Tagged: Johns Hopkins University Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:46 pm on May 5, 2021 Permalink | Reply
    Tags: "Johns Hopkins Scientists Model Saturn’s Interior", , Johns Hopkins University,   

    From Johns Hopkins University : “Johns Hopkins Scientists Model Saturn’s Interior” 

    From Johns Hopkins University

    May 5, 2021

    Kait Howard
    443-301-7993
    kehoward@jhu.edu
    jhunews@jhu.edu

    Researchers simulate conditions necessary for planet’s unique magnetic field.

    1
    The magnetic field of Saturn seen at the surface. Image: Ankit Barik/Johns Hopkins University.

    New Johns Hopkins University simulations offer an intriguing look into Saturn’s interior, suggesting that a thick layer of helium rain influences the planet’s magnetic field.

    The models, published this week in AGU Advances, also indicate that Saturn’s interior may feature higher temperatures at the equatorial region, with lower temperatures at the high latitudes at the top of the helium rain layer.

    It is notoriously difficult to study the interior structures of large gaseous planets, and the findings advance the effort to map Saturn’s hidden regions.

    “By studying how Saturn formed and how it evolved over time, we can learn a lot about the formation of other planets similar to Saturn within our own solar system, as well as beyond it,” said co-author Sabine Stanley, a Johns Hopkins planetary physicist.

    Saturn stands out among the planets in our solar system because its magnetic field appears to be almost perfectly symmetrical around the rotation axis. Detailed measurements of the magnetic field gleaned from the last orbits of NASA’s Cassini mission provide an opportunity to better understand the planet’s deep interior, where the magnetic field is generated, said lead author Chi Yan, a Johns Hopkins PhD candidate.

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT)Cassini Spacecraft.

    By feeding data gathered by the Cassini mission into powerful computer simulations similar to those used to study weather and climate, Yan and Stanley explored what ingredients are necessary to produce the dynamo—the electromagnetic conversion mechanism—that could account for Saturn’s magnetic field.

    “One thing we discovered was how sensitive the model was to very specific things like temperature,” said Stanley, who is also a Bloomberg Distinguished Professor at Johns Hopkins in the Department of Earth & Planetary Sciences and the Space Exploration Sector of the Applied Physics Lab. “And that means we have a really interesting probe of Saturn’s deep interior as far as 20,000 kilometers down. It’s a kind of X-ray vision.”

    2
    Saturn’s interior with stably stratified Helium Insoluble Layer. Image: Yi Zheng (HEMI/MICA Extreme Arts Program)

    Strikingly, Yan and Stanley’s simulations suggest that a slight degree of non-axisymmetry could actually exist near Saturn’s north and south poles.

    “Even though the observations we have from Saturn look perfectly symmetrical, in our computer simulations we can fully interrogate the field,” said Stanley.

    Direct observation at the poles would be necessary to confirm it, but the finding could have implications for understanding another problem that has vexed scientists for decades: how to measure the rate at which Saturn rotates, or, in other words, the length of a day on the planet.

    This project was conducted using computational resources at the Maryland Advanced Research Computing Center (MARCC).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Johns Hopkins Unversity campus.

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

    The Johns Hopkins University (US) is a private research university in Baltimore, Maryland. Founded in 1876, the university was named for its first benefactor, the American entrepreneur and philanthropist Johns Hopkins. His $7 million bequest (approximately $147.5 million in today’s currency)—of which half financed the establishment of the Johns Hopkins Hospital—was the largest philanthropic gift in the history of the United States up to that time. Daniel Coit Gilman, who was inaugurated as the institution’s first president on February 22, 1876, led the university to revolutionize higher education in the U.S. by integrating teaching and research. Adopting the concept of a graduate school from Germany’s historic Ruprecht Karl University of Heidelberg, [Ruprecht-Karls-Universität Heidelberg] (DE), Johns Hopkins University is considered the first research university in the United States. Over the course of several decades, the university has led all U.S. universities in annual research and development expenditures. In fiscal year 2016, Johns Hopkins spent nearly $2.5 billion on research. The university has graduate campuses in Italy, China, and Washington, D.C., in addition to its main campus in Baltimore.

    Johns Hopkins is organized into 10 divisions on campuses in Maryland and Washington, D.C., with international centers in Italy and China. The two undergraduate divisions, the Zanvyl Krieger School of Arts and Sciences and the Whiting School of Engineering, are located on the Homewood campus in Baltimore’s Charles Village neighborhood. The medical school, nursing school, and Bloomberg School of Public Health, and Johns Hopkins Children’s Center are located on the Medical Institutions campus in East Baltimore. The university also consists of the Peabody Institute, Applied Physics Laboratory, Paul H. Nitze School of Advanced International Studies, School of Education, Carey Business School, and various other facilities.

    Johns Hopkins was a founding member of the American Association of Universities (US). As of October 2019, 39 Nobel laureates and 1 Fields Medalist have been affiliated with Johns Hopkins. Founded in 1883, the Blue Jays men’s lacrosse team has captured 44 national titles and plays in the Big Ten Conference as an affiliate member as of 2014.

    Research

    The opportunity to participate in important research is one of the distinguishing characteristics of Hopkins’ undergraduate education. About 80 percent of undergraduates perform independent research, often alongside top researchers. In FY 2013, Johns Hopkins received $2.2 billion in federal research grants—more than any other U.S. university for the 35th consecutive year. Johns Hopkins has had seventy-seven members of the Institute of Medicine, forty-three Howard Hughes Medical Institute Investigators, seventeen members of the National Academy of Engineering, and sixty-two members of the National Academy of Sciences. As of October 2019, 39 Nobel Prize winners have been affiliated with the university as alumni, faculty members or researchers, with the most recent winners being Gregg Semenza and William G. Kaelin.

    Between 1999 and 2009, Johns Hopkins was among the most cited institutions in the world. It attracted nearly 1,222,166 citations and produced 54,022 papers under its name, ranking No. 3 globally [after Harvard University (US) and the Max Planck Society (DE)] in the number of total citations published in Thomson Reuters-indexed journals over 22 fields in America.

    In FY 2000, Johns Hopkins received $95.4 million in research grants from the National Aeronautics and Space Administration (US), making it the leading recipient of NASA research and development funding. In FY 2002, Hopkins became the first university to cross the $1 billion threshold on either list, recording $1.14 billion in total research and $1.023 billion in federally sponsored research. In FY 2008, Johns Hopkins University performed $1.68 billion in science, medical and engineering research, making it the leading U.S. academic institution in total R&D spending for the 30th year in a row, according to a National Science Foundation (US) ranking. These totals include grants and expenditures of JHU’s Applied Physics Laboratory in Laurel, Maryland.

    The Johns Hopkins University also offers the “Center for Talented Youth” program—a nonprofit organization dedicated to identifying and developing the talents of the most promising K-12 grade students worldwide. As part of the Johns Hopkins University, the “Center for Talented Youth” or CTY helps fulfill the university’s mission of preparing students to make significant future contributions to the world. The Johns Hopkins Digital Media Center (DMC) is a multimedia lab space as well as an equipment, technology and knowledge resource for students interested in exploring creative uses of emerging media and use of technology.

    In 2013, the Bloomberg Distinguished Professorships program was established by a $250 million gift from Michael Bloomberg. This program enables the university to recruit fifty researchers from around the world to joint appointments throughout the nine divisions and research centers. Each professor must be a leader in interdisciplinary research and be active in undergraduate education. Directed by Vice Provost for Research Denis Wirtz, there are currently thirty two Bloomberg Distinguished Professors at the university, including three Nobel Laureates, eight fellows of the American Association for the Advancement of Science (US), ten members of the American Academy of Arts and Sciences, and thirteen members of the National Academies.

     
  • richardmitnick 7:06 pm on May 3, 2021 Permalink | Reply
    Tags: , "What on earth? Fragments of ancient ocean floor- Earth's inner mantle identified in Baltimore-area rocks", , , Johns Hopkins University   

    From Johns Hopkins University via phys.org : “What on earth? Fragments of ancient ocean floor- Earth’s inner mantle identified in Baltimore-area rocks” 

    From Johns Hopkins University

    via


    phys.org

    May 3, 2021
    Jean Marbella

    1
    Credit: CC0 Public Domain.

    Separately and to the untrained eye, they are not particularly distinguished rocks—the backdrop to several holes at the Forest Park Golf Course, part of an excavation to improve the water system at Lake Ashburton, or left behind in abandoned quarries and mines around the area.

    But new research has concluded they are part of a geological upheaval hundreds of millions of years ago, when the collision of the Earth’s tectonic plates thrust fragments of the floor and rocks of a now-vanished ocean up through the surface, where they remain to this day.

    It is not every day that the Baltimore area, not normally as geologically wondrous as a Grand Canyon or a Norwegian fjord, figures into such a finding.

    “We can’t see a huge amount of the geology because there’s a big ol’ city built on top of it,” said George Guice, the lead researcher and a geologist at the National Museum of Natural History in Washington. “These windows into the Earth’s crust are relatively rare.”

    Guice and a team that includes Johns Hopkins University geologists published their research in February in Geosphere, a journal of the Geological Society of America, and it drew a wider audience last week when National Geographic posted an article online about it.

    Geologists have long theorized that outcroppings in the area contain ophiolite fragments—parts of oceanic crust and the underlying layer of rocks known as the mantle that have been propelled onto land. But the researchers say this is the first time chemical analysis has provided evidence for that in this area.

    Beneath the science of all this is a mind-boggling geological story. It’s one in which continental masses collide into one another and break apart and oceans form and disappear, a world in continual, if exceedingly slow, flux and in which at one point, the Appalachians of the eastern United States were part of the same range as mountains in Scotland and Morocco.

    Guice’s research stems from his move two years ago to Washington, where he is a postdoctoral fellow at the Smithsonian’s natural history museum. A native of the Birmingham, England, area—”Peaky Blinders” territory, as he describes it, referring to the period British crime drama on Netflix—he scoped out the local rock situation, what was known about it, who had or was researching it.

    That and professional connections led him to take the train to Baltimore on “a swelteringly hot day” in August 2019 to meet geologists from Hopkins. At Penn Station, he realized he didn’t know who to look for, but then saw “a minibus full of various geologist-looking people.” (Apparently one giveaway: clothing with lots of pockets for pens and tools and such.)

    “We scooped him up and went straight to the field,” said Daniel Viete, an assistant professor in Hopkins’ earth and planetary sciences department.

    On “a whirlwind tour” of Baltimore rock formations, followed, of course, by an Orioles game at Camden Yards, the seeds of a research project started to take root.

    The group went on to take samples of rocks that are part of the Baltimore Mafic Complex, a band of intermittent outcroppings that extends from the metropolitan area northeast to the Pennsylvania line and was involved in the formation of the Appalachian Mountains. The samples came from five sites, including the Hollofield Quarry in the Patapsco Valley State Park and Soldiers Delight Natural Environment Area in Owings Mills, and were then analyzed for chemical signs that would indicate their origins.

    The research brought the deep, deep past into present-day life in these areas, such as at Lake Ashburton, where an ongoing project to build underground water tanks provided a pile of rocks for the geologists to rummage through, to the Forest Park golf course, where the rocks are such a part of the landscape that they are included in its logo.

    “Neat,” responded Ed Miller, the course’s golf pro, when he learned of the findings. The outcroppings draw even nongolfers to the municipal course—they like to picnic on them—and are akin to a sand trap or water hazard for those who do play, he said.

    “Not infrequently,” Miller said, “they’ll get the crooked shots.”

    At Soldiers Delight, the new study aligns with what “we’ve basically understood” about its unusual rock formations, said Laura Van Scoyoc, who heads the area’s group of volunteers, “that they were originally oceanic crust that got smushed up onto the land.”

    She and others say that while they welcome the new scholarship, they fear it may draw amateurs who decide to chisel out a souvenir piece of the Earth’s mantle.

    That’s neither cool nor legal at state-controlled areas like Soldiers Delight, where visitors should stay on trails to avoid trampling rare species, or the Patapsco park.

    “Public lands are completely off limits to help protect our shared natural resources,” the state Department of Natural Resources says on a webpage for amateur mineral hunters.

    For Hopkins’ Viete, the research took him full circle. When he moved to Baltimore five years ago, he quickly noticed similarities in some of the building materials to Scotland, where he previously had done research.

    “They have the same rocks,” he said.

    The ocean that produced the Baltimore ophiolite fragments is the long-gone Iapetus, named for the mythical father of Atlas. Around 460 million years ago, the Iapetus began closing as various continental masses converged and collided, and masses of rocks piled up to eventually form the Appalachians.

    The Baltimore area is part of a belt running from Alabama north to Newfoundland that was part of this formation.

    Less is known about the central and southern portion than the northern end, geologists say. That’s in part because in a place like Newfoundland, the rocks are much more exposed.

    Another contributing factor may simply be that it is a big world, billions of years in the making.

    “There’s a long list of outstanding questions in geology, more than the number of geologists,” said William Junkin, a geologist with Maryland Geological Survey.

    Junkin said state geologists have long cataloged and studied these rocks, and in the past developed good evidence working with available data at the time supporting theories of their origins. And indeed, the new research cites work from the 1970s of a state geologist, the late William Patrick Crowley.

    “We’re just thrilled to get new evidence that supports our past work,” Junkin said.

    Viete said he has secured funding for related research on the subject, in Baltimore and beyond, that he hopes will have the added benefit of expanding the view of his field—that it’s not just something found in the exotic, remote outposts of the planet where the geology is on glamorous display.

    “The cool thing about Baltimore is it’s very different from the others,” Viete said. “People don’t associate geology with an urban area. But the rocks here in Baltimore are just as cool.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Johns Hopkins Unversity campus.

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: