Tagged: Laboratori Nazionali del Gran Sasso – INFN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:54 pm on October 24, 2018 Permalink | Reply
    Tags: , , , Laboratori Nazionali del Gran Sasso - INFN, , Solar Neutrinos   

    From Interactions.org: “Over 10 Years of Scientific Successes: Thanks to Borexino Today We Know The Sun With Unprecedented Detail” 

    From Interactions.org

    October 24th, 2018

    Antonella Varaschin
    INFN Communications Office
    antonella.varaschin@presid.infn.it
    +39 06 6868162
    fax +39 06 68307944
    Comunicazione@presid.infn.it

    After more than ten years from the beginning of its scientific activity focused on the internal structure of the Sun, which gave an understanding of the power mechanism of our star with unprecedented detail, the Borexino experiment at the INFN Gran Sasso National Laboratories publishes on October 25th on Nature the compendium of its results on solar neutrinos. With this publication, Borexino crowns a long history of measurements and experimental investigations, which led the experiment, on the one hand, to investigate in detail the mechanism of energy production in the Sun and, on the other, to study in the region of low energy (from a few MeV down to less than 1 MeV) the so-called neutrinos oscillation phenomenon, i.e. the transformation of neutrinos from one type (flavor) into another.

    Borexino Solar Neutrino detector

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    “The results published today – comments Gianpaolo Bellini, of the INFN Division of Milan and professor emeritus at the University of Milan, among the fathers of the experiment – are the pinnacle of a thirty-year history started in the late 80s, when Borexino was conceived in the context of the scientific debate triggered by the then-unresolved Solar Neutrino Problem.” “The results have gone far beyond even the most optimistic initial predictions,” Bellini concludes.

    Immersed in the cosmic silence of the underground Gran Sasso Laboratories, one of the lowest radioactivity sites in the world, from the moment of the data taking start-up, in May 2007, Borexino has been so radio pure that it conquered straightaway a unique and unmatched position within the many existing low background experiments. This peculiarity is the basis of the multiple results accumulated in more than a decade of operation, which go far beyond the initially set objectives, when the experiment was devised. In fact, designed to measure only the flow of neutrinos from 7Be (beryllium 7) among those produced along the proton-proton chain (pp chain, i.e. the sequence of nuclear reactions in the solar nucleus initiated by the fusion of two protons), Borexino has gradually widened its experimental sensitivity, to cover the entire range of neutrinos from the whole sequence.

    The unique characteristics of the measures carried out by Borexino, namely the real-time and low-threshold spectroscopic detection of the neutrino flux from the Sun, are all reported in the publication of Nature, with in addition a novelty: in this last result, the different neutrino components were measured simultaneously, and not separately as it happened for the previous analyses, and with considerably greater precisions.

    The precise and concurrent measurement in a single experiment of the neutrinos fluxes pp (7Be, pep and 8B – boron 8), as well as the limit on the minuscule flow of higher energy neutrinos (hep), altogether coming from the pp chain, allows Borexino to depict with absolute clarity on the experimental side the framework of the operation of our star, putting a definitive end to the secular question about the mechanism that makes it shine for the billions of years of its life.

    At the same time, through the comparison of these experimental data of very high quality and accuracy with the forecasts of the Standard Solar Model, Borexino demonstrates incontrovertibly the existence in the low energy region of the oscillation between neutrinos of different flavor by the MSW (Mikheyev-Smirnov-Wolfenstein) effect. In particular, Borexino emphasizes in a completely autonomous way, using only its own data and without having to resort to results of other experiments, the peculiar transition between the two regimes of “vacuum” and “matter”, that represents the signature of the MSW effect.

    “With the simultaneous and high precision measurement of the fluxes of solar neutrinos from the pp-chain by the same detector – explains Gioacchino Ranucci, INFN researcher and co-spokesperson of the experiment-Borexino is the only detector that alone succeeds at the same time to shed full light on what supplies the engine of the Sun (and therefore the stars) and on the phenomenon of oscillation of neutrinos”.

    “With the measures of Borexino – underlines Marco Pallavicini, INFN researcher and professor at the University of Genoa and co-spokesperson of Borexino-the hypothesis of the functioning of the Sun through the nuclear reactions of the pp chain, suggested in the 30’s, finds its definitive experimental consecration”.

    Borexino, stemmed from the intense cooperation among Italy, Germany, France, Poland, The United States and Russia, has been built exploiting cutting-edge techniques internationally recognized of absolute and unmatched excellence, especially in the field of materials radiopurity and low background.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 5:34 pm on August 30, 2018 Permalink | Reply
    Tags: , Borexino observatory, , , , , DarkSide experiment, Davide D’Angelo-physical scientist, , Laboratori Nazionali del Gran Sasso - INFN, , , , , Pobbile dark matter candidates-axions gravitinos Massive Astrophysical Compact Halo Objects (MACHOs) and Weakly Interacting Massive Particles (WMIPs.)), SABRE-Sodium Iodide with Active Background Rejection Experiment, , Solar neutrinos-recently caught at U Wisconsin IceCube at the South Pole, , , , , , WIMPs that go by names like the gravitino sneutrino and neutralino   

    From Gran Sasso via Motherboard: “The New Hunt for Dark Matter Is Taking Place Under a Mountain” 

    From Gran Sasso

    via

    Motherboard

    1

    Aug 30 2018
    Daniel Oberhaus

    Davide D’Angelo wasn’t always interested in dark matter, but now he’s at the forefront of the hunt to find the most elusive particle in the universe.

    About an hour outside of Rome there’s a dense cluster of mountains known as the Gran Sasso d’Italia. Renowned for their natural beauty, the Gran Sasso are a popular tourist destination year round, offering world-class skiing in the winter and plenty of hiking and swimming opportunities in the summer. For the 43-year old Italian physicist Davide D’Angelo, these mountains are like a second home. Unlike most people who visit Gran Sasso, however, D’Angelo spends more time under the mountains than on top of them.

    It’s here, in a cavernous hall thousands of feet beneath the earth, that D’Angleo works on a new generation of experiments dedicated to the hunt for dark matter particles, an exotic form of matter whose existence has been hypothesized for decades but never proven experimentally.

    Dark matter is thought to make up about 27 percent of the universe and characterizing this elusive substance is one of the most profound problems in contemporary physics. Although D’Angelo is optimistic that a breakthrough will occur in his lifetime, so was the last generation of physicists. In fact, there’s a decent chance that the particles D’Angelo is looking for don’t exist at all. Yet for physicists probing the fundamental nature of the universe, the possibility that they might spend their entire career “hunting ghosts,” as D’Angelo put it, is the price of advancing science.

    WHAT’S UNDER THE ‘GREAT STONE’?

    In 1989, Italy’s National Institute for Nuclear Physics opened the Gran Sasso National Laboratory, the world’s largest underground laboratory dedicated to astrophysics. Gran Sasso’s three cavernous halls were purposely built for physics, which is something of a luxury as far as research centers go. Most other underground astrophysics laboratories like SNOLAB are ad hoc facilities that repurpose old or active mine shafts, which limits the amount of time that can be spent in the lab and the types of equipment that can be used.


    SNOLAB, Sudbury, Ontario, Canada.

    Buried nearly a mile underground to protect it from the noisy cosmic rays that bathe the Earth, Gran Sasso is home to a number of particle physics experiments that are probing the foundations of the universe. For the last few years, D’Angelo has divided his time between the Borexino observatory and the Sodium Iodide with Active Background Rejection Experiment (SABRE), which are investigating solar neutrinos and dark matter, respectively.

    Borexino Solar Neutrino detector

    SABRE experiment at INFN Gran Sasso

    2
    Davide D’Angelo with the SABRE proof of concept. Image: Xavier Aaronson/Motherboard

    Over the last 100 years, characterizing solar neutrinos and dark matter was considered to be one of the most important tasks of particle physics. Today, the mystery of solar neutrinos is resolved, but the particles are still of great interest to physicists for the insight they provide into the fusion process occurring in our Sun and other stars. The composition of dark matter, however, is still considered to be one of the biggest questions in particle physics. Despite the radically different nature of the particles, they are united insofar as they both can only be discovered in environments where the background radiation is at a minimum: Thousands of feet beneath the Earth’s surface.

    “The mountain acts as a shield so if you go below it, you have so-called ‘cosmic silence,’” D’Angelo said. “That’s the part of my research I like most: Going into the cave, putting my hands on the detector and trying to understand the signals I’m seeing.”

    After finishing grad school, D’Angelo got a job with Italy’s National Institute for Nuclear Physics where his research focused on solar neutrinos, a subatomic particle with no charge that is produced by fusion in the Sun. For the better part of four decades, solar neutrinos [recently caught at U Wisconsin IceCube at the South Pole] were at the heart of one of the largest mysteries in astrophysics.

    IceCube neutrino detector interior


    U Wisconsin ICECUBE neutrino detector at the South Pole

    The problem was that instruments measuring the energy from solar neutrinos returned results much lower than predicted by the Standard Model, the most accurate theory of fundamental particles in physics.

    Given how accurate the Standard Model had proven to be for other aspects of cosmology, physicists were reluctant to make alterations to it to account for the discrepancy. One possible explanation was that physicists had faulty models of the Sun and better measurements of its core pressure and temperature were needed. Yet after a string of observations in the 60s and 70s demonstrated that the models of the sun were essentially correct, physicists sought alternative explanations by turning to the neutrino.

    A TALE OF THREE NEUTRINOS

    Ever since they were first proposed by the Austrian physicist Wolfgang Pauli in 1930, neutrinos have been called upon to patch holes in theories. In Pauli’s case, he first posited the existence of an extremely light, chargeless particle as a “desperate remedy” to explain why the law of the conservation of energy appeared to be violated during radioactive decay. Three years later, the Italian physicist Enrico Fermi gave these hypothetical particles a name. He called them “neutrinos,” Italian for “little neutrons.”

    A quarter of a century after Pauli posited their existence, two American physicists reported the first evidence of neutrinos produced in a fission reactor. The following year, in 1957, Bruno Pontecorvo, an Italian physicist working in the Soviet Union, developed a theory of neutrino oscillations. At the time, little was known about the properties of neutrinos and Pontecorvo suggested that there might be more than one type of neutrino. If this were the case, Pontecorvo theorized that it could be possible for the neutrinos to switch between types.

    By 1975, part of Pontecorvo’s theory had been proven correct. Three different types, or “flavors,” of neutrino had been discovered: electron neutrinos, muon neutrinos, and tau neutrinos. Importantly, observations from an experiment in a South Dakota mineshaft had confirmed that the Sun produced electron neutrinos. The only issue was that the experiment detected far fewer neutrinos than the Standard Model predicted.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    Prior to the late 90s, there was scant indirect evidence that neutrinos could change from one flavor to another. In 1998, a group of researchers working in Japan’s Super-Kamiokande Observatory observed oscillations in atmospheric neutrinos, which are mostly produced by the interactions between photons and the Earth’s atmosphere.

    Super-Kamiokande experiment. located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan

    Three years later, Canada’s Sudbury Neutrino Observatory (SNO) provided the first direct evidence of oscillations from solar neutrinos.

    Sudbury Neutrino Observatory, no longer operating

    This was, to put it lightly, a big deal in cosmological physics. It effectively resolved the mystery of the missing solar neutrinos, or why experiments only observed about a third as many neutrinos radiating from the Sun compared to predictions made by the Standard Model. If neutrinos could oscillate between flavors, this means a neutrino that is emitted in the Sun’s core could be a different type of neutrino by the time it reaches Earth. Prior to the mid-80s, most experiments on Earth were only looking for electron neutrinos, which meant they were missing the other two flavors of neutrinos that were created en route from the Sun to the Earth.

    When SNO was dreamt up in the 80s, it was designed so that it would be capable of detecting all three types of neutrinos, instead of just electron neutrinos. This decision paid off. In 2015, the directors of the experiments at Super-Kamiokande and SNO shared the Nobel Prize in physics for resolving the mystery of the missing solar neutrinos.

    Although the mystery of solar neutrinos has been solved, there’s still plenty of science to be done to better understand them. Since 2007, Gran Sasso’s Borexino observatory has been refining the measurements of solar neutrino flux, which has given physicists unprecedented insight into the fusion process powering the Sun. From the outside, the Borexino observatory looks like a large metal sphere, but on the inside it looks like a technology transplanted from an alien world.

    Borexino detector. Image INFN

    In the center of the sphere is basically a large, transparent nylon sack that is almost 30 feet in diameter and only half a millimeter thick. This sack contains a liquid scintillator, a chemical mixture that releases energy when a neutrino passes through it. This nylon sphere is suspended in 1,000 metric tons of a purified buffer liquid and surrounded by 2,200 sensors to detect energy released by electrons that are freed when neutrinos interact with the liquid scintillator. Finally, an outer buffer of nearly 3,000 tons of ultrapure water helps provide additional shielding for the detector. Taken together, the Borexino observatory has the most protection from outside radiation interference of any liquid scintillator in the world.

    For the last decade, physicists at Borexino—including D’Angelo, who joined the project in 2011—have been using this one-of-a-kind device to observe low energy solar neutrinos produced by proton collisions during the fusion process in the Sun’s core. Given how difficult it is to detect these chargless, ultralight particles that hardly ever interact with matter, detecting the low energy solar neutrinos would be virtually impossible without such a sensitive machine. When SNO directly detected the first solar neutrino oscillations, for instance, it could only observe the highest energy solar neutrinos due to interference from background radiation. This amounted to only about 0.01 percent of all the neutrinos emitted by the Sun. Borexino’s sensitivity allows it to observe solar neutrinos whose energy is a full order of magnitude lower than those detected by SNO, opening the door for an incredibly refined model of solar processes as well as more exotic events like supernovae.

    “It took physicists 40 years to understand solar neutrinos and it’s been one of the most interesting puzzles in particle physics,” D’Angelo told me. “It’s kind of like how dark matter is now.”

    SHINING A LIGHT ON DARK MATTER

    If neutrinos were the mystery particle of the twentieth century, then dark matter is the particle conundrum for the new millenium. Just like Pauli proposed neutrinos as a “desperate remedy” to explain why experiments seemed to be violating one of the most fundamental laws of nature, the existence of dark matter particles is inferred because cosmological observations just don’t add up.

    In the early 1930s, the American astronomer Fritz Zwicky was studying the movement of a handful of galaxies in the Coma cluster, a collection of over 1,000 galaxies approximately 320 million light years from Earth.

    Fritz Zwicky, the Father of Dark Matter research.No image credit after long search

    Vera Rubin did much of the work on proving the existence of Dark Matter. She and Fritz were both overlooked for the Nobel prize.

    Vera Rubin measuring spectra (Emilio Segre Visual Archives AIP SPL)


    Astronomer Vera Rubin at the Lowell Observatory in 1965. (The Carnegie Institution for Science)

    Using data published by Edwin Hubble, Zwicky calculated the mass of the entire Coma galaxy cluster.

    Coma cluster via NASA/ESA Hubble

    When he did, Zwicky noticed something odd about the velocity dispersion—the statistical distribribution of the speeds of a group of objects—of the galaxies: The velocity distribution was about 12 times higher than it should be based on the amount of matter in the galaxies.

    Inside Gran Sasso- Image- Xavier Aaronson-Motherboard

    This was a surprising calculation and its significance wasn’t lost on Zwicky. “If this would be confirmed,” he wrote, “we would get the surprising result that dark matter is present in much greater amount than luminous matter.”

    The idea that the universe was made up mostly of invisible matter was a radical idea in Zwicky’s time and still is today. The main difference, however, is that astronomers now have much stronger empirical evidence pointing to its existence. This is mostly due to the American astronomer Vera Rubin, whose measurement of galactic rotations in the 1960s and 70s put the existence of dark matter beyond a doubt. In fact, based on Rubin’s measurements and subsequent observations, physicists now think dark matter makes up about 27 percent of the “stuff” in the universe, about seven times more than the regular, baryonic matter we’re all familiar with. The burning question, then, is what is it made of?

    Since Rubin’s pioneering observations, a number of dark matter candidate particles have been proposed, but so far all of them have eluded detection by some of the world’s most sensitive instruments. Part of the reason for this is that physicists aren’t exactly sure what they’re looking for. In fact, a small minority of physicists think dark matter might not be a particle at all and is just an exotic gravitational effect. This makes designing dark matter experiments kind of like finding a car key in a stadium parking lot and trying to track down the vehicle it pairs with. There’s a pretty good chance the car is somewhere in the parking lot, but you’re going to have to try a lot of doors before you find your ride—if it even exists.

    Among the candidates for dark matter are subatomic particles with goofy names like axions, gravitinos, Massive Astrophysical Compact Halo Objects (MACHOs), and Weakly Interacting Massive Particles (WMIPs.) D’Angelo and his colleagues at Gran Sasso have placed their bets on WIMPs, which until recently were considered to be the leading particle candidate for dark matter.

    Over the last few years, however, physicists have started to look at other possibilities after some critical tests failed to confirm the existence of WIMPs. WIMPs are a class of hypothetical elementary particles that hardly ever interact with regular baryonic matter and don’t emit light, which makes them exceedingly hard to detect. This problem is compounded by the fact that no one is really sure how to characterize a WIMP. Needless to say, it’s hard to find something if you’re not even really sure what you’re looking for.

    So why would physicists think WIMPs exist at all? In the 1970s, physicists conceptualized the Standard Model of particle physics, which posited that everything in the universe was made out of a handful of fundamental particles.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.


    Standard Model of Particle Physics from Symmetry Magazine

    The Standard Model works great at explaining almost everything the universe throws at it, but it’s still incomplete since it doesn’t incorporate gravity into the model.

    Gravity measured with two slightly different torsion pendulum set ups and slightly different results

    In the 1980s, an extension of the Standard Model called Supersymmetry emerged, which hypothesizes that each fundamental particle in the Standard Model has a partner.

    Standard model of Supersymmetry DESY

    These particle pairs are known as supersymmetric particles and are used as the theoretical explanation for a number of mysteries in Standard Model physics, such as the mass of the Higgs boson and the existence of dark matter. Some of the most complex and expensive experiments in the world like the Large Hadron Collider particle accelerator were created in an effort to discover these supersymmetric particles, but so far there’s been no experimental evidence that these particles actually exist.

    LHC

    CERN map


    CERN LHC Tunnel

    CERN LHC particles

    Many of the lightest particles theorized in the supersymmetric model are WIMPs and go by names like the gravitino, sneutrino and neutralino. The latter is still considered to be the leading candidate for dark matter by many physicists and is thought to have formed in abundance in the early universe. Detecting evidence of this ancient theoretical particle is the goal of many dark matter experiments, including the one D’Angelo works on at Gran Sasso.

    D’Angelo told me he became interested in dark matter a few years after joining the Gran Sasso laboratory and began contributing to the laboratory’s DarkSide experiment, which seemed like a natural extension of his work on solar neutrinos. DarkSide is essentially a large tank filled with liquid argon and equipped with incredibly sensitive sensors. If WIMPs exist, physicists expect to detect them from the ionization produced through their collision with the argon nuclei.

    Dark Side-50 Dark Matter Experiment at Gran Sasso

    The set up of the SABRE experiment is deliberately similar to another experiment that has been running at Gran Sasso since 1995 called DAMA. In 2003, the DAMA experiment began looking for seasonal fluctuations in dark matter particles that was predicted in the 1980s as a consequence of the relative motion of the sun and Earth to the rest of the galaxy. The theory posited that the relative speed of any dark matter particles detected on Earth should peak in June and bottom out in December.

    The DarkSide experiment has been running at Gran Sasso since 2013 and D’Angelo said it is expected to continue for several more years. These days, however, he’s found himself involved with a different dark matter experiment at Gran Sasso called SABRE [above], which will also look for direct evidence of dark matter particles based on the light produced when energy is released through their collision with Sodium-Iodide crystals.

    Over the course of nearly 15 years, DAMA did in fact register seasonal fluctuations in its detectors that were in accordance with this theory and the expected signature of a dark matter particle. In short, it seemed as if DAMA was the first experiment in the world to detect a dark matter particle. The problem, however, was that DAMA couldn’t completely rule out the possibility that the signature it had detected was in fact due to some other seasonal variation on Earth, rather than the ebb and flow of dark matter as the Earth revolved around the Sun.

    SABRE aims to remove the ambiguities in DAMA’s data. After all the kinks are worked out in the testing equipment, the Gran Sasso experiment will become one half of SABRE. The other half will be located in Australia in a converted gold mine. By having a laboratory in the northern hemisphere and another in the southern hemisphere, this should help eliminate any false positives that result from normal seasonal fluctuations. At the moment, the SABRE detector is still in a proof of principle phase and is expected to begin observations in both hemispheres within the next few years.

    When it comes to SABRE, it’s possible that the experiment may disprove the best evidence physicists have found so far for a dark matter particle. But as D’Angelo pointed out, this type of disappointment is a fundamental part of science.

    “Of course I am afraid that there might not be any dark matter there and we are hunting ghosts, but science is like this,” D’Angelo said. “Sometimes you spend several years looking for something and in the end it’s not there so you have to change the way you were thinking about things.”

    For D’Angelo, probing the subatomic world with neutrino and dark matter research from a cave in Italy is his way of connecting to the universe writ large.

    “The tiniest elements of nature are bonded to the most macroscopic phenomena, like the expansion of the universe,” D’Angelo said. “The infinitely small touches the infinitely big in this sense, and I find that fascinating. The physics I do, it’s goal is to push over the boundary of human knowledge.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    INFN Gran Sasso National Laboratory (LNGS) is the largest underground laboratory in the world devoted to neutrino and astroparticle physics, a worldwide research facility for scientists working in this field of research, where particle physics, cosmology and astrophysics meet. It is unequalled anywhere else, as it offers the most advanced underground infrastructures in terms of dimensions, complexity and completeness.

    LNGS is funded by the National Institute for Nuclear Physics (INFN), the Italian Institution in charge to coordinate and support research in elementary particles physics, nuclear and sub nuclear physics

    Located between L’Aquila and Teramo, at about 120 kilometres from Rome, the underground structures are on one side of the 10-kilometre long highway tunnel which crosses the Gran Sasso massif (towards Rome); the underground complex consists of three huge experimental halls (each 100-metre long, 20-metre large and 18-metre high) and bypass tunnels, for a total volume of about 180.000 m3.

    Access to experimental halls is horizontal and it is made easier by the highway tunnel. Halls are equipped with all technical and safety equipment and plants necessary for the experimental activities and to ensure proper working conditions for people involved.

    The 1400 metre-rock thickness above the Laboratory represents a natural coverage that provides a cosmic ray flux reduction by one million times; moreover, the flux of neutrons in the underground halls is about thousand times less than on the surface due to the very small amount of uranium and thorium of the Dolomite calcareous rock of the mountain.

    The permeability of cosmic radiation provided by the rock coverage together with the huge dimensions and the impressive basic infrastructure, make the Laboratory unmatched in the detection of weak or rare signals, which are relevant for astroparticle, sub nuclear and nuclear physics.

    Outside, immersed in a National Park of exceptional environmental and naturalistic interest on the slopes of the Gran Sasso mountain chain, an area of more than 23 acres hosts laboratories and workshops, the Computing Centre, the Directorate and several other Offices.

    Currently 1100 scientists from 29 different Countries are taking part in the experimental activities of LNGS.
    LNGS research activities range from neutrino physics to dark matter search, to nuclear astrophysics, and also to earth physics, biology and fundamental physics.

     
    • Marco Pereira 2:43 pm on September 1, 2018 Permalink | Reply

      I created a theory called the Hypergeometrical Universe Theory (HU). This theory uses three hypotheses:
      a) The Universe is a lightspeed expanding hyperspherical hypersurface. This was later proven correct by observations by the Sloan Digital Sky Survey
      https://hypergeometricaluniverse.quora.com/Proof-of-an-Extra-Spatial-Dimension
      b) Matter is made directly and simply from coherences between stationary states of deformation of the local metric called Fundamental Dilator or FD.
      https://hypergeometricaluniverse.quora.com/The-Fundamental-Dilator
      c) FDs obey the Quantum Lagrangian Principle (QLP). Yves Couder had a physical implementation (approximation) of the Fundamental Dilator and was perplexed that it would behave Quantum Mechanically. FDs and the QLP are the reason for Quantum Mechanics. QLP replaces Newtonian Dynamics and allows for the derivation of Quantum Gravity or Gravity as applied to Black Holes.

      HU derives a new law of Gravitation that is epoch-dependent. That makes Type 1a Supernovae to be epoch-dependent (within the context of the theory). HU then derives the Absolute Luminosity of SN1a as a function of G and showed that Absolute Luminosity scales with G^{-3}.
      Once corrected the Photometrically Determined SN1a distances, HU CORRECTLY PREDICTS all SN1a distances given their redshifts z.

      The extra dimension refutes all 4D spacetime theories, including General Relativity and L-CDM. HU also falsifies all Dark Matter evidence:
      https://www.quora.com/Are-dark-matter-and-dark-energy-falsifiable/answer/Marco-Pereira-1
      including the Spiral Galaxy Conundrum and the Coma Cluster Conundrum.

      Somehow, my theory is still been censored by the community as a whole (either directly or by omission).

      I hope this posting will help correct this situation.

      Like

  • richardmitnick 12:37 pm on June 6, 2017 Permalink | Reply
    Tags: , , , , Laboratori Nazionali del Gran Sasso - INFN,   

    From FNAL: “Follow the fantastic voyage of the ICARUS neutrino detector” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 6, 2017

    Andre Salles
    Fermilab Office of Communication
    asalles@fnal.gov
    630-840-6733

    CERN Press Office
    press.office@cern.ch
    +41227673432
    +41227672141

    Eleonora Cossi
    INFN
    eleonora.cossi@presid.infn.it,
    +39-06-686-8162

    The world’s largest particle hunter of its kind will travel across the ocean from CERN to Fermilab this summer to become an integral part of neutrino research in the United States.

    It’s lived in two different countries, and it’s about to make its way to a third. It’s the largest machine of its kind, designed to find extremely elusive particles and tell us more about them. Its pioneering technology is the blueprint for some of the most advanced science experiments in the world. And this summer, it will travel across the Atlantic Ocean to its new home (and its new mission) at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

    2
    The ICARUS detector, seen here in a cleanroom at CERN, is being prepared for its voyage to Fermilab. Photo: CERN

    It’s called ICARUS, and you can follow its journey over land and sea with the help of an interactive map on Fermilab’s website.

    The ICARUS detector measures 18 meters (60 feet) long and weighs 120 tons. It began its scientific life under a mountain at the Italian National Institute for Nuclear Physics’ (INFN) Gran Sasso National Laboratory in 2010, recording data from a beam of particles called neutrinos sent by CERN, Europe’s premier particle physics laboratory. The detector was shipped to CERN in 2014, where it has been upgraded and refurbished in preparation for its overseas trek.

    INFN Gran Sasso ICARUS, moving to FNAL

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    When it arrives at Fermilab, the massive machine will take its place as part of a suite of three detectors dedicated to searching for a new type of neutrino beyond the three that have been found. Discovering this so-called “sterile” neutrino, should it exist, would rewrite scientists’ picture of the universe and the particles that make it up.

    “Nailing down the question of whether sterile neutrinos exist or not is an important scientific goal, and ICARUS will help us achieve that,” said Fermilab Director Nigel Lockyer. “But it’s also a significant step in Fermilab’s plan to host a truly international neutrino facility, with the help of our partners around the world.”

    First, however, the detector has to get there. Next week it will begin its journey from CERN in Geneva, Switzerland, to a port in Antwerp, Belgium. From there the detector, separated into two identical pieces, will travel on a ship to Burns Harbor, Indiana, in the United States, and from there will be driven by truck to Fermilab, one piece at a time. The full trip is expected to take roughly six weeks.

    An interactive map on Fermilab’s website (IcarusTrip.fnal.gov) will track the voyage of the ICARUS detector, and Fermilab, CERN and INFN social media channels will document the trip using the hashtag #IcarusTrip. The detector itself will sport a distinctive banner, and members of the public are encouraged to snap photos of it and post them on social media.

    3
    The ICARUS neutrino detector prepares for its trip to Fermilab. Follow #IcarusTrip online! Photo: CERN

    Once the ICARUS detector is delivered to Fermilab, it will be installed in a recently completed building and filled with 760 tons of pure liquid argon to start the search for sterile neutrinos.

    The ICARUS experiment is a prime example of the international nature of particle physics and the mutually beneficial cooperation that exists between the world’s physics laboratories. The detector uses liquid-argon time projection technology – essentially a method of taking a 3-D snapshot of the particles produced when a neutrino interacts with an argon atom – which was developed by the ICARUS collaboration and now is the technology of choice for the international Deep Underground Neutrino Experiment (DUNE), which will be hosted by Fermilab.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    “More than 25 years ago, Nobel Prize winner Carlo Rubbia started a visionary effort with the help and resources of INFN to make use of liquid argon as a particle detector, with the visual power of a bubble chamber but with the speed and efficiency of an electronic detector,” said Fernando Ferroni, president of INFN. “A long series of steps demonstrated the power of this technology that has been chosen for the gigantic future experiment DUNE in the U.S., scaling up the 760 tons of argon for ICARUS to 70,000 tons for DUNE. In the meantime, ICARUS will be at the core of an experiment at Fermilab looking for the possible existence of a new type of neutrino. Long life to ICARUS!”

    CERN’s contribution to ICARUS, bringing the detector in line with the latest technology, expands the renowned European laboratory’s participation in Fermilab’s neutrino program.

    It’s the first such program CERN has contributed to in the United States. Fermilab is the hub of U.S. participation in the CMS experiment on CERN’s Large Hadron Collider, and the partnership between the laboratories has never been stronger.

    CERN CMS Higgs Event


    CERN/CMS

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    ICARUS will be the largest of three liquid-argon neutrino detectors at Fermilab seeking sterile neutrinos. The smallest, MicroBooNE, is active and has been taking data for more than a year, while the third, the Short-Baseline Neutrino Detector, is under construction.

    FNAL/MicrobooNE

    FNAL Short-Baseline Near Detector

    The three detectors should all be operational by 2019, and the three collaborations include scientists from 45 institutions in six countries.

    Knowledge gained by operating the suite of three detectors will be important in the development of the DUNE experiment, which will be the largest neutrino experiment ever constructed. The international Long-Baseline Neutrino Facility (LBNF) will deliver an intense beam of neutrinos to DUNE, sending the particles 800 miles through Earth from Fermilab to the large, mile-deep detector at the Sanford Underground Research Facility in South Dakota. DUNE will enable a new era of precision neutrino science and may revolutionize our understanding of these particles and their role in the universe.

    Research and development on the experiment is under way, with prototype DUNE detectors under construction at CERN, and construction on LBNF is set to begin in South Dakota this year.

    CERN Proto DUNE Maximillian Brice

    A study by Anderson Economic Group, LLC, commissioned by Fermi Research Alliance LLC, which manages the laboratory on behalf of DOE, predicts significant positive impact from the project on economic output and jobs in South Dakota and elsewhere.

    This research is supported by the DOE Office of Science, CERN and INFN, in partnership with institutions around the world.

    Follow the overseas journey of the ICARUS detector at IcarusTrip.fnal.gov. Follow the social media campaign on Facebook and Twitter using the hashtag #IcarusTrip.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 8:26 pm on May 21, 2017 Permalink | Reply
    Tags: , , , Laboratori Nazionali del Gran Sasso - INFN, , ,   

    From interactions.org: “XENON1T, the most sensitive detector on Earth searching for WIMP dark matter, releases its first result” 

    Interactions.org

    Laboratori Nazionali del Gran Sasso – INFN

    18 May 2017
    Contact:

    XENON spokesperson
    Prof. Elena Aprile, Columbia University, New York, US.
    Tel. +39 3494703313
    Tel. +1 212 854 3258
    age@astro.columbia.edu

    INFN spokesperson
    Roberta Antolini
    + 39 0862 437216
    Roberta.antolini@lngs.infn.it

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    INFN Gran Sasso ICARUS, since moved to FNAL

    “The best result on dark matter so far! … and we have just started!”

    This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, hosted in the INFN Laboratori Nazionali del Gran Sasso, Italy, commented on their first result from a short 30-day run presented today to the scientific community.

    XENON1T at Gran Sasso

    Dark matter is one of the basic constituents of the Universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, leading to a world-wide effort to observe directly dark matter particle interactions with ordinary matter in extremely sensitive detectors, which would confirm its existence and shed light on its properties. However, these interactions are so feeble that they have escaped direct detection up to this point, forcing scientists to build detectors that are more and more sensitive. The XENON Collaboration, that with XENON100 led the field for years in the past, is now back on the frontline with XENON1T. The result from a first short 30-day run shows that this detector has a new record low radioactivity level, many orders of magnitude below surrounding materials on Earth. With a total mass of about 3200 kg, XENON1T is at the same time the largest detector of this type ever built. The combination of significantly increased size with much lower background implies an excellent discovery potential in the years to come.

    The XENON Collaboration consists of 135 researchers from the US, Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates. The latest detector of the XENON family has been in science operation at the LNGS underground laboratory since autumn 2016. The only things you see when visiting the underground experimental site now are a gigantic cylindrical metal tank, filled with ultra-pure water to shield the detector at his center, and a three-story-tall, transparent building crowded with equipment to keep the detector running, with physicists from all over the world. The XENON1T central detector, a so-called Liquid Xenon Time Projection Chamber (LXeTPC), is not visible. It sits within a cryostat in the middle of the water tank, fully submersed, in order to shield it as much as possible from natural radioactivity in the cavern. The cryostat allows keeping the xenon at a temperature of -95°C without freezing the surrounding water.

    The mountain above the laboratory further shields the detector, preventing it to be perturbed by cosmic rays. But shielding from the outer world is not enough since all materials on Earth contain tiny traces of natural radioactivity. Thus extreme care was taken to find, select and process the materials making up the detector to achieve the lowest possible radioactive content. Laura Baudis, professor at the University of Zürich and professor Manfred Lindner from the Max-Planck-Institute for Nuclear Physics in Heidelberg emphasize that this allowed XENON1T to achieve record “silence”, which is necessary to listen with a larger detector much better for the very weak voice of dark matter.

    A particle interaction in liquid xenon leads to tiny flashes of light. This is what the XENON scientists are recording and studying to infer the position and the energy of the interacting particle and whether it might be dark matter or not. The spatial information allows to select interactions occurring in the central 1 ton core of the detector. The surrounding xenon further shields the core xenon target from all materials which already have tiny surviving radioactive contaminants. Despite the shortness of the 30-day science run the sensitivity of XENON1T has already overcome that of any other experiment in the field, probing un-explored dark matter territory.

    “WIMPs did not show up in this first search with XENON1T, but we also did not expect them so soon!” says Elena Aprile, Professor at Columbia University and spokesperson of the project. “The best news is that the experiment continues to accumulate excellent data which will allow us to test quite soon the WIMP hypothesis in a region of mass and cross-section with normal atoms as never before. A new phase in the race to detect dark matter with ultra-low background massive detectors on Earth has just began with XENON1T. We are proud to be at the forefront of the race with this amazing detector, the first of its kind.”

    Further information:
    http://www.xenon1t.org
    http://www.lngs.infn.it

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: