Tagged: Johns-Hopkins U Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:19 pm on December 12, 2016 Permalink | Reply
    Tags: , , Johns-Hopkins U, , ,   

    From Hopkins and Rutgers: “Between two worlds: Exotic insulator may hold clue to key mystery of modern physics” 

    Johns Hopkins
    Johns Hopkins University

    Rutgers smaller

    Rutgers University

    Dec 6, 2016
    Arthur Hirsch

    Scientists experiment with material that straddles world of classical physics and hidden quantum realm

    Experiments using laser light and pieces of gray material the size of fingernail clippings may offer clues to a fundamental scientific riddle: what is the relationship between the everyday world of classical physics and the hidden quantum realm that obeys entirely different rules?

    1
    N. Peter Armitage

    “We found a particular material that is straddling these two regimes,” said N. Peter Armitage, an associate professor of physics at Johns Hopkins University who led the research for the paper just published in the journal Science. Six scientists from Johns Hopkins and Rutgers University were involved in the work on materials called topological insulators, which can conduct electricity on their atoms-thin surface, but not in their insides.

    Topological insulators were predicted in the 1980s, first observed in 2007, and have been studied intensively since. Made from any number of hundreds of elements, these materials have the capacity to show quantum properties that usually appear only at the microscopic level, but here appear in a material visible to the naked eye.

    The experiments reported in Science establish these materials as a distinct state of matter “that exhibits macroscopic quantum mechanical effects,” Armitage said. “Usually we think of quantum mechanics as a theory of small things, but in this system quantum mechanics is appearing on macroscopic length scales. The experiments are made possible by unique instrumentation developed in my laboratory.”

    In the experiments reported in Science, the elements bismuth and selenium make up dark gray material samples—each a few millimeters long and of different thicknesses—that were hit with “THz” light beams that are invisible to the unaided eye. Researchers measured the reflected light as it moved through the material samples and found indicators of a quantum state of matter.

    Specifically, they found that as the light was transmitted through the material, the wave rotated a specific amount, which is related to physical constants that are usually only measurable in atomic scale experiments. The amount matched predictions of what would be possible in this quantum state.

    The results add to scientists’ understanding of topological insulators, but also may contribute to the larger subject that Armitage says is the central question of modern physics: what is the relationship between the macroscopic classical world, and the microscopic quantum world from which it arises?

    Scientists since the early 20th century have struggled with the question of how one set of physical laws governing objects above a certain size can co-exist alongside a different set of laws governing the atomic and subatomic scale. How does classical mechanics emerge from quantum mechanics, and where is the threshold that divides the realms?

    Those questions remain to be answered, but topological insulators could be part of the solution.

    “It’s a piece of the puzzle,” said Armitage, who worked on the experiments along with Liang Wu, who was a graduate student at Johns Hopkins when the work was done; Maryam Salehi of the Rutgers University Department of Material Science and Engineering; and Nikesh Koirala, Jisoo Moon, and Sean Oh of the Rutgers University Department of Physics and Astronomy.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 9:19 am on August 12, 2016 Permalink | Reply
    Tags: , Johns-Hopkins U, , ,   

    From Hopkins: “Four Johns Hopkins research teams win funding to combat Zika virus” 

    Johns Hopkins
    Johns Hopkins University

    8.10.16

    Four teams of researchers from Johns Hopkins University—including three from the Johns Hopkins Bloomberg School of Public Health and another pursuing an idea that originated at a recent Zika hackathon at JHU—will be awarded grants from U.S. Agency for International Development’s Combating Zika and Future Threats Grand Challenge, the agency announced today.

    In what the agency is calling “potentially game-changing solutions to mitigate the spread and impact of the Zika virus,” 21 grants totaling $15 million will be awarded for groundbreaking ideas from around the world to both address the current Zika outbreak and improve the ability to prevent, detect, and respond to future infectious disease outbreaks. In just nine weeks, USAID received nearly 900 submissions from across the globe in response to the Challenge, which will invest up to $30 million.

    A complete list of grant recipients can be found on the USAID website. No other institution received more than two awards from USAID.

    The research of Conor McMeniman, an assistant professor at the Johns Hopkins Malaria Research Institute at the Bloomberg School, will focus on what parts of human scent are attractive to Aedes aegypti, the mosquito that carries the Zika virus, as well as other viruses including dengue, chikungunya, and yellow fever. The goal is to mimic the scent of humans to develop a powerful lure that can be used as bait in mosquito traps in an effort to prevent mosquitoes from spreading diseases.

    “Body odor and breath are made up of about 300 different chemicals, and we want to understand what part of the chemistry of human scent is most attractive to the mosquitoes that carry Zika,” McMeniman says. “The goal is to develop a custom fragrance to bait mosquito traps and improve our ability to fight mosquito-borne illnesses.”

    To accomplish this, McMeniman and his team will use two-photon microscopy to see which of the chemicals of human scent activate the olfactory centers of the mosquito brain. Using mosquitoes that have been genetically engineered to have olfactory centers light up when they are activated, the researchers will literally look inside the brains of these tiny insects to understand how to create the best chemical lure.

    McMeniman says better understanding how the mosquito nervous system detects humans will provide new avenues to control diseases spread by Aedes aegypti and other species, including the mosquitoes that carry malaria, which kills more than 500,000 people worldwide each year, mostly in young children in sub-Saharan Africa.

    The current outbreak of Zika—a virus recently linked to brain-related birth defects in babies born to pregnant mothers who contract it—is most prevalent in Brazil, Colombia, Puerto Rico, and other parts of the Americas. More than 1,800 cases of Zika have been reported in the U.S., though most of those were contracted by people who had traveled outside the U.S. Recently, however, Zika-carrying mosquitoes were found in a small section of Miami, Florida, and health officials say nearly two dozen cases have now been reported in people who were infected domestically.

    Current Zika control strategies are mainly based on the use of insecticides and personal mosquito repellents. But a continuous emergence of mosquito resistance to insecticides and the lack of drugs and vaccines for Zika and other mosquito-transmitted pathogens render the development of novel, cost-effective mosquito control strategies urgent, says George Dimopoulos, a professor at the Malaria Institute.

    Dimopoulos’ team has identified a new bacterium, Chromobacterium Csp_P, which can kill larvae and adults of various species of mosquito that transmit malaria, dengue, Zika, yellow fever, and West Nile virus. The bacterium also blocks the pathogens inside the mosquitoes, preventing infectious transmission in the mosquito gut.

    “This can be a highly potent weapon against current and future mosquito-borne diseases,” Dimopoulos says.

    His team aims to develop Chromobacterium Csp_P into a cost-effective, environmentally-friendly, and logistically simple mosquito control biopesticide. Chromobacteria are abundant soil bacteria and have already been developed for agricultural pest control by live spraying on fields, but not for mosquito control. The end users of Chromobacterium Csp_P –based products could range from mosquito control organizations to individual households.

    The third award will go to the Bloomberg School’s Center for Communication Programs, or CCP. Researchers there note that changing household and community behaviors around the proper and consistent cleaning of standing water will be key to stopping Zika in its tracks. Mosquitoes breed in standing water.

    Susan Krenn, executive director of CCP, says that rapid change of habits, attitudes, and behaviors is a challenging but critical component of disease containment. CCP will work with consulting firm Catalyst Behavioral Sciences to develop the Rapid SBCC Habit Optimization Tool, or R-SHOT, which will combine local data with evidence-based behavior change and habit formation principles to determine the best way to help people in communities impacted by Zika control the mosquito problem themselves.

    “As we saw during the Ebola crisis, changes in habits and behavior can have substantial impact on the spread of disease,” Krenn says. “To be successful, behavior change strategies for Zika will need to be tailored to local contexts and leverage existing behaviors and habits.”

    The final funded project, known as VectorWEB, would improve upon the existing approach to mosquito population surveillance. Currently, ovitraps—designed to kill adult breeding mosquitos—are placed in the field, then later collected, and the number of mosquitoes in each trap is counted manually in a lab.

    A team led by Soumyadipta Acharya, an assistant professor in JHU’s Department of Biomedical Engineering, has proposed a modified trap that would have the ability to provide real-time data to health administrators, community health workers, and others. That data could then be used for outbreak modeling, targeted resource allocation and redirection, and community-driven public health interventions.

    The VectorWEB project is the result of a collaboration between the Center for Bioengineering Innovation and Design, a center within the Department of Biomedical Engineering shared by the Whiting School of Engineering and the School of Medicine, and Jhpiego, a university-affiliated global health nonprofit.

    Several VectorWEB teammates have been working on the project since a spring hackathon sponsored by CBID and Jhpiego to meet the daunting public health challenges presented by the Zika outbreak. The hackathon drew more than 60 participants for a weekend of problem-solving and development of innovative, creative, low-cost design solutions.

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    WCGLarge
    WCG Logo New

    BOINCLarge
    BOINC WallPaper

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 1:43 pm on August 9, 2016 Permalink | Reply
    Tags: , , , Johns-Hopkins U   

    From Hopkins: ” Brain’s ‘physics engine’ allows us to catch, dodge, and react on the fly” 

    Johns Hopkins
    Johns Hopkins University

    8.8.16
    Jill Rosen


    Video: Len Turner

    Researchers find brain region that helps us predict how the world around us will behave

    Whether or not they aced the subject in high school, human beings are physics masters when it comes to understanding and predicting how objects in the world will behave. A Johns Hopkins University cognitive scientist has found the source of that intuition, the brain’s “physics engine.”

    This engine, which comes alive when people watch physical events unfold, is not in the brain’s vision center, but in a set of regions devoted to planning actions, suggesting the brain performs constant, real-time physics calculations so people are ready to catch, dodge, hoist, or take any necessary action, on the fly. The findings, which could help scientists design more nimble robots, are set to be published this week in the journal Proceedings of the National Academy of Sciences.

    “We run physics simulations all the time to prepare us for when we need to act in the world,” said lead author Jason Fischer, an assistant professor of psychological and brain sciences in JHU’s Krieger School of Arts and Sciences. “It is among the most important aspects of cognition for survival. But there has been almost no work done to identify and study the brain regions involved in this capability.”

    Fischer, along with researchers at Massachusetts Institute of Technology, conducted a series of experiments to find the parts of the brain involved in physical inference. First they had 12 subjects look at videos of Jenga-style block towers. While monitoring brain activity, the team asked the subjects either to predict where the blocks would land should the tower topple, or guess if the tower had more blue or yellow blocks. Predicting the direction of falling blocks involved physics intuition, while the color question was merely visual.

    Next, the team had other subjects watch a video of two dots bouncing around a screen. They asked subjects to predict the next direction the dots would head, based either on physics or social reasoning.

    With both the blocks and dots, the team found, when subjects attempted to predict physical outcomes, the most responsive brain regions included the premotor cortex and the supplementary motor area—the brain’s action planning areas.

    “Our findings suggest that physical intuition and action planning are intimately linked in the brain,” Fischer said. “We believe this might be because infants learn physics models of the world as they hone their motor skills, handling objects to learn how they behave. Also, to reach out and grab something in the right place with the right amount of force, we need real-time physical understanding.”

    In the last part of the experiment, the team asked subjects to look at short movie clips—just to look; they received no other instructions—while having their brain activity monitored. Some of the clips had a lot of physics content, others very little. The team found that the more physical content in a clip, the more the key brain regions activated.

    “The brain activity reflected the amount of physical content in a movie, even if people weren’t consciously paying attention to it,” Fischer said. “This suggests that we are making physical inferences all the time, even when we’re not thinking about it.”

    The findings could offer insight into movement disorders such as apraxia, as it’s very possible that people with damage to the motor areas of the brain also have what Fischer calls “a hidden impairment”—trouble making physical judgments.

    A better understanding of how the brain runs physics calculations might also enrich robot design. A robot built with a physics model, constantly running in its programming almost like a video game, could navigate the world more fluidly, Fischer said.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 12:21 pm on August 6, 2016 Permalink | Reply
    Tags: , Johns-Hopkins U, , take the 'clinic' to the people, To beat hypertension   

    From Hopkins: “To beat hypertension, take the ‘clinic’ to the people” 

    Johns Hopkins
    Johns Hopkins University

    8.4.16
    No writer credit

    Johns Hopkins study aims to eliminate racial differences in outcomes of blood pressure control programs

    Eliminating racial disparities in the outcomes of programs to control blood pressure can be accomplished with a few one-on-one coaching sessions delivered by health professionals—but not if the program requires people to get to a clinic, according to results of a new Johns Hopkins Medicine study.

    The findings are described in the current issue of the Ethnicity and Disease journal and add to mounting evidence that health and wellness programs work best when medical practitioners go out to people in their communities.

    “For people who can come to a clinic-based program, that program may work really well, but it’s not enough in and of itself to eliminate the racial disparities we see in efforts to reduce blood pressure and other chronic diseases,” says Lisa Cooper, vice president of health care equity for Johns Hopkins Medicine and professor of medicine at the Johns Hopkins University School of Medicine. “Success requires a broader and more comprehensive strategy.”

    In a commentary accompanying the study, Cooper, who has studied racial disparities in health outcomes for decades, lays out the scope of the problem: Compared with whites in the U.S., African-Americans are 80 percent more likely to die from stroke, 50 percent more likely to die of heart disease, and suffer from a 320 percent higher rate of end-stage renal disease. Each of these conditions is fueled by uncontrolled hypertension, especially among urban poor populations, where geographic wealth and racial inequities are stark.

    For the study, Cooper and her team telephoned 3,964 patients with uncontrolled hypertension—or a blood pressure reading higher than 140/90 millimeters of mercury (mm Hg)—who had visited one of six Baltimore health clinics (four in underserved areas) in the previous year. The team was able to reach more than half of the patients they telephoned and asked patients if they’d be interested in joining a program to lower blood pressure. Anyone participating, the investigators explained, would have to visit the clinic nearest them three times over three months to meet with a specially trained pharmacist, dietitian, or both. The program included one 60-minute session and two 30-minute sessions.

    A total of 245 patients completed all three sessions, 332 partially completed the program, and 330 who participated in the study did not attend any sessions. The average age for all those who participated was around the mid-50s. Sixty percent of those who completed all three sessions, or 137 individuals, were African-American.

    Participants who completed all three sessions experienced the biggest drop in blood pressure. Those who completed one or two sessions also decreased their blood pressure, though to a lesser degree. African-Americans who completed the full program started with higher blood pressure readings overall but experienced greater drops in blood pressure, which wiped out the racial disparity.

    In a new ongoing study that builds on the lessons learned from the previous work, Cooper says that primary care physicians were reluctant to refer patients to the program because of the singular focus of the study on blood pressure. So the team decided to focus on people who have high blood pressure in conjunction with other common ailments, such as diabetes or depression. Specially trained nurses have replaced dietitians and pharmacists because of their ability to address a variety of clinical and social issues. And the program includes a community health worker who can, if necessary, visit patients at home or in their own communities to reinforce education provided in the clinic and assist patients in accessing other health services, social services, and community resources.

    The studies are part of a community-engaged research program established and sustained by the Johns Hopkins Center to Eliminate Cardiovascular Health Disparities, with grants from the National Institutes of Health and the Patient-Centered Outcomes Research Institute since 2010.

    “To stay healthy or to treat chronic illness is not just about what happens in a 15-20 minute office visit to the doctor. What really matters is a person’s ability to follow through on recommendations regarding changes in diet, lifestyle and medication use the rest of the time as they go about their daily lives at home, at work and in the community,” says Cooper. “In addition to addressing medical needs, health system programs should also address patients’ social, cultural, and financial needs, using partnerships with other sectors of the community to enhance program effectiveness and outreach to those most in need.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:17 am on August 3, 2016 Permalink | Reply
    Tags: , , Early stage cancer cells motivated to move in search of oxygen study suggests, Johns-Hopkins U,   

    From Hopkins: “Early stage cancer cells motivated to move in search of oxygen, study suggests” 

    Johns Hopkins
    Johns Hopkins University

    8.2.16
    By Arthur Hirsch

    Research enhances understanding of one way cancer spreads, could yield better treatments

    Like most life forms, cancer cells need oxygen to survive. But scientists had never tracked cancer cells’ search for oxygen in their early growth stages until now—a step toward deeper understanding of one way cancer spreads that could help treat the disease.

    In a paper published in the Proceedings of the National Academy of Sciences, bioengineers from Johns Hopkins University and the University of Pennsylvania report results showing how sarcoma cells in mice pursue a path toward greater concentrations of oxygen, almost as if they were following a widening trail of breadcrumbs. That path is suggested to lead the cells to blood vessels, through which the cells can spread to other parts of the body.

    1
    These microscope images show sarcoma cancer cells in a hydrogel migrating out of a tumor in greater numbers in the hypoxic, or low-oxygen environment (bottom), than in the surroundings where the oxygen level is about the same as the atmosphere, or nonhypoxic (top). Image credit: Daniel Lewis, Johns Hopkins University

    “If you think about therapeutic targets, you could target this process specifically,” said the study’s lead author, Sharon Gerecht, a professor in JHU’s Department of Chemical and Biomolecular Engineering and associate director of the Institute for NanoBioTechnology.

    Gerecht—who was named the first recipient of the President’s Frontier Award at Johns Hopkins in the spring of 2015—acknowledged that clinical application is a long way off. But she said these results, reached after three years of study in her laboratory, provide clues about a key part of the life cycle of soft-tissue sarcomas and also a proven way to test cancer treatments in the lab.

    Sarcoma is a cancer that affects connective tissue, including bones, muscles, tendons, cartilage, nerves, fat, and some blood vessels. The study focused specifically on soft tissue sarcoma that does not affect bones, which is diagnosed in some 13,000 patients a year in the United States. Roughly a quarter to half of those patients develop recurring and spreading, or metastasizing, cancer.

    Gerecht and her seven co-authors—four affiliated with Hopkins, three with the University of Pennsylvania—tracked thousands of early-stage cancer cells taken from mice as they moved through a mockup of bodily tissue made of clear hydrogel in a petri dish. Hydrogel—a water-based material with the consistency of gelatin—replicates the environment surrounding cancer cells in human tissue.

    Kyung Min Park, a previous postdoctoral researcher in the Johns Hopkins lab, developed the hydrogel-cancer cell system, and Daniel Lewis, a Johns Hopkins graduate student, analyzed cellular migration and responses to rising oxygen concentrations, or “gradients.”

    For this experiment, the hydrogels contained increasing concentrations of oxygen from the bottom of the hydrogel to the upper layer. That allowed researchers to track how cancer cells respond to different levels of oxygen, both within a tumor and within body tissues.

    Analysis of sarcoma tumors in mice, for instance, shows that the largest tumors have a large area of very low oxygen at the center. Smaller tumors have varying oxygen concentrations throughout.

    The researchers’ first step was to show that cancer cells migrate more in low-oxygen or “hypoxic” hydrogels as compared with hydrogels containing as much oxygen as the surrounding atmosphere. They then looked at the direction of the cell movement.

    In the hydrogel, cells were found to move from areas of lower oxygen to higher. Researchers also found that the medication minoxidil—widely used to treat hair loss and known by its trade name Rogaine—stopped the movement of cancer cells through the hydrogel.

    Cancer cells are known to modify their environment to make it easier for them to move though it, but this study takes that understanding a step further, Gerecht said.

    “We did not know it was the oxygen” that effectively directs the movement, she said. “It’s suggesting oxygen gradient affects early stages of the metastasis process.”

    The study also demonstrates the three-dimensional hydrogel model as an effective tool for testing cancer treatments in a laboratory, the authors wrote. Gerecht said a human patient’s cancer cells could be placed into the hydrogel just as the mouse cells were, allowing clinicians to see how they respond before treatments are given to patients.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:34 am on July 27, 2016 Permalink | Reply
    Tags: , Can cutting calories help curb memory loss?, Johns-Hopkins U,   

    From Hopkins: “Can cutting calories help curb memory loss?” 

    Johns Hopkins
    Johns Hopkins University

    Jul 22, 2016
    No writer credit found

    1
    Image credit: Alex Robbins

    Eliminating calories might be good for your waistline, but as it turns out, it might be even better for your brain.

    Mark Mattson, a professor of neuroscience in the Johns Hopkins School of Medicine and chief of the Laboratory of Neurosciences at the National Institute on Aging, explains in a recent article in the Johns Hopkins Health Review that cutting energy intake by fasting at least two days a week might help the brain ward off neurodegenerative diseases like Alzheimer’s and Parkinson’s, and even improve memory and mood.

    “Fasting is a challenge to your brain, and we think that your brain reacts by activating adaptive stress responses that help it cope with disease,” Mattson tells the Health Review. “From an evolutionary perspective, it makes sense your brain should be functioning well when you haven’t been able to obtain food for a while.”

    Intermittent fasting, Mattson says, may improve neural connections in the hippocampus and protect neurons against amyloid plaques, which are associated with Alzheimer’s disease. He explains that after eating, glucose is stored in the liver as glycogen. After about 10 to 12 hours, the glycogen is depleted and the body begins to burn fats, which are converted to acidic chemicals called ketone bodies. These ketones promote changes in the structure of the neural synapses that are important for the health of the brain. But eating full meals doesn’t give the body the chance to deplete the glycogen stores in the liver, so ketones aren’t produced.

    Exercise has similar positive effects on the brain. When the brain is challenged by either physical exertion, cognitive tasks, or caloric restriction, the body produces a protein called BDNF (brain-derived neurotrophic factor), which not only strengthens neural connections and increases the production of new neurons but can also have an anti-depressive effect. “Probably during evolution, BDNF evolved to play an important role in increasing neuroplasticity in the brain and forming new synapses crucial to learning and memory as well as mood and motivation,” he tells the Health Review.

    To incorporate fasting into your diet, take a cue from Mattson:

    Mattson recommends people try one of two strategies for incorporating calorie restriction. The first is called the 5:2 diet, which has gained popularity in recent years, particularly in England after the BBC aired a 2012 documentary called Eat Fast and Live Longer in which Mattson was featured. That diet calls for limiting your caloric intake to 500 calories two nonconsecutive days per week while eating a healthy diet in the normal caloric range (2,000 for women; 2,500 for men) the rest of the week. Five hundred calories means maybe a fried egg for breakfast and a small serving of lean protein with vegetables for lunch or dinner.

    Another strategy is a time-restricted diet in which you pack all your meals into one eight-hour period a day so your body has time to exhaust its supply of glycogen, start burning fat, and produce ketones. Mattson says animal studies have shown that the time-restricted diet has effects similar to those of intermittent fasting.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 8:47 am on July 25, 2016 Permalink | Reply
    Tags: , Johns-Hopkins U, ,   

    From Hopkins: “Johns Hopkins biologists find protein that bolsters growth of damaged muscle tissue” 

    Johns Hopkins
    Johns Hopkins University

    Jul 19, 2016
    Arthur Hirsch

    Johns Hopkins University biologists have found that a protein that plays a key role in the lives of stem cells can bolster the growth of damaged muscle tissue, a step that could potentially contribute to treatments for muscle degeneration caused by old age and diseases such as muscular dystrophy.

    The results, published online by the journal Nature Medicine, show that a particular type of protein called integrin is present on the stem cell surface and used by stem cells to interact with, or “sense,” their surroundings. How stem cells sense their surroundings, also known as the stem cell “niche,” affects how they live and last for regeneration. The presence of the protein β1-integrin was shown to help promote the transformation of those undifferentiated stem cells into muscle after the tissue has degraded and improve regenerated muscle fiber growth as much as 50 percent.

    While the presence of β1-integrin in adult stem cells is apparent, “its role in these cells has not been examined,” especially its influence on the biochemical signals promoting stem cell growth, wrote the three authors—Chen-Ming Fan, an adjunct biology professor at Johns Hopkins; Michelle Rozo, who completed her doctorate in biology at Hopkins this year; and doctoral student Liangji Li.

    The experiment shows that β1-integrin—one of 28 types of integrin—maintains a link between the stem cell and its environment, and interacts biochemically with a growth factor called fibroblast growth factor (FGF) to promote stem cell growth and restoration after muscle tissue injury. Aged stem cells do not respond to FGF, and the results also show that β1-integrin restores aged stem cell’s ability to respond to FGF to grow and improve muscle regeneration.

    By tracking an array of proteins inside the stem cells, the researchers tested the effects of removing β1-integrin from the stem cell. This is based on the understanding that the activities of stem cells—undifferentiated cells that can become specialized—are dependent on their environment and supported by the proteins found there.

    “If we take out β1-integrin, all these other [proteins] are gone,” Fan, the study’s senior author and a staff member at the Carnegie Institution for Science in Washington and Baltimore, said in an interview.

    Why that is the case is not clear, but the experiment showed that without β1-integrin, stem cells could not sustain growth after muscle tissue injury.

    By examining β1-integrin molecules and the array of proteins that they used to track stem cell activity in aged muscles, the authors found that all of these proteins looked like they had been removed from aged stem cells. They injected an antibody to boost β1-integrin function into aged muscles to test whether this treatment would enhance muscle regeneration. Measurements of muscle fiber growth with and without boosting the function of β1-integrin showed that the protein led to as much as 50-percent more regeneration in cases of injury in aged mice.

    When the same β1-integrin function-boosting strategy was applied to mice with muscular dystrophy, the muscle was able to increase strength by about 35 percent.

    Fan said the team’s research will next try to determine what is happening inside the stem cells as they react with their immediate environment, as a step to understanding more about the interaction of the two. That, in turn, could help refine the application of integrin as a therapy for muscular dystrophy and other diseases, and for age-related muscle degeneration.

    “We provide here a proof-of-principle study that may be broadly applicable to muscle diseases that involve [stem cell] niche dysfunction,” the authors wrote. “But further refinement is needed for this method to become a viable treatment.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:35 am on May 25, 2016 Permalink | Reply
    Tags: , , Johns-Hopkins U, , Nerve damage found in prediabetics   

    From Hopkins via The Baltimore Sun: “Nerve damage found in prediabetics” Why to Avoid Dunkin’ Donuts 

    Johns Hopkins
    Johns Hopkins University

    1

    5.25.16
    Andrea K. McDaniels

    2
    Michael Jackson suffers from significant nerve damage stemming from prediabetes. (Lloyd Fox / Baltimore Sun)

    The pain shot across the tops of Michael Jackson’s feet as if someone was pounding him with a sledgehammer, sometimes becoming so unbearable he couldn’t sleep.

    The aerospace engineer blamed it on arthritis until his primary care physician ruled that out. Tests for Lupus and Lou Gherig’s disease also came back negative. Finally, a doctor cut a small sample of skin from one of Jackson’s feet and counted the nerve fibers under a microscope.

    Jackson suffered from significant nerve damage stemming from prediabetes — a condition in which people have high blood glucose levels but not enough to be classified as diabetes.

    Doctors have known for a while that those with prediabetes can experience mild weakness, numbness and pain from nerve damage, but a new Johns Hopkins study suggests that so-called neuropathy is much more significant than once thought. Like Jackson, patients can experience excruciating pain more typically associated with full-blown diabetes. About 50 percent of people with diabetes have neuropathy, according to the National Institute of Neurological Disorders and Stroke.

    The numbness associated with neuropathy can contribute to some diabetics’ eventual need for amputation. Diabetics tend to have poor blood circulation, which can lead to infection and ulcers. A patient may not notice an injury or infection due to lack of feeling, leading to amputation.

    The Johns Hopkins researchers say their findings provide evidence that patients should be screened for prediabetes and neuropathy much earlier than once thought. The medical community also needs to do a better job at treating and diagnosing those with prediabetes, the researchers concluded. An estimated one in three Americans — 86 million people — have prediabetes, according to the U.S. Centers for Disease Control, and may be at particular risk to the unknown consequences of the disease.

    “It means that even mild blood sugar elevations are important and it’s important for us to be aggressive in how we treat that,” said Dr. Michael Polydefkis, the study’s senior author and a professor of neurology at the Johns Hopkins University School of Medicine and director of the Cutaneous Nerve Lab.

    The Hopkins study is different from those done in the past because it showed deterioration over the entire length of sensory nerve fibers and not just at the ends, which suggests the damage is not localized.

    The patients with prediabetes, studied over a period of three years, continued to have worsening damage to their small nerve fibers throughout the study just as patients with full-blown diabetes did. Skin samples taken from the ankle, thigh and knee showed a 10 percent loss in the density of nerve cells by the end of the study.

    “I expected that people with diabetes would do worse, but I didn’t really expect people with prediabetes to experience a similar rate of degradation of their small nerve fibers,” Polydefkis said.

    The results come as medical providers already are trying to better diagnose prediabetes.

    For the last few years, the American Medical Association has worked to increase public awareness about prediabetes and get more phyisicians to screen at-risk patients. Working with the U.S. Centers for Disease Control, the association is offering doctors more information about prevention programs for their patients.

    The medical association also is participating in a public service campaign to raise awareness of prediabetes as a serious health problem. The campaign encourages people to find out if they have prediabetes and to take steps to reverse their condition to avoid developing full diabetes.

    If caught early, prediabetes can be treated with lifestyle changes, such as weight loss, exercise and diet modification to bring blood sugar levels down. Some doctors also believe the medicine used to treat diabetes could be used for prediabetes as well.

    Untreated prediabetes could progress to diabetes and lead to lifelong health problems, including cardiovascular disease and skin problems. Diabetes can destroy the blood vessels of the retina leading to blindness and damage the kidneys, which the body uses to filter out waste, leading some patients to need dialysis treatment to survive. Research shows that 15 percent to 30 percent of overweight people with prediabetes will develop type 2 diabetes within five years unless they make lifestyle changes.

    “We know that people who take preventive measures early on can slow the rate of decline,” said Dr. Ruth S. Horowitz, chief of the division of endocrinology and metabolism at Greater Baltimore Medical Center.

    There are some limits to the study. The sample size was small with 62 people, including 16 who were prediabetic and 52 with tingling and pain in their hands and feet.

    Still, the Hopkins research could help convince insurance companies to eventually cover the treatment of prediabetes, some doctors said. Insurance companies don’t always cover nutritional education and supplies for glucose testing until a patient has full-blown diabetes.

    “This study reinforces the need for us to address prediabetes as an even more serious problem,” said Stephen N. Davis, chair of the department of medicine at the University of Maryland School of Medicine. “It really does show there are consequences with prediabetes.”

    Jackson continues to cope with the consequences of his neuropathy. His nerve damage has gotten worse over time. He has lost much of the feeling in his feet and once dropped a cinder block on his foot without knowing until he looked down. His balance is off and he sometimes finds himself falling over in the shower. He is trying to manage the condition with medications and eating better.

    “As a kid I ate a lot of candy,” he said. “I was drowning myself with sugar as a kid, but back in the day nobody said much about sugar. I have tried to cut back now and it has helped.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 1:04 pm on May 16, 2016 Permalink | Reply
    Tags: , , Johns-Hopkins U, Space@Hopkins initiatve   

    From Hopkins: “Space@Hopkins initiative launches with goal of bringing researchers together” 

    Johns Hopkins
    Johns Hopkins University

    May 13, 2016
    Katie Pearce

    1
    No caption. No image credit

    2
    Charles Bennett. No image credit.

    Though Johns Hopkins University has a long history with space studies that dates to before the founding of NASA, Charles Bennett couldn’t help but notice how disconnected these research efforts have become across the institution.

    “We’re a very major hub of space activity in this country, but the activities have been separate, and there’s never been anything that ties them together,” says Bennett, a professor of physics and astronomy and a Bloomberg Distinguished Professor at Hopkins.

    Over the years, Bennett’s conversations with colleagues have revealed a shared interest in somehow uniting these disparate activities—which span dozens of Hopkins divisions, from the Applied Physics Laboratory’s space missions to physicists studying black holes.

    The new Space@Hopkins initiative is an attempt to knit the threads together. The effort, which launched last month, includes a call for collaborative seed grant research proposals.

    The initiative’s new website details Johns Hopkins’ rich history with space studies, from Professor Henry Rowlands’ 1883 invention of concave grating—which would become a basic tool for observations in space—to last year’s New Horizons mission to Pluto led by the Applied Physics Lab. In the 1920s, then-President Jonathan Ames served as a founder of the organization that would become NASA, which later honored his name through its Ames Research Center.

    NASA/New Horizons spacecraft
    NASA/New Horizons spacecraft

    Today, space research takes many forms across Johns Hopkins, Bennett says, whether that’s doctors focusing on astronaut health, engineers working on robotics that can be used in space, or undergraduates pursuing a minor in space science and engineering. Space-related work can also pop up in more unexpected places, Bennett says, noting a professor who recently used space imaging data to enhance an archaeological study.

    Space@Hopkins names eight example research fields that fall under its umbrella, including astrophysics, planetary science, and spacecraft engineering. The work includes collaborations with affiliates like the Space Telescope Science Institute and NASA’s Goddard Space Flight Center.

    3
    Eight of the areas of research Space@Hopkins intends to unite. Image: Space@Hopkins

    But it’s still a work in progress to pinpoint all the research and specialty areas that might fit within the initiative’s scope, Bennett says.

    “I’m pleased with all the people who have come forward so far,” he says.

    In addition to creating a centralized public hub for these varied efforts, Space@Hopkins strives to foster collaborative research between people who otherwise might not work together.

    “We want to use our combination of knowledge to find that spark of extra creativity and collaboration,” Bennett says.

    In the future, organizers are planning for social meet-ups and workshops to bring together different researchers. Assisting with research grants—whether publicizing opportunities or actually distributing seed funding—is also a big part of the mission.

    The current round of annual seed grants of up to $25,000—with a May 20 deadline for proposals—is available for interdisciplinary projects involving undergraduates with prospects of leading to external research.

    With Bennett as director, Space@Hopkins operates with an advisory board of professors and executives and two “space fellows”: PhD students Erini Lambrides and Kirsten Hall. Questions and comments should be directed to spacestudies@jhu.edu.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:23 am on May 6, 2016 Permalink | Reply
    Tags: , Johns-Hopkins U, , Study suggests medical errors are third-leading cause of death in U.S.   

    From Hopkins: “Johns Hopkins study suggests medical errors are third-leading cause of death in U.S.” 

    Johns Hopkins
    Johns Hopkins University

    5.3.16
    Vanessa McMains

    Physicians advocate for changes in how deaths are reported

    1

    Analyzing medical death rate data over an eight-year period, Johns Hopkins patient safety experts have calculated that more than 250,000 deaths per year are due to medical error in the U.S. Their figure, published May 3 in The BMJ, surpasses the U.S. Centers for Disease Control and Prevention’s third leading cause of death—respiratory disease, which kills close to 150,000 people per year.

    The Johns Hopkins team says the CDC’s way of collecting national health statistics fails to classify medical errors separately on the death certificate. The researchers are advocating for updated criteria for classifying deaths on death certificates.

    “Incidence rates for deaths directly attributable to medical care gone awry haven’t been recognized in any standardized method for collecting national statistics,” says Martin Makary, professor of surgery at the Johns Hopkins University School of Medicine and an authority on health reform. “The medical coding system was designed to maximize billing for physician services, not to collect national health statistics, as it is currently being used.”

    In 1949, Makary says, the U.S. adopted an international form that used International Classification of Diseases billing codes to tally causes of death.

    “At that time, it was under-recognized that diagnostic errors, medical mistakes, and the absence of safety nets could result in someone’s death,” says Makary, “and because of that, medical errors were unintentionally excluded from national health statistics.”

    In their study, the researchers examined four separate studies that analyzed medical death rate data from 2000 to 2008. Then, using hospital admission rates from 2013, they extrapolated that based on a total of 35,416,020 hospitalizations, 251,454 deaths stemmed from a medical error, which the researchers say now translates to 9.5 percent of all deaths each year in the U.S.

    According to the CDC, in 2013, 611,105 people died of heart disease, 584,881 died of cancer, and 149,205 died of chronic respiratory disease—the top three causes of death in the U.S. The newly calculated figure for medical errors puts this cause of death behind cancer but ahead of respiratory disease.

    “Top-ranked causes of death as reported by the CDC inform our country’s research funding and public health priorities,” Makary says. “Right now, cancer and heart disease get a ton of attention, but since medical errors don’t appear on the list, the problem doesn’t get the funding and attention it deserves.”

    The researchers caution that most medical errors aren’t due to inherently bad doctors, and that reporting these errors shouldn’t be addressed by punishment or legal action. Rather, they say, most errors represent systemic problems, including poorly coordinated care, fragmented insurance networks, the absence or underuse of safety nets, and other protocols, in addition to unwarranted variation in physician practice patterns that lack accountability.

    “Unwarranted variation is endemic in health care,” Makary says. “Developing consensus protocols that streamline the delivery of medicine and reduce variability can improve quality and lower costs in health care. More research on preventing medical errors from occurring is needed to address the problem.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: