Tagged: JLab-Thomas Jefferson National Accelerator Facility Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:31 pm on February 10, 2021 Permalink | Reply
    Tags: "HL-LHC Accelerator Upgrade Project receives approval to move full-speed-ahead from Department of Energy", , , , Components will be installed in the HL-LHC from 2025 to early 2027., Critical Decision 3 [CD-3] is the endorsement by DOE to proceed with the full production of the U.S. contribution to the high-luminosity upgrade of the Large Hadron Collider at CERN (CH)., , Fermilab Brookhaven National Laboratory and Lawrence Berkeley National Laboratory are currently building the components and plan to begin delivering the first magnet cryoassembly by late 2021., Fermilab leads the U.S. upgrade effort which comprises two cutting-edge technologies: accelerator magnets and cavities., , JLab-Thomas Jefferson National Accelerator Facility, , , , , , , , The 16 FNAL magnets will be installed in eight cryoassemblies., The AUP accelerator cavities made of niobium are a type known as “crab cavities”., The HL-LHC Accelerator Upgrade Project magnets use conductors made of niobium-tin to generate a stronger magnetic field compared to predecessor technology., The HL-LHC AUP magnets and cavities will be positioned near two of the LHC’s collision points — the ATLAS and CMS particle detectors., The HL-LHC is expected to start operations in 2027 and run through the 2030s., The increase in the number of collisions could also uncover rare physics phenomena or signs of new physics.,   

    From DOE’s Fermi National Accelerator Laboratory: “HL-LHC Accelerator Upgrade Project receives approval to move full-speed-ahead from Department of Energy” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory , an enduring source of strength for the US contribution to scientific research world wide.

    February 10, 2021
    Leah Hesla

    The U.S. Department of Energy has formally approved the start of execution of the High-Luminosity LHC Accelerator Upgrade Project being carried out at eight U.S. institutions.

    The approval, known as Critical Decision 3, or CD-3, is the endorsement by DOE to proceed with the full production of the U.S. contribution to the high-luminosity upgrade of the Large Hadron Collider, or HL-LHC, at the European laboratory CERN.

    Fermilab leads the U.S. upgrade effort, which comprises two cutting-edge technologies: accelerator magnets and cavities. Under the HL-LHC Accelerator Upgrade Project, or AUP, the U.S. collaborators will contribute 16 magnets to dramatically focus the LHC’s near-light-speed particle beams to a tiny volume before colliding. The collaborators are also contributing eight superconducting cavities, radio-frequency devices designed to manipulate the powerful beams. (They will also provide four spare magnets and two spare cavities.)

    With CD-3 approval, AUP collaborators can now move full-speed-ahead building and delivering the crucial components. The new instruments will enable a giant leap in the number of particle collisions at the future HL-LHC, a 10-fold increase compared to the current LHC.

    The high-luminosity upgrade to the Large Hadron Collider will enable physicists to study particles such as the Higgs boson in greater detail. And the increase in the number of collisions could also uncover rare physics phenomena or signs of new physics.

    1
    The HL-LHC Accelerator Upgrade Project magnets use conductors made of niobium-tin to generate a stronger magnetic field compared to predecessor technology. These world-record-setting magnets will have their debut in the HL-LHC: Its run will be the first time that U.S.-built niobium-tin magnets will be used in a particle accelerator for particle physics research. Credit: Dan Cheng/LBNL.

    Gaining DOE’s endorsement to move to full production is a huge achievement. Knowing what it means for the future of particle physics — for the new physics that the HL-LHC will reveal and for future accelerators enabled by these technologies — makes it even more gratifying,” said Giorgio Apollinari, Fermilab scientist and HL-LHC AUP project manager. “I congratulate the entire AUP team on the milestone. They have been instrumental in ensuring the development and technical successes of the leading-edge technologies needed for the HL-LHC.”

    The AUP is supported by the DOE Office of Science. The AUP team consists of six U.S. laboratories and two universities: Fermilab, Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, SLAC National Accelerator Laboratory, Thomas Jefferson National Accelerator Facility (all DOE national laboratories), the National High Magnetic Field Laboratory, Old Dominion University and the University of Florida.

    The AUP magnets use conductors made of niobium-tin to generate a stronger magnetic field compared to predecessor technology. These world-record-setting magnets will have their debut in the HL-LHC: Its run will be the first time that U.S.-built niobium-tin magnets will be used in a particle accelerator for particle physics research.

    The 16 magnets will be installed in eight cryoassemblies — cooling and housing units that enable the magnets’ superconductivity.

    “It is very exciting to see this cutting-edge magnet technology, which is enabling breakthrough science at the LHC, enter the production phase after the successful tests of our first magnets and with the approval of CD-3,” said scientist Kathleen Amm, the Brookhaven representative for the Accelerator Upgrade Project and director of Brookhaven’s Magnet Division. “The incredible talent across our national laboratories working seamlessly has made this possible.”

    2
    The operation of crab cavities like this one in the High-Luminosity LHC will be the first application of Fermilab superconducting radio-frequency technology — building upon critical contributions from Jefferson Lab, Old Dominion University, SLAC and industrial partners — in a particle-physics-dedicated accelerator. Credit: Ryan Postel/Fermilab.

    The AUP accelerator cavities, made of niobium, are a type known as “crab cavities,” manipulating the beam in a particular way to increase the likelihood of particle collisions. While Fermilab high-performance superconducting cavities have already been put to good use in accelerators such as XFEL in Germany or LCLS-II at SLAC National Accelerator Laboratory, the operation of these crab cavities in the HL-LHC will be the first application of Fermilab superconducting radio-frequency technology — building upon critical contributions from Jefferson Lab, Old Dominion University, SLAC and industrial partners — in a particle-physics-dedicated accelerator.

    At the Large Hadron Collider, beams of protons race in opposite directions around the collider’s 17-mile circumference, colliding at high energies at four specific interaction points along the way. Scientists study the collisions to better understand nature’s constituent components and to look for exotic states of matter, such as dark matter.

    The HL-LHC AUP magnets and cavities will be positioned near two of the LHC’s collision points — the ATLAS and CMS particle detectors. These giant, stories-high instruments are also being upgraded to take full advantage of the HL-LHC’s more rapid-fire collisions.

    Over the course of the HL-LHC Accelerator Upgrade Project, the AUP team has seen one success after another, hitting both technological and project milestones according to the schedule established in 2015, says Apollinari. The U.S. collaboration’s first focusing magnet, completed last year, met or exceeded specifications.

    “Building such an ambitious machine requires not only vision but discipline in carrying it out — tight, transparent, respectful coordination with partners, including with funding agencies and the independent reviewers,” Apollinari said. “The achievement is not only that we received CD-3 approval, but how we got here. We met our goals on a timescale that was put down on paper five years ago. That’s thanks to incredible teamwork of everyone involved.”

    Fermilab, Brookhaven National Laboratory and Lawrence Berkeley National Laboratory are currently building the components and plan to begin delivering the first magnet cryoassembly by late 2021 for critical tests. Components will be installed in the HL-LHC from 2025 to early 2027. The HL-LHC is expected to start operations in 2027 and run through the 2030s.

    “HL-LHC is a truly global scientific and engineering undertaking that will usher in a new era of research and discovery in particle physics. AUP plays a critical role in making this possible,” said Fermilab Director Nigel Lockyer. “The technologies developed by AUP will be important not only for the operation of HL-LHC, but also for the viability of future hadron colliders and the future of the field of particles — beyond the end of the HL-LHC’s run.”

    Learn more about the LHC Accelerator Upgrade project, the AUP focusing magnets and the AUP cavities.

    See the full here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:35 pm on November 21, 2020 Permalink | Reply
    Tags: "Accelerator Makes Cross-Country Trek to Enable Laser Upgrade", Another upgrade to this accelerator may be on the horizon: LCLS-II HE (High Energy)., , , , Jefferson Lab is a key contributor to the upgrade project providing a total of 21 cryomodules for the new superconducting portion of LCLS-II since work began in 2013., Jefferson Lab is a world leader in superconducting radiofrequency accelerator technologies and is home to the first large-scale SRF accelerator., Jefferson Lab’s newly shipped cryomodule will travel almost 3000 miles to its home in the LCLS-II linear accelerator in Menlo Park California over the course of 72 hours., JLab-Thomas Jefferson National Accelerator Facility, SLAC/LCLS II-the world’s brightest X-ray laser., The HE upgrade is the culmination of work by staff at both Jefferson Lab and Fermilab., The LCLS-II cryomodules are the highest-performing cryomodules that anybody has ever built., The LCLS-II project is being built for SLAC by a multi-lab collaboration that includes four DOE national labs: Jefferson Lab; Argonne National Lab; Berkeley Lab and Fermilab and Cornell University.,   

    From Thomas Jefferson National Accelerator Facility: “Accelerator Makes Cross-Country Trek to Enable Laser Upgrade” 


    From DOE’s Thomas Jefferson National Accelerator Facility

    11/20/2020
    By Chris Patrick

    Contacts:
    Kandice Carter
    Jefferson Lab
    kcarter@jlab.org

    Ali Sundermier,
    SLAC National Accelerator Laboratory
    alisun@slac.stanford.edu

    1
    Thomas Jefferson National Accelerator Facility has shipped the final new section of accelerator that it has built for an upgrade of the Linac Coherent Light Source (LCLS). The section of accelerator, called a cryomodule, has begun a cross-country road trip to DOE’s SLAC National Accelerator Laboratory, where it will be installed in LCLS-II, the world’s brightest X-ray laser. Credit: DOE’s Jefferson Lab.

    2
    3
    4
    Above: File photos of cryomodule work for the LCLS-II project.

    Today, the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has shipped the final new section of accelerator that it has built for an upgrade of the Linac Coherent Light Source (LCLS). The section of accelerator, called a cryomodule, has begun a cross-country road trip to DOE’s SLAC National Accelerator Laboratory, where it will be installed in LCLS-II, the world’s brightest X-ray laser.

    SLAC/LCLS II projected view.

    SLAC/LCLS II schematic.

    SLAC LCLS-II Undulators The Linac Coherent Light Source’s new undulators each use an intricately tuned series of magnets to convert electron energy into intense bursts of X-rays. The “soft” X-ray undulator stretches for 100 meters on the left side of this hall, with the “hard” x-ray undulator on the right. Credit: Alberto Gamazo/SLAC National Accelerator Laboratory.

    “This is the culmination of seven years of work,” said Naeem Huque, the cost account manager who led the cryomodule efforts at Jefferson Lab. “A lot of the staff in Jefferson Lab’s Superconducting Radiofrequency Institute came in right from the start of the project, and they’re still here seeing it off. We are happy to see this project conclude successfully.”

    LCLS-II is a project to upgrade the existing Linac Coherent Light Source (LCLS), the world’s first X-ray free-electron laser. The X-ray pulses generated by the machine act like a powerful microscope, allowing researchers to watch chemical reactions in real time, probe materials and more. Once complete, LCLS-II will begin its reign as the biggest and brightest X-ray free-electron laser in the world.

    LCLS-II will provide even better resolution than the original LCLS, which accelerated electrons at room temperature and generated 120 X-ray laser pulses per second. The upgraded machine will accelerate electrons at superconducting temperatures to generate 1 million X-ray laser pulses per second. Jefferson Lab is a key contributor to the upgrade project, providing a total of 21 cryomodules for the new superconducting portion of LCLS-II since work began in 2013.

    The superconducting accelerator that will power the upgraded machine is made up of cryomodules. Electrons zip through the cryomodules, where they are loaded up with extra energy. Then, magnets make the electrons zigzag to give off their energy as X-rays. The upgraded LCLS will boast 37 cryomodules in total. Of those,18 are from Jefferson Lab (plus three spares), and the rest will come from Fermilab, another key contributor.

    “The LCLS-II cryomodules are the highest-performing cryomodules that anybody has ever built,” said Joe Preble, senior team leader for the LCLS-II project at Jefferson Lab. “We pushed out the performance frontier on this sort of technology and turned it into a regular, turnkey process.”

    Jefferson Lab is a world leader in superconducting radiofrequency accelerator technologies and is home to the first large-scale SRF accelerator. As the team at Jefferson Lab contributed to the design of, built, tested and shipped these record-breaking cryomodules for LCLS-II, they encountered unprecedented challenges to push the cryomodule technology’s performance.

    “These very high-performing cryomodules are sensitive to things that we never had to worry about before, like our assembly procedures, the way we treat materials, the way we build things,” Preble said.

    Jefferson Lab modified its facilities to accommodate the cryomodules, which were a different shape and size than those that came before. Jefferson Lab staff members even figured out a new way to ship the finished cryomodules, after some broke during shipment.

    “We explored a lot of different options, everything from hiring a NASA aircraft to take it over there, to trying to send it by train or ship,” Huque explained.

    In the end, they managed to improve safety without pulling the cryomodules off the road. Sitting in a bed of springs to prevent damage from jostling, Jefferson Lab’s newly shipped cryomodule will travel almost 3,000 miles to its home in the LCLS-II linear accelerator in Menlo Park, California, over the course of 72 hours.

    However, Jefferson Lab’s work on improving the LCLS is likely not yet done. Another upgrade to this accelerator may be on the horizon: LCLS-II HE (High Energy). If that project is greenlighted, Jefferson Lab will build between 10 and 13 more cryomodules with a newer procedure. It’s expected that those cryomodules will have even better performance than the 21 they just finished.

    “I think that’s one of the biggest signs that we’ve done really well, is that something that was already ambitious is now getting pushed even further,” Huque said. The HE upgrade, which is the culmination of work by staff at both Jefferson lab and Fermilab, will dramatically increase the performance capabilities of LCLS-II.”

    For now, this momentous final delivery closes the book on Jefferson Lab’s part in delivering new cryomodules for LCLS-II while the R&D and prototyping for HE is already ongoing. Its conclusion comes thanks to the help of many.

    “From the procurement people to the engineers, the scientists, the technicians, and the administrators, it’s taken everybody working together across laboratories to get this done,” Preble said. “It’s a great success and demonstration of the way the DOE needs to continue to work in building these new big projects.”

    The LCLS-II project is being developed and built for SLAC by a multi-lab collaboration that includes four other DOE national labs: Jefferson Lab, Argonne National Lab, Berkeley Lab and Fermilab, along with additional collaboration from Cornell University. Jefferson Lab is providing the liquid helium cryogenics plant for the project, half of the SRF cryomodules and the systems that will allow its operators to control the cryomodules. Once complete, LCLS-II will be the longest continuous SRF linear accelerator in the country, boasting 280 accelerating cavities.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    JLab campus
    Jefferson Lab is supported by the Office of Science of the U.S. Department of Energy. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.
    Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE Applied Technologies, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy’s Office of Science.

     
  • richardmitnick 9:53 am on August 28, 2020 Permalink | Reply
    Tags: "Nuclear Physics Data Demand More Powerful Processing", , , , Electron-Ion Collider, JLab-Thomas Jefferson National Accelerator Facility, , Software & Computing Round Table   

    From Brookhaven National Lab and Thomas Jefferson National Accelerator Facility: “Nuclear Physics Data Demand More Powerful Processing” 

    From Brookhaven National Lab

    and


    Thomas Jefferson National Accelerator Facility

    August 28, 2020
    Kandice Carter
    Jefferson Lab Communications Office
    kcarter@jlab.org

    Jefferson Lab and Brookhaven National Lab partner on a Software & Computing Round Table to track the leading edge of computing and foster collaboration.

    1

    Fans of the popular TV show The Big Bang Theory can picture the sitcom’s physicists standing at a whiteboard, staring hard at equations.

    It’s an iconic image. But is that the future — or even the present — of how nuclear physicists do their jobs? Not really. Not when new experiments demand ever-more powerful data processing and thus ever-more-powerful software and computing.

    “Scientists being at a blackboard and writing up some equations — that is not always the reality,” said Markus Diefenthaler, an experimental nuclear physicist at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility in Newport News, Virginia.

    “We also write analysis programs and simulations to make sense of the vast amount of data that we have collected to try to learn about particle structure and dynamics,” Diefenthaler said. “The software and computing can really be an integral and a fundamental part of the science.”

    So integral and so fundamental that in 2016, Diefenthaler helped organize the Software & Computing Round Table, a monthly forum for presentations and discussions among colleagues and Ph.D. students. Its stated goal: to explore the expanding role of software and computing in high energy and nuclear physics and related fields and to foster common projects within the scientific community.

    The group has grown so successful that last year, organizers teamed up with the U.S. Department of Energy’s Brookhaven National Laboratory on Long Island, New York, to broaden their perspective, their offerings and their target audience.

    The collaboration is particularly timely, as the DOE has chosen Brookhaven as the site for its proposed Electron-Ion Collider (EIC), a one-of-a-kind, next-generation facility considered critical to the future of physics research and particle accelerator technology in this country and around the world.

    Electron-Ion Collider (EIC) at BNL, inside the tunnel that currently houses the RHIC.

    Jefferson Lab is a major partner in realizing the EIC, providing key support for this next new collider.

    Torre Wenaus, senior physicist at Brookhaven and leader of its Nuclear and Particle Physics Software group, said the EIC offers a blank canvas and unique opportunity to benefit from science community members with long experience working on multiple generations of software frameworks.

    Their expertise is invaluable for devising frameworks for so-called greenfield experiments — those in emerging areas that are still wide open for innovation, Wenaus said.

    “The EIC is an opportunity to really take an expansive view in deciding how best to do things in a long-range project, without being bound by a lot of existing history and computing infrastructure, while still leveraging the experience that people bring to it from prior activities,” Wenaus said.

    While the EIC project offers tantalizing possibilities for the round table, just as valuable are what the forum offers right now as Jefferson Lab and Brookhaven engage in world-class nuclear physics research that delivers ever-greater amounts of data, which demands ever-greater processing power.

    “Higher luminosity means more data,” said Wenaus, “which means a bigger job processing the data at various stages, from initial decisions as to what data you save, to simulating the physics in our detector.”

    For instance, Jefferson Lab’s upgraded 12 GeV Continuous Electron Beam Accelerator Facility, a DOE Office of Science User Facility, has the highest luminosity in the world, enabling experiments that probe deep into protons and neutrons to study quarks and gluons — the building blocks of the universe — like a mighty microscope. In one key experiment, called GlueX, researchers hope the CEBAF’s enhanced luminosity can produce new particles called hybrid mesons and answer the fundamental question of why no quark has ever been found alone. CEBAF’s high luminosity generates extreme amounts of data in experiments, with GlueX alone generating 1 GB per second.

    And Brookhaven’s Relativistic Heavy Ion Collider (RHIC), also a DOE Office of Science User Facility, is the first in the world capable of smashing together heavy ions. Nuclear physicists use RHIC and its specialized detectors to study a state of matter called quark-gluon plasma. Continual upgrades at RHIC over its 20 years of operations have resulted in a 44-fold increase in luminosity, far beyond what was imagined when the facility was initially designed.

    “These high-luminosity facilities with very complex detectors and data rates demand a lot of computing and really force us to track the leading edge of software and computing,” Wenaus said.

    Sometimes, though, it’s physics that takes the lead. One example of computing and software advances flowing from physics has been the revolution in machine learning and artificial intelligence over the last eight years, he said. A key paper describing such deep learning approaches was published in 2012 just months after the discovery of the elusive Higgs boson elementary particle following a decades-long search. Such data analysis methods, however, have long been explored by physicists in efforts to better understand their data.

    “It’s always interesting to me that everything we’ve done since the Higgs has tracked exactly the same time scale as the really exponential revolution in machine learning that we’ve done over that time,” Wenaus said.

    And for every high-energy physicist with a long-enough memory, he said, another favorite example of physics software and computing technology flowing to the wider world is the World Wide Web, developed at CERN in 1989 to enable scientists, universities and research facilities to share information.

    There’s also been tremendous growth over the last 10 years in what’s known as common software in the science community. Such software has been around for decades, but has become increasingly available as one of many open-source options.

    Common software will be a key topic of a virtual workshop that round table organizers are offering Sept. 29-Oct. 1. The Future Trends in Nuclear Physics Computing workshop is in lieu of a monthly round table and intended to chart a path for software and computing in nuclear physics for the next 10 years.

    Organizers say the Software & Computing Round Table has helped inspire collaboration among physicists and move projects forward.

    “Some of them, such as greenfield frameworks, are still taking shape, and the impact lies primarily in the future,” Wenaus said.

    Computing is integral to modern science, Diefenthaler said, but its value extends beyond mere numbers.

    “A quote which I really like is from one of the pioneers of computing, Richard Hamming,” said Diefenthaler. “He said, ‘The purpose of computing is insight, not numbers.’ And this is really what software and computing is giving us — it’s giving us insight into the scientific questions which we are trying to answer.”

    German-born Diefenthaler joined Jefferson Lab in 2015 and is part of its EIC Center. He is investigating the inner structure of the nucleon, in particular the so-called TMD observables. Transverse momentum dependent observables are being explored to help map out the spin and momentum of the quarks and gluons inside protons and neutrons. Diefenthaler is part of the research collaboration that observed for the first time the Sivers effect, which relates TMD observables to the proton’s spin and the behavior of its quarks and gluons, in measurements of the semi-inclusive deep-inelastic scattering process and provided seminal results for many other TMD observables.

    Wenaus has worked on nuclear physics at Brookhaven since 1997, but he has had many stints at CERN working on the Large Hadron Collider. He is a member of the ATLAS collaboration, which is one of four major experiments at the LHC and, along with the CMS collaboration, first observed the Higgs boson in 2012. Wenaus is also co-leading U.S. ATLAS efforts to help develop software for the High Luminosity Large Hadron Collider (HL-LHC) at CERN. The HL-LHC is an upgrade to the LHC that will significantly boost its acceleration. It’s expected to start taking data around 2027 at a rate that’s an order of magnitude greater than currently possible.

    The round table was inspired by a popular workshop series called Future Trends in Nuclear Physics Computing. The first workshop was organized by Diefenthaler, along with Amber Boehnlein, now head of Jefferson Lab’s new Computational Sciences & Technology Division, and Graham Heyes, head of the lab’s Scientific Computing Department. The second workshop was organized by a group of 10 from six different institutions, and the third workshop, mentioned above, is being organized by the Software & Computing Round Table organizers.

    Topics are chosen by an eight-member committee composed of physicists from Jefferson Lab and Brookhaven. Speakers come from fellow DOE national labs, international accelerator facilities and research universities.

    “We really focus on programming, on how to process data, how to handle data, how to do the analysis,” Diefenthaler said.

    Both physicists stress that anyone interested in learning more and/or contributing to the conversation about the interplay among the topics of nuclear and high energy physics, software and computing are invited to attend Software and Computing Round Table presentations and discussions.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    JLab campus
    Jefferson Lab is supported by the Office of Science of the U.S. Department of Energy. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.
    Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE Applied Technologies, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy’s Office of Science.

    BNL Campus

    Brookhaven campus

    BNL Center for Functional Nanomaterials

    BNL NSLS-II


    BNL NSLS II

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL Phenix Detector

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

     
  • richardmitnick 9:26 am on August 28, 2020 Permalink | Reply
    Tags: , Electron-Ion Collider (EIC) at BNL, Exploring the binding force carried by gluons – the strongest force in Nature – will also help physicists unlock the secrets of confinement., JLab-Thomas Jefferson National Accelerator Facility, , The Electron-Ion Collider will be a 3D ‘microscope’ for studying the quarks and gluons that are the building blocks of protons; neutrons; and nuclei – in other words all visible matter., The Electron-Ion Collider will extend our knowledge and technological capabilities in completely new ways with wide-ranging impacts in nuclear physics and beyond., This journey will pick up on the exploration of the proton; nuclei; and nuclear matter that has been underway for more than two decades at our two institutions.   

    From Brookhaven National Lab and Thomas Jefferson National Accelerator Facility: “The Electron-Ion Collider – A New Frontier in Nuclear Physics” 

    From Brookhaven National Lab

    and


    JLab-Thomas Jefferson National Accelerator Facility

    August 25, 2020
    Doon Gibbs, BNL
    +1 (631) 344 4608
    gibbs@bnl.gov

    Stuart Henderson, JLab
    +1 757 269 7100
    stuart@jlab.org

    Electron-Ion Collider (EIC) at BNL, inside the tunnel that currently houses the RHIC.

    Science has always been about understanding the world around and within us. At the US Department of Energy’s national laboratories, we take that search for knowledge and the application of what we learn in many directions—from examining the electronic structure of materials for designing better batteries, to searching for drugs that might thwart the deadly coronavirus; from producing new isotopes for treating cancer, to modelling the evolution of the cosmos. Within the next decade, we will be embarking on an exciting new journey into an unexplored frontier in nuclear physics—deep into the particles that make up the nuclei of atoms.

    Scientists at our two institutions — Brookhaven National Laboratory and Thomas Jefferson National Accelerator Facility (JLab)—together with researchers at other national labs and universities throughout the US, will join forces with partners from around the world to build the world’s first polarised Electron-Ion Collider. Supported by ~US$1.6-2.6 billion in funding from the US Department of Energy’s Office of Science and $100m from New York State, this new world-class research facility will collide high energy electrons with protons and the nuclei of heavier atoms such as gold to produce precision 3D snapshots of quarks and gluons – the building blocks of all visible matter – and unlock the secrets of the strongest force in Nature.

    This journey will pick up on the exploration of the proton, nuclei, and nuclear matter that has been underway for more than two decades at our two institutions. Since 2000, scientists have used Brookhaven’s Relativistic Heavy Ion Collider (RHIC) to explore the characteristics of nuclear matter, discovering unexpected details about what matter was like in the very early Universe. We will even reuse some of that facility’s still ground-breaking accelerator components and draw on the expertise gained while vastly expanding its capabilities over the past 20 years. Likewise, since 1995, scientists have used Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) to discover new details of the quark structure of protons, neutrons, and nuclei.

    Building on these discoveries, the Electron-Ion Collider will extend our knowledge and technological capabilities in completely new ways, with wide-ranging impacts in nuclear physics and beyond.

    2
    Electron-Ion Collision – as electrons collide with ions at the Electron-Ion Collider (EIC), they will scatter off the quarks within the proton or nucleus. Particles ejected from the collision by these scattering interactions strike various components of a detector. Scientists study the patterns and characteristics of the particles produced to tease out the internal structure of the protons and ions, including the distribution of the quarks and gluons.

    The microcosm within protons

    The Electron-Ion Collider will be a 3D ‘microscope’ for studying the quarks and gluons that are the building blocks of protons, neutrons, and nuclei – in other words, all visible matter. Gluons are the subatomic particles that bind quarks into the more familiar particles that make up matter in today’s world. Without gluons, space itself would be unstable, and atoms – and everything made from them, including stars, planets, and people – would not exist.

    Nuclear physicists estimate that gluons (which themselves are massless) and the force they mediate among quarks may account for nearly 99% of the mass of the protons and neutrons that make up atomic nuclei – the most massive component of all visible matter in the Universe. Yet, we know less about gluons than the Higgs particle, which accounts only for the masses of quarks and electrons. An Electron-Ion Collider promises unforeseen insight into gluons’ mass-building mechanism.

    Collisions at the Electron-Ion Collider will reveal how quarks and gluons are arranged within the larger building blocks of matter, the protons, neutrons, and nuclei. Experiments will search for signs of a new state of matter that theorists predict will emerge as gluons multiply and reach a state of saturation at high energies. Additional experiments will explore whether the presence of multiple protons affects the distribution of gluons within these particles, as it does the distribution of quarks.

    Exploring the binding force carried by gluons – the strongest force in Nature – will also help physicists unlock the secrets of confinement, the property that keeps quarks locked within composite particles. This research will offer insight into gluons’ behaviour not just in ordinary matter, but also in extreme astrophysical environments such as the hearts of merging neutron stars and supernovae.

    In addition, the ability to control the polarisation of colliding electrons and protons in the Electron-Ion Collider will give physicists the tool they need to finally solve a long-standing physics mystery: the origin of proton spin. Though proton spin, an intrinsic angular momentum that is somewhat analogous to the spin of a toy spinning top, is used in nuclear magnetic resonance imaging (NMR and MRI), scientists still don’t know how this property arises from the proton’s inner building blocks. Precision measurements at the Electron-Ion Collider will reveal contributions made by quarks, gluons, and a sea of quark-antiquark pairs to place the final pieces in the proton spin puzzle together.

    3
    The Spin Puzzle – the Electron-Ion Collider (EIC) will be the world’s first polarised electron-proton collider – meaning the ‘spins’ of both colliding particles can be aligned in a controlled way. This will make it possible to experimentally solve the outstanding mystery of how the teeming quarks and gluons inside the proton combine their spins to generate the overall spin carried by the proton.

    Transformative technologies

    How will we use the knowledge gained at the Electron-Ion Collider? As is the case when entering any new frontier, it is difficult to predict. But it might be helpful to think about how experiments of the last century have impacted us today.

    These include fundamental physics experiments conducted 50-100 years ago that revealed the structure of the atom – a positively charged nucleus surrounded by negatively charged orbiting electrons. Those experiments laid the foundation for the theory of quantum mechanics and the design of a wide variety of materials and technologies that drive our economy today – batteries, smart materials, and all our electronics.

    By allowing us to peer inside the nucleus and individual protons, the Electron-Ion Collider will broaden our understanding of the microcosm of quarks and gluons within. We already know that the nuclear strong force through which those fundamental particles interact is considerably more powerful than the electromagnetic interactions described by the theory of quantum mechanics. Unlocking the secrets of the nuclear strong force and solidifying our understanding of its descriptive theory – quantum chromodynamics – may open doors to powering the discoveries and technologies of tomorrow.

    And along the way we will be working with experts from around the world to develop many advanced technologies that will make this exploration possible – and that will undoubtedly advance other areas of science and help to address pressing societal needs.

    As one example, we have been working with partners at Cornell University and the New York State Energy Research and Development Authority on innovative particle acceleration schemes that recycle both the particles and their energy. This energy-saving technology has great potential for use in a system that will keep the Electron-Ion Collider’s beams of colliding ions cool and tightly packed. Keeping ion beams cool will maximise collision rates, or luminosity, and will generate more data for physicists to explore. And the energy-saving acceleration approach could go on to be applied at other future accelerators used in science or for industrial and medical applications, including cancer treatment.

    We are also working with a worldwide community of Electron-Ion Collider scientists – already more than 1,000 physicists from over 200 laboratories and universities throughout the nation and around the world – to gather input on the scientific opportunities at an Electron-Ion Collider, as well as the detector and accelerator capabilities needed to ensure that the Electron-Ion Collider will make the most impactful measurements and get the most out of every particle interaction.

    4
    EIC Collision – as electrons collide with ions at the Electron-Ion Collider (EIC), virtual photons – particles of light that mediate the interaction, denoted by the wavy purple line – will penetrate the proton or nucleus to tease out the structure of the quarks and gluons within.

    Important impacts in physics and beyond

    The technologies being developed for the Electron-Ion Collider will push the evolution of accelerator and detector components, as well as architectures and approaches for handling Big Data, in ways that will have broad benefits for science and society.

    For example, advanced accelerator designs could improve the delivery of particle beams with cell-killing energy directly to tumours, with lower cost and better outcomes than today’s radiotherapies. These accelerator technologies could also find their way into machines used by scientists and industry to make and test computer chips; explore and develop new materials for batteries, solar cells, and other energy applications; and to study bacterial and viral proteins and design drugs and vaccines to protect human health. Detectors developed for tracking particles at the Electron-Ion Collider may lead to better ways to identify illicit cargo and support other national security applications.

    Advances in any of these areas – from drug development to materials design to understanding global challenges such as pandemics and climate change – rely increasingly on computational resources that allow scientists to sort through unprecedented volumes of data. The computational resources and techniques developed to extract elusive signals from billions of Electron-Ion Collider particle interactions will inevitably drive the evolution of more powerful tools for tackling these other data-intensive challenges.

    Running the Electron-Ion Collider will also facilitate continued operations of two Brookhaven Lab facilities that employ the same accelerator infrastructure: one that develops and produces crucial isotopes used by doctors to diagnose and treat cancer; and one that simulates the effects of space radiation, which was designed to help protect future astronauts and also advances scientists’ understanding of cancer mechanisms, treatments, and potential protective measures.

    And, of course, the prospect of entering a new frontier will attract the best and brightest minds from around the world. The Electron-Ion Collider will offer countless opportunities for training a highly skilled workforce – the scientists, engineers, and tech-savvy workers who will drive tomorrow’s technological and economic advances and maintain our leadership in these essential areas for decades to come.

    We are looking forward to this journey and to sharing the discoveries and other benefits with our nation and the world.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    JLab campus

    Jefferson Lab is supported by the Office of Science of the U.S. Department of Energy. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.
    Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE Applied Technologies, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy’s Office of Science.

    BNL Campus

    Brookhaven campus

    BNL Center for Functional Nanomaterials

    BNL NSLS-II


    BNL NSLS II

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL Phenix Detector

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: