Tagged: KBO occultation Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:32 am on July 20, 2017 Permalink | Reply
    Tags: , , , , , KBO occultation,   

    From New Horizons: “NASA’s New Horizons Team Strikes Gold in Argentina” 

    NASA image

    NASA

    NASA/New Horizons spacecraft

    New Horizons

    July 19, 2017
    Editor: Tricia Talbert

    1
    No image caption or credit.

    6

    An artist’s rendition of Kuiper Belt Object MU69, which New Horizons will visit in January 2019.
    NASA, ESA, SWRI, JHU/APL, AND THE NEW HORIZONS KBO SEARCH TEAM

    A primitive solar system object that’s more than four billion miles (6.5 billion kilometers) away passed in front of a distant star as seen from Earth. Just before midnight Eastern Time Sunday (12:50 a.m. local time July 17), several telescopes deployed by the New Horizons team in a remote part of Argentina were in precisely the right place at the right time to catch its fleeting shadow — an event that’s known as an occultation.

    In a matter of seconds, NASA’s New Horizons team captured new data on its elusive target, an ancient Kuiper Belt object known as 2014 MU69.

    Kuiper Belt. Minor Planet Center

    Weary but excited team members succeeded in detecting the spacecraft’s next destination, in what’s being called the most ambitious and challenging ground occultation observation campaign in history.

    “So far we have five confirmed occultations,” said Marc Buie of the Southwest Research Institute (SwRI) in Boulder, Colorado, holding up five fingers as New Horizons scientists pored over the exhilarating initial data. Buie led a team of more than 60 observers who battled high winds and cold to set up a “picket fence” of 24 mobile telescopes in a remote region of Chubut and Santa Cruz, Argentina. Their goal: to spot the shadow of the mysterious Kuiper Belt object (KBO) where New Horizons will fly by on New Year’s Day 2019 – to better understand its size, shape, orbit and the environment around it. Before these observations, only the Hubble Space Telescope successfully detected MU69, and even it had not been able to determine MU69’s size or shape.

    NASA/ESA Hubble Telescope

    “It was the most historic occultation on the face of the Earth,” said Jim Green, NASA’s director of planetary science in a congratulatory call to the team. “You pulled it off and you made it happen.”

    The first MU69 occultation campaign scientist to see the telltale signature of MU69 was Amanda Zangari, a New Horizons co-investigator from SwRI, who said, “We nailed it spectacularly.”

    The New Horizons team enjoyed strong support from Argentinian scientists, government officials, and locals, who went above and beyond to ensure mission success. “I’ve been calling the people who helped us, our ‘twelfth player,’” Buie said. “The Comodoro Rivadavia community came together and did some amazing things for us.” A major national highway was closed for two hours to keep car headlights away. Street lights were turned off to ensure absolute darkness. People like the Intendente or Mayor of the Comodoro parked trucks as wind breaks. Said Buie, “The local people were a major team player.”

    “Planning for this complex astronomical deployment started just a few months ago and although the odds seem daunting — like finding a needle in a haystack — the team succeeded, thanks to the help of institutions like CONAE (Argentina’s National Commission on Space Activities), and all the goodwill of the Argentinian people. This is another example of how space exploration brings out the best in us,” said New Horizons Program Executive Adriana Ocampo.

    This was the third of three ambitious occultation observations for New Horizons, and all contributed to the success of the campaign. On June 3, teams in both Argentina and South Africa attempted to observe MU69. On July 10, researchers using NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, studied the environment around MU69 while flying over the Pacific Ocean from Christchurch, New Zealand.

    NASA/DLR SOFIA

    When New Horizons flies by it, MU69 will be the most distant object ever explored by a spacecraft, over a billion miles farther from our sun than Pluto. This ancient Kuiper Belt object is not well understood, because it is faint (likely 14-25 miles or 22-40 kilometers across) and so far away. To study this distant object from Earth, the New Horizons team used Hubble Space Telescope and Gaia satellite data to calculate where MU69 would cast a shadow on Earth’s surface. Both satellites were crucial to the occultation campaign.

    ESA/GAIA satellite

    It will take weeks for scientists to analyze the many datasets from the multi-faceted campaign. This advance observation is a critical step in flyby planning before the New Horizons spacecraft arrives at MU69 on Jan. 1, 2019.

    “This effort, spanning six months, three spacecraft, 24 portable ground-based telescopes, and NASA’s SOFIA airborne observatory was the most challenging stellar occultation in the history of astronomy, but we did it!” said Alan Stern, New Horizons principal investigator from SwRI. “We spied the shape and size of 2014 MU69 for the first time, a Kuiper Belt scientific treasure we will explore just over 17 months from now. Thanks to this success we can now plan the upcoming flyby with much more confidence.”

    To see a video of preparations for the July 17 observations in Argentina: tinyurl.com/KBprep

    Follow the mission at the NASA New Horizons website, the mission’s KBO Chasers page, and #mu69occ.

    4
    Marc Buie, New Horizons occultation campaign lead, holds up five fingers to represent the number of mobile telescopes in Argentina initially thought to have detected the fleeting shadow of 2014 MU69. The New Horizons spacecraft will fly by the ancient Kuiper Belt object on Jan. 1, 2019. Credits: NASA/JHUAPL/SwRI/Adriana Ocampo.

    6
    New Horizons Co-Investigator Amanda Zangari was the first occultation campaign scientist to see the telltale signature of MU69 while analyzing data from July 17, saying, “We nailed it spectacularly.” Credits: NASA/JHUAPL/SwRI/Adriana Ocampo.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The New Horizons mission is helping us understand worlds at the edge of our solar system by making the first reconnaissance of the dwarf planet Pluto and by venturing deeper into the distant, mysterious Kuiper Belt – a relic of solar system formation.

    The Journey

    New Horizons launched on Jan. 19, 2006; it swung past Jupiter for a gravity boost and scientific studies in February 2007, and conducted a six-month-long reconnaissance flyby study of Pluto and its moons in summer 2015, culminating with Pluto closest approach on July 14, 2015. As part of an extended mission, pending NASA approval, the spacecraft is expected to head farther into the Kuiper Belt to examine another of the ancient, icy mini-worlds in that vast region, at least a billion miles beyond Neptune’s orbit.

    Sending a spacecraft on this long journey is helping us to answer basic questions about the surface properties, geology, interior makeup and atmospheres on these bodies.

    New Science

    The National Academy of Sciences has ranked the exploration of the Kuiper Belt – including Pluto – of the highest priority for solar system exploration. Generally, New Horizons seeks to understand where Pluto and its moons “fit in” with the other objects in the solar system, such as the inner rocky planets (Earth, Mars, Venus and Mercury) and the outer gas giants (Jupiter, Saturn, Uranus and Neptune).

    Pluto and its largest moon, Charon, belong to a third category known as “ice dwarfs.” They have solid surfaces but, unlike the terrestrial planets, a significant portion of their mass is icy material.

    Using Hubble Space Telescope images, New Horizons team members have discovered four previously unknown moons of Pluto: Nix, Hydra, Styx and Kerberos.

    A close-up look at these worlds from a spacecraft promises to tell an incredible story about the origins and outskirts of our solar system. New Horizons is exploring – for the first time – how ice dwarf planets like Pluto and Kuiper Belt bodies have evolved over time.

    The Need to Explore

    The United States has been the first nation to reach every planet from Mercury to Neptune with a space probe. New Horizons is allowing the U.S. to complete the initial reconnaissance of the solar system.

    A Team Approach

    The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

     
  • richardmitnick 9:02 pm on June 2, 2017 Permalink | Reply
    Tags: , , , , KBO occultation, ,   

    From New Horizons: “New Horizons Deploys Global Team for Rare Look at Next Flyby Target” 

    NASA image

    NASA

    NASA/New Horizons spacecraft

    New Horizons

    May 25, 2017
    Editor: Bill Keeter

    1
    First look: Projected path of the 2014 MU69 occultation shadow, across South America and the southern tip of Africa, on June 3.
    Credits: Lowell Observatory/Larry Wasserman

    Mission Update: KBO Chasers

    After months of preparing for the most technically sophisticated and challenging occultation campaign in history, it’s all coming down to the wild card – will there be clear skies? Go behind the scenes with New Horizons scientists “chasing” the shadow of the mission’s next flyby target across two continents, South America and Africa. Two seconds could change everything we know about a Kuiper Belt object known as 2014 MU69, a mysterious remnant of early solar system formation.

    Kuiper Belt. Minor Planet Center

    The Kuiper Extended Mission KBO Chasers, Part 1 – Getting Ready (large) (small)
    The Kuiper Extended Mission KBO Chasers, Part 2 – Preparing for June 3, 2017 (large) (small)​

    On New Year’s Day 2019, more than 4 billion miles from home, NASA’s New Horizons spacecraft will race past a small Kuiper Belt object known as 2014 MU69 – making this rocky remnant of planetary formation the farthest object ever encountered by any spacecraft.

    But over the next six weeks, the New Horizons mission team gets an “MU69” preview of sorts – and a chance to gather some critical encounter-planning information – with a rare look at their target object from Earth.

    On June 3, and then again on July 10 and July 17, MU69 will occult – or block the light from – three different stars, one on each date. To observe the June 3 “stellar occultation,” more than 50 team members and collaborators are deploying along projected viewing paths in Argentina and South Africa. They’ll fix camera-equipped portable telescopes on the occultation star and watch for changes in its light that can tell them much about MU69 itself.

    “Our primary objective is to determine if there are hazards near MU69 – rings, dust or even satellites – that could affect our flight planning,” said New Horizons Principal Investigator Alan Stern, of Southwest Research Institute (SwRI) in Boulder, Colorado. “But we also expect to learn more about its orbit and possibly determine its size and shape. All of that will help feed our flyby planning effort.”

    What Are They Looking at?

    In simplest terms, an astronomical occultation is when something moves in front of, or occults, something else. “When the moon passes in front of the sun and we have a solar eclipse, that’s one kind of occultation,” said Joel Parker, a New Horizons co-investigator from SwRI.

    “If you’re in the path of an eclipse, it means you’re in the path of the shadow on Earth that’s created by the moon passing between us and the sun. If you’re standing in the right place at the right time, the solar eclipse can last up to a few minutes.”

    The team will have no such luxury with the MU69 occultations. Marc Buie, the New Horizons co-investigator from SwRI who is leading the occultation observations, said that because MU69 is so small – thought to be about 25 miles (40 kilometers) across – the occultations should only last about two seconds. But scientists can learn a lot from even that, and observations from several telescopes that see different parts of the shadow can reveal information about an object’s shape as well as its brightness.

    2
    New Horizons team members prepare one of the new 16-inch telescopes for deployment to occultation observation sites in Argentina and South Africa. Credits: Kerri Beisser

    A Space Challenge

    The mission team has 22 new, portable 16-inch (40-centimeter) telescopes at the ready, along with three other portables and over two-dozen fixed-base telescopes that will be located along the occultation path through Argentina and South Africa. But deciding exactly where to place them was a challenge.

    This particular Kuiper Belt object was discovered just three years ago, so its orbit is still largely unknown. The team used star-position data from the extensive catalog of the European Space Agency’s Gaia mission and Hubble Space Telescope position measurements of MU69 to predict the narrow occultation path.

    ESA/GAIA satellite

    NASA/ESA Hubble Telescope

    But without a precise fix on the object’s position – or on the exact path its narrow shadow might take across Earth – the team is spacing the telescope teams along “picket fence lines,” one every 6 to 18 miles (10 or 25 kilometers), to increase the odds that at least one or more of the portable telescopes will catch the center of the event and help determine the size of MU69.

    The other telescopes will provide multiple probes for debris that could be a danger to the fast-moving New Horizons spacecraft when it flies by MU69 at about 35,000 miles per hour (56,000 kilometers per hour), on Jan. 1, 2019.

    “Deploying on two different continents also maximizes our chances of having good weather,” said New Horizons Deputy Project Scientist Cathy Olkin, from SwRI. “The shadow is predicted to go across both locations and we want observers at both, because we wouldn’t want a huge storm system to come through and cloud us out — the event is too important and too fleeting to miss.”

    The team gets help from above for the July 10 occultation, adding the powerful 100-inch (2.5-meter) telescope on NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA).

    NASA/DLR SOFIA

    Enlisting SOFIA, with its vantage point above the clouds, takes the bad weather factor out of the picture. The plane also should be able to improve its measurements by maneuvering into the very center of the occultation shadow. This continues a history of coordination between SOFIA and New Horizons missions. Researchers used SOFIA to make similar observations of Pluto as it passed in front of a background star, just before New Horizons flew past Pluto in 2015.

    Insight for Encounter Planning

    Any information on MU69, gathered from the skies or on the ground, is welcome. Carly Howett, deputy principal investigator of New Horizons’ Ralph instrument, of SwRI, said so little is known about MU69 that the team is planning observations of a target it doesn’t fully understand – and time to learn more about the object is short. “We were only able to start planning the MU69 encounter after we flew by Pluto in 2015,” she said. “That gives us two years, instead of almost seven years we had to plan the Pluto encounter. So it’s a very different and, in many ways, more challenging flyby to plan.”

    If weather cooperates and predicted targeting proves on track, the upcoming occultation observations could provide the first precise size and reflectivity measurements of MU69. These figures will be key to planning the flyby itself – knowing the size of the object and the reflectivity of its surface, for example, helps the team set exposure times on the spacecraft’s cameras and spectrometers.

    “Spacecraft flybys are unforgiving,” Stern said. “There are no second chances. The upcoming occultations are valuable opportunity to learn something about MU69 before our encounter, and help us plan for a very unique flyby of a scientifically important relic of the solar system’s era of formation.”

    Follow the observations in Argentina, South Africa and on board SOFIA on Facebook and Twitter using #mu69occ.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The New Horizons mission is helping us understand worlds at the edge of our solar system by making the first reconnaissance of the dwarf planet Pluto and by venturing deeper into the distant, mysterious Kuiper Belt – a relic of solar system formation.

    The Journey

    New Horizons launched on Jan. 19, 2006; it swung past Jupiter for a gravity boost and scientific studies in February 2007, and conducted a six-month-long reconnaissance flyby study of Pluto and its moons in summer 2015, culminating with Pluto closest approach on July 14, 2015. As part of an extended mission, pending NASA approval, the spacecraft is expected to head farther into the Kuiper Belt to examine another of the ancient, icy mini-worlds in that vast region, at least a billion miles beyond Neptune’s orbit.

    Sending a spacecraft on this long journey is helping us to answer basic questions about the surface properties, geology, interior makeup and atmospheres on these bodies.

    New Science

    The National Academy of Sciences has ranked the exploration of the Kuiper Belt – including Pluto – of the highest priority for solar system exploration. Generally, New Horizons seeks to understand where Pluto and its moons “fit in” with the other objects in the solar system, such as the inner rocky planets (Earth, Mars, Venus and Mercury) and the outer gas giants (Jupiter, Saturn, Uranus and Neptune).

    Pluto and its largest moon, Charon, belong to a third category known as “ice dwarfs.” They have solid surfaces but, unlike the terrestrial planets, a significant portion of their mass is icy material.

    Using Hubble Space Telescope images, New Horizons team members have discovered four previously unknown moons of Pluto: Nix, Hydra, Styx and Kerberos.

    A close-up look at these worlds from a spacecraft promises to tell an incredible story about the origins and outskirts of our solar system. New Horizons is exploring – for the first time – how ice dwarf planets like Pluto and Kuiper Belt bodies have evolved over time.

    The Need to Explore

    The United States has been the first nation to reach every planet from Mercury to Neptune with a space probe. New Horizons is allowing the U.S. to complete the initial reconnaissance of the solar system.

    A Team Approach

    The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: