rutgers Research here .

    Please help promote STEM in your local schools.


    Stem Education Coalition


    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

  • richardmitnick 11:15 am on July 9, 2017 Permalink | Reply
    Tags: , Larry Zamick of Rutgers University Physics, , , UC Berkeley Nuclear Research Center,   

    Brought Forward by Larry Zamick, Rutgers Physics From UC Berkeley Nuclear Research Center: Women in STEM – Lise Meitner 

    UC Berkeley

    UC Berkeley Nuclear Research Center

    Lise Meitner

    Lise Meitner [3] (7 November 1878 – 27 October 1968) was an Austrian, later Swedish, physicist who worked on radioactivity and nuclear physics. [4] Meitner was part of the team that discovered nuclear fission, an achievement for which her colleague Otto Hahn was awarded the Nobel Prize.[5] Meitner is often mentioned as one of the most glaring examples of women’s scientific achievement overlooked by the Nobel committee.[6][7][8] A 1997 Physics Today study concluded that Meitner’s omission was “a rare instance in which personal negative opinions apparently led to the exclusion of a deserving scientist” from the Nobel.[9] Element 109, Meitnerium, is named in her honour.[10][11][12].

    Meitner was born into a Jewish family as the third of eight children in Vienna, 2nd district (Leopoldstadt). Her father, Philipp Meitner,[13] was one of the first Jewish lawyers in Austria.[8] She was born on 7 November 1878. She shortened her name from Elise to Lise.[2][14] The birth register of Vienna’s Jewish community lists Meitner as being born on 17 November 1878, but all other documents list it as 7 November, which is what she used.[1] As an adult, she converted to Christianity, following Lutheranism,[1][15] and being baptized in 1908.[16]

    Scientific career

    Inspired by her teacher, physicist Ludwig Boltzmann, Meitner studied physics and became the second woman to obtain a doctoral degree in physics at the University of Vienna in 1905 (“Wärmeleitung im inhomogenen Körper”).[8] Women were not allowed to attend institutions of higher education in those days, but thanks to support from her parents, she was able to obtain private higher education, which she completed in 1901 with an “externe Matura” examination at the Akademisches Gymnasium. Following the doctoral degree, she rejected an offer to work in a gas lamp factory. Encouraged by her father and backed by his financial support, she went to Berlin. Max Planck allowed her to attend his lectures, an unusual gesture by Planck, who until then had rejected any women wanting to attend his lectures. After one year, Meitner became Planck’s assistant. During the first years she worked together with chemist Otto Hahn and discovered with him several new isotopes. In 1909 she presented two papers on beta-radiation.

    In 1912 the research group Hahn-Meitner moved to the newly founded Kaiser-Wilhelm-Institut (KWI) in Berlin-Dahlem, south west in Berlin. She worked without salary as a “guest” in Hahn’s department of Radiochemistry. It was not until 1913, at 35 years old and following an offer to go to Prague as associate professor, that she got a permanent position at KWI.

    In the first part of World War I, she served as a nurse handling X-ray equipment. She returned to Berlin and her research in 1916, but not without inner struggle. She felt in a way ashamed of wanting to continue her research efforts when thinking about the pain and suffering of the victims of war and their medical and emotional needs.[17]

    Lise Meitner and Otto Hahn in their laboratory. Wikepedia

    In 1917, she and Hahn discovered the first long-lived isotope of the element protactinium, for which she was awarded the Leibniz Medal by the Berlin Academy of Sciences. That year, Meitner was given her own physics section at the Kaiser Wilhelm Institute for Chemistry.[8]

    In 1922, she discovered the cause, known as the Auger effect, of the emission from surfaces of electrons with ‘signature’ energies.[18] The effect is named for Pierre Victor Auger, a French scientist who independently discovered the effect in 1923.[19]

    In 1926, Meitner became the first woman in Germany to assume a post of full professor in physics, at the University of Berlin. There she undertook the research program in nuclear physics which eventually led to her co-discovery of nuclear fission in 1939, after she had left Berlin. She was praised by Albert Einstein as the “German Marie Curie”.[8][20][21]

    In 1930, Meitner taught a seminar on nuclear physics and chemistry with Leó Szilárd. With the discovery of the neutron in the early 1930s, speculation arose in the scientific community that it might be possible to create elements heavier than uranium (atomic number 92) in the laboratory. A scientific race began between Ernest Rutherford in Britain, Irène Joliot-Curie in France, Enrico Fermi in Italy, and the Meitner-Hahn team in Berlin. At the time, all concerned believed that this was abstract research for the probable honour of a Nobel prize. None suspected that this research would culminate in nuclear weapons.

    When Adolf Hitler came to power in 1933, Meitner was acting director of the Institute for Chemistry. Although she was protected by her Austrian citizenship, all other Jewish scientists, including her nephew Otto Frisch, Fritz Haber, Leó Szilárd and many other eminent figures, were dismissed or forced to resign from their posts. Most of them emigrated from Germany. Her response was to say nothing and bury herself in her work; she later acknowledged, in 1946, that “It was not only stupid but also very wrong that I did not leave at once.”[22]

    After the Anschluss, her situation became desperate. In July 1938, Meitner, with help from the Dutch physicists Dirk Coster and Adriaan Fokker, escaped to the Netherlands. She was forced to travel under cover to the Dutch border, where Coster persuaded German immigration officers that she had permission to travel to the Netherlands. She reached safety, though without her possessions. Meitner later said that she left Germany forever with 10 marks in her purse. Before she left, Otto Hahn had given her a diamond ring he had inherited from his mother: this was to be used to bribe the frontier guards if required. It was not required, and Meitner’s nephew’s wife later wore it.

    Meitner was lucky to escape, as Kurt Hess, a chemist who was an avid Nazi, had informed the authorities that she was about to flee. An appointment at the University of Groningen did not come through, and she went instead to Stockholm, where she took up a post at Manne Siegbahn’s laboratory, despite the difficulty caused by Siegbahn’s prejudice against women in science. Here she established a working relationship with Niels Bohr, who travelled regularly between Copenhagen and Stockholm. She continued to correspond with Hahn and other German scientists.[23]

    Nuclear fission

    Hahn and Meitner met privately in Copenhagen in November to plan a new round of experiments, and they subsequently exchanged a series of letters. Hahn and Fritz Strassmann then performed the difficult experiments which isolated the evidence for nuclear fission at his laboratory in Berlin. The surviving correspondence shows that Hahn recognized that fission was the only explanation for the barium, but, baffled by this remarkable conclusion, he wrote to Meitner. The possibility that uranium nuclei might break up under neutron bombardment had been suggested years before, notably by Ida Noddack in 1934. However, by employing the existing “liquid-drop” model of the nucleus,[24] Meitner and Frisch were the first to articulate a theory of how the nucleus of an atom could be split into smaller parts: uranium nuclei had split to form barium and krypton, accompanied by the ejection of several neutrons and a large amount of energy (the latter two products accounting for the loss in mass). She and Frisch had discovered the reason that no stable elements beyond uranium (in atomic number) existed naturally; the electrical repulsion of so many protons overcame the strong nuclear force.[24] Meitner also first realized that Einstein’s famous equation, E = mc2, explained the source of the tremendous releases of energy in nuclear fission, by the conversion of rest mass into kinetic energy, popularly described as the conversion of mass into energy.

    Nuclear fission experimental setup, reconstructed at the Deutsches Museum, Munich. http://blog.nuclearsecrecy.com/tag/vannevar-bush/

    A letter from Bohr, commenting on the fact that the amount of energy released when he bombarded uranium atoms was far larger than had been predicted by calculations based on a non-fissile core, had sparked the above inspiration in December 1938. Hahn claimed that his chemistry had been solely responsible for the discovery, although he had been unable to explain the results.

    It was politically impossible for the exiled Meitner to publish jointly with Hahn in 1939. Hahn and Strassman had sent the manuscript of their paper to Naturwissenschaften in December 1938, reporting they had detected the element barium after bombarding uranium with neutrons;[25] simultaneously, they had communicated their results to Meitner in a letter. Meitner, and her nephew Otto Frisch, correctly interpreted their results as being nuclear fission and published their paper in Nature.[26] Frisch confirmed this experimentally on 13 January 1939.[27]

    Meitner recognized the possibility for a chain reaction of enormous explosive potential. This report had an electrifying effect on the scientific community. Because this could be used as a weapon, and since the knowledge was in German hands, Leó Szilárd, Edward Teller, and Eugene Wigner jumped into action, persuading Albert Einstein, a celebrity, to write President Franklin D. Roosevelt a letter of caution; this led eventually to the establishment several years later of the Manhattan Project. Meitner refused an offer to work on the project at Los Alamos, declaring “I will have nothing to do with a bomb!”[28] Meitner said that Hiroshima had come as a surprise to her, and that she was “sorry that the bomb had to be invented.”[29]

    In Sweden, Meitner was first active at Siegbahn’s Nobel Institute for Physics, and at the Swedish Defence Research Establishment (FOA) and the Royal Institute of Technology in Stockholm, where she had a laboratory and participated in research on R1, Sweden’s first nuclear reactor. In 1947, a personal position was created for Meitner at the University College of Stockholm with the salary of a professor and funding from the Council for Atomic Research.[30]

    Awards and honours

    Meitner with actress Katherine Cornell and physicist Arthur Compton on 6 June 1946, when Meitner and Cornell were receiving awards from the National Conference of Christians and Jews. Wikimedia

    On 15 November 1945 the Royal Swedish Academy of Sciences announced that Hahn had been awarded the 1944 Nobel Prize in Chemistry for the discovery of nuclear fission.[31] Some historians who have documented the history of the discovery of nuclear fission believe Meitner should have been awarded the Nobel Prize with Hahn.[32][33][34]

    On a visit to the USA in 1946, she received the honour of “Woman of the Year” by the National Press Club and had dinner with President Harry Truman and others at the National Women’s Press Club. She lectured at Princeton, Harvard and other US universities, and was awarded a number of honorary doctorates. Lise Meitner refused to move back to Germany, and enjoyed retirement and research in Stockholm until her late 80s. She received the Max Planck Medal of the German Physics Society in 1949. Meitner was nominated to receive the prize three times. An even rarer honour was given to her in 1997 when element 109 was named meitnerium in her honour.[8][35][36] Named after Meitner were the Hahn-Meitner Institut in Berlin, craters on the Moon and on Venus, and a main-belt asteroid.

    Meitner was elected a foreign member of the Royal Swedish Academy of Sciences in 1945, and had her status changed to that of a Swedish member in 1951.

    In 1966 Hahn, Fritz Strassmann and Meitner were jointly awarded the Enrico Fermi Award.

    Lise Meitner received 21 scientific honours and awards for her work (including 5 honorary doctorates and membership of many academies). In 1947 she received the Award of the City of Vienna for science. She was the first female member of the scientific class of the Austrian Academy of Sciences. In 2008, the NBC defence school of the Austrian Armed Forces established the “Lise Meitner” award.

    In 1960, Meitner was awarded the Wilhelm Exner Medal and in 1967, the Austrian Decoration for Science and Art.

    Public facilities such as schools and streets were named after her in many cities.

    Later years

    After the war, Meitner, while acknowledging her own moral failing in staying in Germany from 1933 to 1938, was bitterly critical of Hahn and other German scientists who had collaborated with the Nazis and done nothing to protest against the crimes of Hitler’s regime. Referring to the leading German scientist Werner Heisenberg, she said: “Heisenberg and many millions with him should be forced to see these camps and the martyred people.”

    Lise Meitner’s grave in Bramley. Wikipedia

    She wrote to Hahn:

    “You all worked for Nazi Germany. And you tried to offer only a passive resistance. Certainly, to buy off your conscience you helped here and there a persecuted person, but millions of innocent human beings were allowed to be murdered without any kind of protest being uttered … [it is said that] first you betrayed your friends, then your children in that you let them stake their lives on a criminal war – and finally that you betrayed Germany itself, because when the war was already quite hopeless, you did not once arm yourselves against the senseless destruction of Germany.”

    Hahn however wrote in his memoirs that he and Meitner had been lifelong friends.[38]

    Meitner became a Swedish citizen in 1949. She finally decided to retire in 1960 and then moved to the UK where most of her relatives were, although she continued working part-time and giving lectures. A strenuous trip to the United States in 1964 led to Meitner having a heart attack, from which she spent several months recovering. Her physical and mental condition weakened by atherosclerosis, she was unable to travel to the US to receive the Enrico Fermi prize and relatives had to present it to her. After breaking her hip in a fall and suffering several small strokes in 1967, Meitner made a partial recovery, but eventually was weakened to the point where she moved into a Cambridge nursing home. She died on 27 October 1968 at the age of 89. Meitner was not informed of the deaths of Otto Hahn and his wife Edith, as her family believed it would be too much for someone as frail as her to handle.[4] As was her wish, she was buried in the village of Bramley in Hampshire, at St. James parish church, close to her younger brother Walter, who had died in 1964. Her nephew Otto Frisch composed the inscription on her headstone. It reads “Lise Meitner: a physicist who never lost her humanity.”

    See the full article for 38 references with links.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The University of California at Berkeley Nuclear Research Center

    Nuclear energy offers the potential for creating reliable, carbon-free, domestically produced base electricity to meet rising energy demands. A dramatic expansion of nuclear power is already underway internationally, and U.S. domestic expansion of nuclear power is on the verge of becoming a reality. However, longer-term challenges remain in the areas of waste disposition, proliferation of nuclear technologies and materials, fuel resource management and fuel cycle economics. Left unaddressed, these challenges will prevent realization of the full potential of nuclear energy. The degree to which nuclear energy can sustainably meet long-term energy needs will depend on the development of advanced methods and technologies, together with implementation of sound domestic and international policies.

    The University of California Berkeley Nuclear Research Center (BNRC) was formed in January 2009 with financial support through the UC Office of the President. The principal focus of the center is to address critical sustainability issues for the nuclear fuel cycle with the specific objectives of:

    Enabling Human Capital Development. In light of the relative hibernation of nuclear energy basic and applied research in the U.S. in the last 25 years, it is essential to rebuild the nuclear energy technology and science base. The U.S. nuclear workforce is aging and key legacy expertise is being lost at an alarming rate. Sustainability of any nuclear enterprise will require development of the next generation of nuclear scientists and engineers. Combined, the UC and its Laboratories uniquely posses the expertise to address all waste, safety, proliferation, security and economic considerations of the nuclear fuel cycle. The BNRC will foster an educational environment and, in close collaboration with the three UC National Laboratories, financially support unique research opportunities for the next generation of nuclear scientists and engineers.
    Creating Knowledge and Information to Inform National Policy Decisions. There are many diverse advanced fuel cycle concepts which have been proposed for achieving sustainability (enhanced waste disposition, safety, security, proliferation risk reduction and economic viability) of the nuclear energy enterprise. The complexities of interconnected environmental, safety and security considerations often make it difficult to develop policy consensus on the appropriate path forward. Through supported research and technical engagements, the BNRC will strive to disseminate clear science-based information and transparent insight into both the benefits and the challenges of proposed advanced concepts, and thus serve as a reliable resource for national policy makers faced with decisions on future nuclear research and development directions.
    Fostering International Collaborations. The U.S. and other developed nations have a shared responsibility to ensure nuclear energy expansion world-wide is done safely and securely, and cooperation on international design concepts and regulatory requirements is essential. Situated at the doorway to the Pacific Rim, and drawing upon close cultural ties and the long tradition of UCBÕs Asia-Pacific contacts, the BNRC will promote effective engagement with the Asian nations where international nuclear power expansion is most prolific. International engagements will be supported through continuation of the thematically focused UC Office of the President Nuclear Technology Forums, and the sponsorship of a major, annual Pacific-Rim Conference on Nuclear Technology Challenges and Opportunities at UC Berkeley.
    Fostering Campus – National Laboratory Collaborations. The BNRC will provide a mechanism for research and teaching engagements of National Laboratory scientists and engineers with the students and faculty in the UC Berkeley Department of Nuclear Engineering. This will enable the synergistic sharing of knowledge essential for spanning all aspects of nuclear fuel cycle development (e.g. NNSA laboratory scientists instructing on the fundamentals of international nuclear safeguards), and bring to bear diverse perspectives on the research and evaluation of advanced nuclear fuel cycle concepts.
    Attracting Resources and Building R&D Capabilities. Reenergizing the nuclear research and development necessary to address nuclear sustainability concerns will require the commitment of resources for computational and experimental efforts, and resources for vigorous continued engagements with international collaborators. Only through such efforts can U.S. policy makers obtain the basis for informed decision-making. The BNRC will work to identify sponsorship from federal agencies, industry and international community in order to extend its size and scope, and bring more researchers, scientists and international collaborators to Berkeley. The BNRC will identify the correct high-impact research efforts necessary to clearly answer compelling sustainability issues and provide advocacy for resourcing these key efforts.

    The tremendous energy and environmental stewardship demands facing the world will require multiple, contributing energy solutions. Nuclear energy can play a very significant long-term role if sustainability issues are appropriately studied, addressed and resolved. The BNRC will focus on development of the future generations of nuclear experts, new knowledge base, and requisite international collaborations and cooperation in order to promote the best sustainability solutions for the international nuclear energy enterprise.

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal


    Rutgers, The State University of New Jersey, where Larry is in the Department of Physics and I was a student, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers smaller
    Please give us back our original beautiful seal which the University stole away from us.
    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

  • richardmitnick 4:15 pm on July 8, 2017 Permalink | Reply
    Tags: , , , , , E=MC2 wins, Larry Zamick of Rutgers University Physics, , Sir Arthur Eddington,   

    Brought Foward by Larry Zamick, Rutgers Physics: From Ethan Siegel: “The Last 100 Years: 1919, Einstein and Eddington” 

    Ethan Siegel
    June 11, 2009 [Lary has been at this longer than I.]

    100 years ago, the way we viewed our Universe was vastly different than the way we view it now. The night sky, with stars, planets, comets, asteroids, nebulae, and the Milky Way, was viewed to make up the entire contents of the Universe.

    The Universe was static, governed by two laws only: Newton’s Gravity and Maxwell’s Electromagnetism. There were the first hints that the Universe was made up of quantum particles, such as the photoelectric effect, Rutherford’s first hints at the existence of the nucleus, and Planck’s view that energy was quantized. But other than that — and Einstein’s new Theory of Special Relativity, there were very few mysteries about the Universe in 1909. But one of them would change our view of the Universe forever.

    You see, there was a tiny, tiny problem with the planet Mercury. Its orbit just wasn’t quite right. Kepler’s Laws (which can be derived from Newton’s Gravity) said that all the planets should move in ellipses around the Sun. But Mercury (above) doesn’t quite do that. Mercury makes an ellipse that precesses — or rotates — ever so slightly. Specifically, it precessed at a rate of 1.555 degrees per century. A greatly exaggerated example of precession is shown below:

    Now, physicists and astronomers have always been very detail-oriented people. So they calculated what the effects of the Earth’s equinoxes precessing were, and were able to account for 1.396 of those degrees. They realized that there were seven other major planets (and the asteroids) acting on Mercury, and that was able to account for another 0.148 degrees. That left them with only 0.011 degrees per century that was different between their theoretical predictions and their observations. But this minuscule difference was significant enough that it led some to consider that Newton’s Law of Universal Gravitation might be wrong.

    Newton said that mass and separation distance was what determined gravity. There was a force that he called “action at a distance” that made everything attract. But during the time from 1909-1916, a new theory came about.

    The same guy who discovered the photoelectric effect, special relativity, and E=mc^2 came up with a new theory of gravity. Instead of an “action at a distance” due to mass, this new theory said that space gets bent by energy, and causes everything — even massless things — to bend beneath what we see as gravity.

    Now this new theory was very interesting for a few reasons. First off, it accounted for those 0.011 degrees that Newton’s Gravity did not. Second, it predicted — as a simple solution — the existence of black holes. And third, it predicted that something very exciting and testable would happen: that light would be bent by gravity.

    Big deal, said Newton’s advocates. If I take E=mc^2, and I know that light has energy, I can just substitute E/c^2 for mass in Newton’s equations, and get a prediction that Newton’s gravity would bend light, too. It just so happened that Einstein’s bending was predicted to be twice as much as Newton’s bending, and that there was a total Solar Eclipse coming up in 1919. The stage was set for the most dramatic test of gravity ever.

    The director of Cambridge Observatory, Sir Arthur Eddington, led an expedition to observe the total solar eclipse of May 29, 1919. During an eclipse, the sky gets dark enough that you can see stars, even close to the Sun. So Eddington set out to map the position of the stars when they were close to the Sun, and see how the Sun bent the light. Would it match up with Einstein’s prediction, Newton’s prediction, or would it not bend at all?

    Image credit: American Institute of Physics.

    Lo and behold, Einstein’s prediction was spot on. Just like that, Newton’s theory of Universal Gravitation, the most solid foundation in all of physics — unchallenged for over 200 years — was obsolete. All of this was done in the years 1909-1919, and it was just the start of changing how we view the Universe.

    And (FYI) so far, in the 90 years since, every single prediction of Einstein’s gravity that’s ever been tested — from gravitational lensing to binary pulsar decay to time dilation in a gravitational field — have confirmed General Relativity as the most successful physical theory of all-time.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

    Rutgers, The State University of New Jersey, Larry’s school as a Professor of Physics and mine as a student is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers smaller
    Please give us back our original beautiful seal which the University stole away from us.
    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

    • Jose 3:08 pm on September 20, 2017 Permalink | Reply

      Gravity is a little big bigger than in Newton’s law; it increases with speed -kinetic energy- where the maximum is the double gravity in the case of light.
      Global Physics also predicts the anomalous precession of Mercury’s orbit as Paul Gerber did 20 years before Einstein. https://molwick.com/en/gravitation/077-mercury-orbit.html


  • richardmitnick 11:41 am on July 5, 2017 Permalink | Reply
    Tags: , , , , , Larry Zamick of Rutgers University Physics, Science Spin, ,   

    Brought Forward by Larry Zamick, Rutgers Physics: Women in STEM -“The Pulsar Superstar – Jocelyn Bell Burnell” 

    Science Spinning

    July 5, 2011
    Sean Duke

    Jocelyn Bell Burnell from Lurgan Co. Armagh discovered a new type of star, called pulsars in the 1960s.

    Jocelyn Bell Burnell, pictured [above], who grew up and was educated in Lurgan, discovered pulsars, a new family of incredibly compact tiny stars back in 1968.

    Network of pulsars could be used to search for the ripples in space-time. David Champion NASA JPL

    This diagram of a pulsar shows the neutron star with a strong magnetic field (field lines shown in blue) and a beam of light along the magnetic axis. As the neutron star spins, the magnetic field spins with it, sweeping that beam through space. If that beam sweeps over Earth, we see it as a regular pulse of light. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

    It was a discovery that many astronomers believed merited a Nobel Prize. The Nobel Committee agreed and a Prize was duly awarded for the discovery in 1974. The problem was the Prize went not to Jocelyn, but to her supervisor.

    At the time she made the discovery, 67-year-old Jocelyn (who is still an active researcher) was a 24-year old post-graduate student. She was also a woman. Those things still mattered in science in the 1960s, and might have helped explain why the 1974 Nobel Prize for Physics, awarded for the pulsar discovery, went to Jocelyn’s male supervisor, Antony Hewish and his senior colleague Martin Ryle. Many astronomers are still unhappy about this decision and have openly suggested that Jocelyn should, at the very least, been a co-recipient of the Prize. That the two prize winners never felt the need to recognise Jocelyn’s work, is a scientific scandal.


    It was far from certain that Jocelyn would attain the heights she has attained in science, and she had to overcome many obstacles in her path. She was born in Belfast, but spent most of her first 13 years in Lurgan. She failed the ’11 plus’ exam, the test that children take in Britain and Northern Ireland before entering secondary school. This exam is crucial as it usually determines whether a child is admitted to a ‘grammar school’ where the focus is on getting students to university. Her failure at the 11 plus wasn’t fatal, as she had been attending the Grammar School in Lurgan, and the school agreed to keep her on for a few years before she went off to a boarding school in England. However, she did admit much later that the failure ‘shook her’, and she didn’t chose to mention it until she attained the status of Professor.

    Looking back today, Jocelyn believes that the 11 plus curriculum at the time didn’t suit her, as she said there wasn’t any science in it. Her scientific ability was certainly obvious when she came top of her class in her first term in secondary school at Lurgan Grammar. However, before that, there was another hurdle to cross. That came when the girls and boys were segregated into two groups in her first year of secondary school. Jocelyn thought that the separation might have ‘something to do with sport’, but was horrified when she realised that the boys were being brought to the science lab, while the girls were being packed off to learn about domestic science. It was the 1950s and girls in Lurgan, and all over Ireland, north and south, weren’t given any encouragement to do science. Jocelyn’s parents decided to ‘kick up a fuss’ and, as a result she was permitted to join the boys doing science, along with the daughter of a local doctor, and one other girl. It was a close call, and Ireland almost lost perhaps its most accomplished ever female scientist before she even had a chance to show what she could do.

    She finished out her two remaining years in Lurgan Grammar and then it was off to England. Jocelyn’s family were Quakers, and there was a family tradition of sending the children to Quaker schools in England. Jocelyn attended MountSchool, in York. She recalls that it was good to get away from home, though traumatic to begin with. In England, in the Fifties, girls were not discouraged from doing science, so it was a different atmosphere to Ireland. Jocelyn did very well in her studies, despite what she recalls as a mixed standard of science teaching.

    She made it through the roller-coaster of her primary and secondary school education to get accepted into Glasgow University to study science. There she did well enough to be accepted to do a PhD in the University of Cambridge, a truly world-class university, choc-a-block with Nobel prize winning scientists, then and now. She began her PhD in 1965, working under the supervision of the aforementioned Hewish. The aim of the research project she was involved with was to find quasars. Jocelyn describes quasars as being “big, big things like galaxies, but they are incredibly bright and they send out a lot of radio waves”. The idea was to search for quasars by looking at natural sources of radio waves in the cosmos using a telescope array.

    An array is a group of linked telescopes, and a special array was constructed for the project at a four-acre site at the Mullard Astronomy Observatory near Cambridge.

    One-Mile Telescope at the Mullard Radio Astronomy Observatory (MRAO) operated by Cambridge University

    Jocelyn got stuck into the nitty-gritty of getting the project up and running, and spent her time initially banging stakes into the ground and connecting miles of copper wire. Finally, in July 1967, the array was ready.


    Jocelyn began the job of monitoring the sky for rapid fluctuations in radio waves that might indicate the presence of a quasar at a particular location. She had to read through literally miles of paper, and wade through mountains of data, searching for tell-tale signs of a quasar.

    On the 6th August 1967, a few weeks after the array came online, Jocelyn noticed something. She described the discovery that would change her life to this reporter in an interview in 2010:

    “It was totally accidental. I was doing the research project I had been set very conscientiously and happened across something unexpected. The analogy I use is imagine you are at some nice viewpoint making a video of the sunset and along comes another car and parks in the foreground and it’s got its hazard warning lights, its blinkers on, and it spoils your video. Well my project was looking at quasars, which are some of the most distant things in the universe. [Quasars] are big, big things like galaxies, but they are incredibly bright and they send out a lot of radio waves, which is what I was picking up. [I was] studying these distant quasars and something in the foreground sort of went ‘yo-hoo’! – not very loudly shall we say it was a pretty faint signal, but it turned out after a lot of checking up, and a lot of persistence to be an incredible kind of new star, which we have called a pulsar – pulsating radio star.”

    “They are tiny as stars go, they are only about 10 miles across, but they weigh the same as a typical star so they are very, very compact. The radio waves were coming naturally from some kind of star. We picked up these pulses and they were so unexpected that the first thing you have to do is suspect is that there is something wrong with the equipment, then suspect there is interference and then suspect something else, gradually force yourself to believe that it is something astronomical and it’s out there in the galaxy. The excitement came when I found the second one, because that really then begins to look like this is a new population we’ve discovered and we’ve just got the tip of the iceberg.”

    Inside a few weeks Jocelyn had discovered three more radio wave sources that were behaving in the same way. This proved beyond doubt that here was a new, real and probably entirely natural phenomenon, though there was some talk – only partly in jest – about the possibility that these pulsating radio waves were being sent across the Universe by an alien intelligence.

    A paper in Nature, the renowned scientific journal followed and it was published on the 24th February 1968. The press interest was huge after the paper came out, and Jocelyn and other people in the lab did a series of newspaper, radio and television interviews. Somehow she managed to get back to finishing her PhD, which she did in September 1968. But her life had changed, and she had become an overnight scientific celebrity, still only in her mid twenties.

    Jocelyn said that the practical importance of her new found fame was that she never found it difficult to pick up a job when she was travelling around Britain with her husband, Martin Bell. He was a civil servant that regularly moved from city to city. Jocelyn followed him and worked part time for many years raising their son Gavin, who was born in 1973, and is also a physicist.

    The down-side of achieving fame and success at an early stage was – as Jocelyn said to this reporter – that people expected her to come up with amazing discoveries all the time. A discovery such as finding pulsars comes only about once per decade in the astronomical community as a whole, and so it is a bit hard, she suggested, to live up to such expectations.

    These days she continues to work as a Visiting Professor of Astrophysics at Oxford University where she is free to conduct research without too many other duties being imposed on her. Whatever she might do before she retires, her scientific legacy is secure. In 2010, a pulsar conference was held in Sardinia to honour her 45 years in science and to ‘christen’ a new radio telescope. A long-time colleague Australian pulsar researcher, Dick Manchester, was asked to deliver a speech at the conference, detailing Jocelyn’s contribution to science.

    He said:

    “I think Jocelyn’s fame is greater because she didn’t receive the Nobel Prize in 1974 than it would have been if she had. I believe that the furore that her lack of recognition caused resulted in a change of attitude by the Nobel Committee and I’m sure more widely as well, with a heightened awareness of the role of students in projects and the role of women in science.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sean Duke is a graduate of the prestigious New York University Science, Health & Environmental Reporting Programme (SHERP) and has a science journalist and communicator in Ireland for almost two decades.

    For most of that time, he has been working at a high level across various media, including magazines, radio, television and online.

    Since September 2016 he has been an Editor with Dublin-based medical publisher GreenCross Publishing, whose flagship publication is The Medical Independent.

    He is a regular science and technology contributor to Today with Sean O’Rourke on RTE Radio 1, The Sunday Times, Irish edition and The Morning Show with Declan Meehan on East Coast FM.

    Sean was a co-founder, and former Joint Editor of Ireland’s first popular science magazine, Science Spin, and has been a regular contributor to Science, and The Sunday Times, Irish edition.

    He has worked in television, conceiving, presenting and co-producing science slots for The Daily Show on RTE 1, and Ireland AM, with TV3.

    He has co-presented two RTE Radio 1 series, What’s It All About? (PPI Radio Award in 2014) and Life Matters (nominated for a PPI Award in 2015).

    He is an author, and his first book, How Irish Scientists Changed the World (Londubh, 2013) reached number 2 on the best seller list at Dublin’s Hodges Figgis bookstore.

    Sean is a former editor of Technology Ireland magazine, the flagship magazine of Enterprise Ireland, and prior to that began his career as a journalist working as a reporter with the Liffey Champion newspaper, based in Leixlip.

    Science Spinning, Sean’s Blog, began in 2009. It contains features, news, and opinion , video and audio pieces on what’s happening in science in Ireland, and around the world.

  • richardmitnick 7:54 am on July 4, 2017 Permalink | Reply
    Tags: , Larry Zamick of Rutgers University Physics, The Sad Story of Heisenberg's Doctoral Oral Exam   

    Brought Forward by Larry Zamick of Rutgers University Physics: From APS Physics: “The Sad Story of Heisenberg’s Doctoral Oral Exam” 


    American Physical Society

    David Cassidy

    Werner Heisenberg.APS.

    In May 1923 Werner Heisenberg returned to Munich from Gottingen, where he had been a visiting student, to finish out his last semester while writing his doctoral dissertation. Knowing Heisenberg’s reputation for controversial solutions to problems in quantum theory, his Munich mentor, Arnold Sommerfeld, suggested that he write his dissertation in the more traditional field of hydrodynamics.

    Heisenberg also had to take the four-hour laboratory course in experimental physics offered by Prof. Willy Wien. Wien insisted that any physicist, including Sommerfeld’s brilliant theorists, must be fully prepared in experimental physics. Wien and Sommerfeld both sat on the candidate’s final oral exam and both had to agree on a single grade in physics.

    While Heisenberg struggled through Wien’s lab course (much to Wien’s displeasure at the results), Heisenberg prepared his dissertation. He submitted his dissertation, a 59-page calculation titled “On the Stability and Turbulence of Liquid Currents,” to the Munich faculty on July 10, 1923. The topic arose from an earlier research contract Sommerfeld had received from a company channeling the Isar River through Munich. The problem was to determine the precise transition of a smoothly flowing liquid (laminar flow) to turbulent flow. It was an extremely difficult mathematical problem; in fact, it was so difficult that Heisenberg offered only an approximate solution. “I would not have proposed a topic of this difficulty as a dissertation to any of my other pupils,” wrote Sommerfeld. The faculty accepted the thesis and Wien accepted it for publication in the physics journal he edited, but when the mathematician Fritz Noether raised objections in 1926, the results remained in doubt for nearly a quarter century until they were finally confirmed.

    Acceptance of the dissertation brought admission of the candidate to the final orals, where in this case trouble began. The examining committee consisted of Sommerfeld and Wien, along with representatives in Heisenberg’s two minor subjects, mathematics and astronomy. Much was at stake, for the only grades a candidate received were those based on the dissertation and final oral: one grade for each subject and one for overall performance. The grades ranged from I (equivalent to an A) to V (an F).

    As the 21-year-old Heisenberg appeared before the four professors on July 23, 1923, he easily handled Sommerfeld’s questions and those in mathematics, but he began to stumble on astronomy and fell flat on his face on experimental physics. In his laboratory work Heisenberg had to use a Fabry-Perot interferometer, a device for observing the interference of light waves, on which Wien had lectured extensively. But Heisenberg had no idea how to derive the resolving power of the interferometer nor, to Wien’s surprise, could he derive the resolving power of such common instruments as the telescope and the microscope. When an angry Wien asked how a storage battery works, the candidate was still lost. Wien saw no reason to pass the young man, no matter how brilliant he was in other fields.

    An argument broke out between Sommerfeld and Wien over the relative importance of theory and experiment. The result was that Heisenberg received the lowest of three passing grades in physics and the same overall grade (cum laude) for his doctorate, both of which were an average between Sommerfeld’s highest grade and Wien’s lowest grade.

    Sommerfeld was shocked. Heisenberg was mortified. Accustomed to being always at the top of his class, Heisenberg found it hard to accept the lowest of three passing grades for his doctorate. Sommerfeld held a small party at his home later that evening for the new Dr. Heisenberg, but Heisenberg excused himself early, packed his bag, and took the midnight train to Gottingen, showing up in Max Born’s office the next morning. Born had already hired Heisenberg as his teaching assistant for the coming school year. After informing Born of the debacle of his orals, Heisenberg asked sheepishly, “I wonder if you still want to have me.”

    Born did not answer until he had gone over the questions Heisenberg had missed. Convincing himself that the questions were “rather tricky,” Born let his employment offer stand. But that fall Heisenberg’s worried father wrote to the famed Gottingen experimentalist James Franck, asking Franck to teach his boy some experimental physics. Franck did his best, but could not overcome Heisenberg’s complete lack of interest and gave up the effort. If Heisenberg was going to survive at all in physics it would be purely as a theorist.

    There is an interesting epilogue to this story. When Heisenberg derived the uncertainty relations several years later, he used the resolving power of the microscope to derive the uncertainty relations-and he still had difficulty with it! And again, when Bohr pointed out the error, it led to emotional difficulties for Heisenberg. Likewise, this time a positive result came of the affair: Heisenberg’s reaction induced Bohr to formulate his own views on the subject, which ultimately led to the so-called Copenhagen Interpretation of quantum mechanics.

    Excerpted from David Cassidy, Uncertainty

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    American Physical Society
    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries.

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers smaller
    Please give us back our original beautiful seal which the University stole away from us.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society for non-tradional students.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: