Tagged: JHU HUB Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:33 am on February 19, 2020 Permalink | Reply
    Tags: , JHU HUB, ,   

    From JHU HUB: “By studying snakes, engineers learn how to build better robots” 

    From JHU HUB

    2.18.20
    Chanapa Tantibanchachai
    chanapa@jhu.edu
    Office phone 443-997-5056
    Cell phone 928-458-9656

    Johns Hopkins mechanical engineers design a snake robot based on the climbing technique of the kingsnake that could help advance search-and-rescue technology

    4
    Kingsnake, the model for this work.

    Snakes live in diverse environments ranging from unbearably hot deserts to lush tropical forests. But regardless of their habitat, they are able to slither up trees, rocks, and shrubbery with ease. By studying how the creatures move, a team of Johns Hopkins engineers have created a snake robot that can nimbly and stably climb large steps.

    The team’s new findings, published in Journal of Experimental Biology and Royal Society Open Science, could advance the creation of search and rescue robots that can successfully navigate treacherous terrain.

    “We look to these creepy creatures for movement inspiration because they’re already so adept at stably scaling obstacles in their day-to-day lives,” says Chen Li, an assistant professor of mechanical engineering at Johns Hopkins University and the papers’ senior author. “Hopefully our robot can learn how to bob and weave across surfaces just like snakes.”


    Snake Robot Locomotion

    Previous studies had mainly observed snake movements on flat surfaces, but rarely examined their movement in 3D terrain, except for on trees, says Li. These studies did not account for real-life large obstacles snakes encounter, such as rubble and debris, that a search and rescue robot would similarly have to climb over.

    Li’s team first studied how the variable kingsnake, a snake that can commonly be found living in both deserts and pine-oak forests, climbed steps in Li’s Terradynamics Lab. Li’s lab melds the fields of engineering, biology, and physics together to study animal movements for tips and tricks to build more versatile robots.

    “These snakes have to regularly travel across boulders and fallen trees; they’re the masters of movement and there’s much we can learn from them,” Li says.

    Li and his team ran a series of experiments that changed step height and surface friction to observe how the snakes contorted their bodies in response to these barriers. They found that snakes partitioned their bodies into three movement sections: a front and rear section wriggled back and forth on the horizontal steps like a wave, while the section between remained stiff, hovering just so, to bridge the height of the step. The wriggling portions, they noticed, provided stability to keep the snake from tipping over.

    2
    Image credit: Will Kirk / Johns Hopkins University

    As the snakes moved onto the step, these three body movement sections traveled down the snake’s body. As more and more of the snake reached the top of the step, its front body section would get longer and its rear section would get shorter while the middle body section remained the height of the step, suspended vertically.

    If the steps got taller and more slippery, the snakes would move more slowly and wriggle their front and rear body less to maintain stability.

    After analyzing their videos and noting how snakes climbed steps in the lab, Qiyuan Fu, a graduate student in Li’s lab, created a robot to mimic the animals’ movements.

    At first, the robot snake had difficulty staying stable on large steps and often wobbled and flipped over or got stuck on the steps. To address these issues, the researchers inserted a suspension system (like that in a vehicle) into each body segment so it could compress against the surface when needed. After this, the snake robot was less wobbly, more stable, and climbed steps as high as 38% of its body length with a nearly 100% success rate.

    Compared to snake robots from other studies, Li’s snake robot was speedier and more stable than all but one, and even came close to mimicking the actual snake’s speed. One downside of the added body suspension system, however, was that the robot required more electricity.

    “The animal is still far more superior, but these results are promising for the field of robots that can travel across large obstacles,” adds Li.

    Next, the team will test and improve the snake robot for even more complex 3-D terrain with more unstructured large obstacles.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    The Johns Hopkins Universityopened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 12:24 pm on January 29, 2020 Permalink | Reply
    Tags: , , , JHU HUB   

    From JHU HUB: “Digging into Earth’s history” 


    From JHU HUB

    1.28.20
    Saralyn Cruickshank

    4
    Uncredited

    In geology fieldwork Intersession class, students hike the mountains of the Mojave Desert to record and categorize rock formations to better understand millions of years of planetary history.

    Across the dry, scrubby hills of the Mojave Desert, a group of Johns Hopkins scientists and students spent three weeks this month working to understand millions of years of Earth’s history. Evidence of ancient ice ages, remnants of geochemical events that disturbed prehistoric oceans, and fossils of the oldest living organisms on the planet are compressed in the strata of exposed rocks—nature’s record-keepers.


    Digging Into Earth’s History

    “The mountains surrounding us, they may not look particularly unusual or spectacular, but they record some of the most unusual periods in Earth’s history,” says Emmy Smith, an assistant professor in the Department of Earth and Planetary Sciences at the Krieger School of Arts and Sciences. “Surrounding us there’s hundreds of millions of years of recorded time.”

    Led by Smith, undergraduate students in the Geological Field Studies in California Intersession class have been on a mission to survey and map land just east of Death Valley in Shoshone, California. Rough reconnaissance maps exist of the remote wilderness area, Smith says, but the goal of the Intersession course was to characterize and catalog the geological units of the region in order to build a detailed digital topographic map, which will be assembled during a companion class Smith will teach in the spring.

    “[Using this data], we could produce a new geologic map that’s more detailed than what’s in the published literature,” Smith says. “There’s the potential to make discoveries and to do research as part of this class.”

    2
    Image credit: Dave Schmelick / Johns Hopkins University

    The class was co-led by Kirby Runyon, a planetary geologist at the Johns Hopkins Applied Physics Laboratory.

    Runyon says the geologic mapping fieldwork the students performed in the Mojave is strikingly similar to work performed by scientists in a vastly different setting: the surface of the moon.

    “The United States is gearing up to send astronauts back to the moon for the first time since 1972, and we’re asking questions about what they’ll do when they get there,” says Runyon, who received an APL Parsons Teaching Fellowship to support his teaching endeavors at the university. “One of the obvious options is lunar field geology, which will allow us to piece together the history of the moon, and by extension the Earth.”

    To simulate the experience of astronauts conducting fieldwork on the moon, Runyon and Smith organized a trip to the nearby Cima volcanic field, which Runyon says is an earthly analogue to the surface of the moon. There, the students took part in a simulated moonwalk and were tasked with performing their fieldwork under the same constraints as an astronaut in space.

    3
    Senior Mackenzie Mills records note in her field notebook. Image credit: Patrick Ridgely / Johns Hopkins University.

    “Normally in field geology, you’re mapping by hand or on an iPad, but astronauts in bulky space suits can’t do that,” Runyon says. “In this exercise, the students were really learning how to get an overall geology of a place and to collect specific samples that will tell the story of a region once they’re tested in a laboratory.”

    Like Smith, Runyon believes the insights gained from field geology research are capable of revealing hidden histories of planetary bodies—and informing scientists’ understanding of our own planet.

    “A geologic map is sort of like a map you’d see at a mall, with stores not only laid out spatially but also by category. Colored labels indicate restaurants, menswear stores, womenswear stores, services, and so on,” Runyon says. “By noting rock units and their spatial relationships, you can infer the timing of different events and, in turn, understand the environment of the region at that time. The geologist’s job is to understand those spatial relationships and to forensically piece together natural history.”

    4
    Image credit: Patrick Ridgely / Johns Hopkins University

    For students, the experience of fieldwork reinforces the principles they’ve learned in the classroom and gives them the opportunity to see the real-world application of geology research in person. Mackenzie Mills, an earth and planetary sciences major whose research focuses on the surfaces of planets in the outer solar system, saw the course as an opportunity to apply her growing expertise to more terrestrial projects.

    “When I’m looking at planetary surfaces, I’m looking at remote images on a computer and doing a lot of coding,” Mills says. “Field geology is way more hands-on. You’re up close with these rocks, and it’s a puzzle you have to figure out by going through and hiking. It’s just meshing my interests together in a new way.”

    Mills and her map teammates, senior Cecelia Howard and first-year student Ling Jin, even made a new discovery. Located in the Johnnie oolite bed, which is made up of small spheres of rock called ooids that are encased in calcium carbonate, the team discovered a rock unit that was much larger than expected and not previously described by scientists. The unit was officially christened Johnnie Rampage, after the team’s name—Rampaging Kittens or Rampaging Boy Scouts, depending on how the team is feeling at a given time, Howard says.

    “We’re not walking on trails here—the students are just crawling all over the mountains and deciding their own traverse for the day,” Smith says. “And it’s a challenge. It’s a physical and mental challenge for all of us. All the students have risen to that challenge, so it’s been fun to watch.”

    See the full article “>here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins niversity opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 12:47 pm on January 16, 2020 Permalink | Reply
    Tags: "Behind howls of solar wind quiet chirps reveal its origins", , , , , JHU HUB, ,   

    From JHU HUB: “Behind howls of solar wind, quiet chirps reveal its origins” 

    From JHU HUB

    1.15.20
    Jeremy Rehm

    1
    Image credit: NASA/Naval Research Laboratory/Parker Solar Probe

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker

    Scientists have studied the solar wind (pictured) for more than 60 years, but they’re still puzzled over some of its behaviors. The small chirps, squeaks, and rustles recorded by the Parker Solar Probe hint at the origin of this mysterious and ever-present wind.

    There’s a wind that emanates from the sun, and it blows not like a soft whistle but like a hurricane’s scream.

    Made of electrons, protons, and heavier ions, the solar wind courses through the solar system at roughly 1 million miles per hour, barreling over everything in its path. Yet through the wind’s roar, NASA’s Parker Solar Probe can hear small chirps, squeaks, and rustles that hint at the origins of this mysterious and ever-present wind. Now, the team at the Johns Hopkins Applied Physics Laboratory, which designed, built, and manages the Parker Solar Probe for NASA, is getting their first chance to hear those sounds, too.

    “We are looking at the young solar wind being born around the sun,” says Nour Raouafi, mission project scientist for the Parker Solar Probe. “And it’s completely different from what we see here near Earth.”


    Sounds of the Solar Wind from NASA’s Parker Solar Probe

    Scientists have studied the solar wind for more than 60 years, but they’re still puzzled over many of its behaviors. For example, while they know it comes from the sun’s million-degree outer atmosphere called the corona, the solar wind doesn’t slow down as it leaves the sun—it speeds up, and it has a sort of internal heater that keeps it from cooling as it zips through space. With growing concern about the solar wind’s ability to interfere with GPS satellites and disrupt power grids on Earth, it’s imperative to better understand it.

    Just 17 months since the probe’s launch and after three orbits around the sun, Parker Solar Probe has not disappointed in its mission.

    “We expected to make big discoveries because we’re going into uncharted territory,” Raouafi says. “What we’re actually seeing is beyond anything anybody imagined.”

    Researchers suspected that plasma waves within the solar wind could be responsible for some of the wind’s odd characteristics. Just as fluctuations in air pressure cause winds that force rolling waves on the ocean, fluctuations in electric and magnetic fields can cause waves that roll through clouds of electrons, protons, and other charged particles that make up the plasma racing away from the sun. Particles can ride these plasma waves much like the way a surfer rides an ocean wave, propelling them to higher speeds.

    “Plasma waves certainly play a part in heating and accelerating the particles,” Raouafi says. Scientists just don’t know how much of a part. That’s where Parker Solar Probe comes in.

    The spacecraft’s FIELDS instrument can eavesdrop on the electric and magnetic fluctuations caused by plasma waves. It can also “hear” when the waves and particles interact with one another, recording frequency and amplitude information about these plasma waves that scientists can then play as sound waves. And it results in some striking sounds.

    2
    Parker Solar Probe Diagram instrument FIELDS. NASA

    Take, for example, whistler-mode waves. These are caused by energetic electrons bursting out of the sun’s corona. These electrons follow magnetic field lines that stretch away from the sun out into the solar system’s farthest edge, spinning around them like they’re riding a carousel. When a plasma wave’s frequency matches how frequently those electrons are spin, they amplify one another. And it sounds like a scene out of Star Wars.

    “Some theories suggest that part of the solar wind’s acceleration is due to these escaping electrons,” says David Malaspina, a member of the FIELDS team and an assistant professor at the University of Colorado, Boulder, and the Laboratory for Atmospheric and Space Physics. He adds that the electrons could also be a critical clue to understanding one process that heats the solar wind.

    “We can use observations of these waves to work our way backward and probe the source of these electrons in the corona,” Malaspina says.

    Another example are dispersive waves, which quickly shift from one frequency to another as they move through the solar wind. These shifts create a sort of “chirp” that sounds like wind rushing over a microphone. They’re rare near the Earth, so researchers believed they were unimportant. But closer to the sun, scientists discovered, these waves are everywhere.

    “These waves haven’t been detected in the solar wind before, at least not in any large numbers,” Malaspina explains. “Nobody knows what causes these chirping waves or what they do to heat and accelerate the solar wind. That’s what we’re going to be determining. I think it’s incredibly exciting.”

    Raouafi commented that seeing all of this wave activity very close to the sun is why this mission is so critical. “We are seeing new, early behaviors of solar plasma we couldn’t observe here at Earth, and we’re seeing that the energy carried by the waves is being dissipated somewhere along the way, to heat and accelerate the plasma.”

    But it wasn’t just plasma waves that Parker Solar Probe heard. While barreling through a cloud of microscopic dust, the spacecraft’s instruments also captured a sound resembling old TV static. That static-like sound is actually hundreds of microscopic impacts happening every day: dust from asteroids torn apart by the sun’s gravity and heat and particles stripped away from comets strike the spacecraft at speeds close to a quarter of a million miles per hour. As Parker Solar Probe cruises through this dust cloud, the spacecraft doesn’t just crash into these particles—it obliterates them. Each grain’s atoms burst apart into electrons, protons, and other ions in a mini puff of plasma that the FIELDS instrument can “hear.”

    Each collision, however, also chips away a tiny bit of the spacecraft.

    “It was well understood that this would happen,” Malaspina says. “What was not understood was how much dust was going to be there.”

    APL engineers used models and remote observations to estimate how bad the dust situation might be well before the spacecraft launched. But in this uncharted territory, the number was bound to have some margin of error.

    James Kinnison, the Parker Solar Probe mission system engineer at APL, says this discrepancy in dust density is just one more reason why the probe’s proximity to the sun is so useful.

    “We protected almost everything from the dust,” Kinnison says. And although the dust is denser than expected, nothing right now points to dust impacts being a concern for the mission, he adds.

    Parker Solar Probe is scheduled to make another 21 orbits around the sun, using five flybys of Venus to propel itself increasingly closer to the star. Researchers will have the opportunity to better understand how these plasma waves change their behavior and to build a more complete evolutionary picture of the solar wind.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:52 am on December 9, 2019 Permalink | Reply
    Tags: "New ultra-miniaturized microendoscope produces higher-quality images at a fraction of the size", , JHU HUB,   

    From JHU HUB: “New ultra-miniaturized microendoscope produces higher-quality images at a fraction of the size” 

    Johns Hopkins

    From JHU HUB

    12.6.19
    Chanapa Tantibanchachai

    1
    The lensless scope is the width of a few strands of hair and able to capture images of live neuron activity.
    2
    The image above shows imaging results from the study. Images A through C show beads on a slide viewed through a bulk microscope. D through F show the beads as viewed through a conventional, lens-based microendoscope. G through I show the beads as seen by the new lensless microendoscope. These raw images are purposefully scattered, but provide important information about light that can be used in computational reconstruction to create clearer images, shown in J through L. Image credit: Courtesy of Mark Foster

    Johns Hopkins engineers have created a new lens-free, ultra-miniaturized endoscope—the width of only a few human hairs—that is capable of producing high-quality images.

    Their findings were published today in Science Advances.

    “Usually, you have to sacrifice either size or image quality. We’ve been able to achieve both with our microendoscope,” says Mark Foster, an associate professor of electrical and computer engineering at Johns Hopkins University and the study’s corresponding author.

    Microendoscopes are designed to examine neurons as they fire in the brains of animal test subjects, and accordingly must be minuscule in scale yet powerful enough to produce a clear image. Most standard microendoscopes are about half a millimeter to a few millimeters in diameter and require larger, more invasive lenses to achieve high-quality imaging. While lensless microendoscopes exist, the optical fiber that scans an area of the brain pixel by pixel frequently bends and loses imaging ability when moved.

    In their new study, Foster and colleagues created a lens-free, ultra-miniaturized microendoscope that, compared to a conventional lens-based microendoscope, increases the amount researchers can see and improves image quality. To test their device, they examined beads in different patterns on a slide.

    The researchers achieved this by using a coded aperture—a flat grid that randomly blocks light, creating a projection in a known pattern, akin to randomly poking a piece of aluminum foil and letting light through all of the small holes. This creates a messy image, but one that provides a bounty of information about where the light originates, and that information can be computationally reconstructed into a clearer image.

    “For thousands of years, the goal has been to make an image as clear as possible,” Foster says. “Now, thanks to computational reconstruction, we can purposefully capture something that looks awful and counterintuitively end up with a clearer final image.”

    Additionally, Foster’s team’s microendoscope doesn’t require movement to focus on objects at different depths; they use computational refocusing to determine where the light originated from in three dimensions. This allows their endoscope to be much smaller than traditional versions.

    The researchers achieved this by using a coded aperture—a flat grid that randomly blocks light, creating a projection in a known pattern, akin to randomly poking a piece of aluminum foil and letting light through all of the small holes. This creates a messy image, but one that provides a bounty of information about where the light originates, and that information can be computationally reconstructed into a clearer image.

    “For thousands of years, the goal has been to make an image as clear as possible,” Foster says. “Now, thanks to computational reconstruction, we can purposefully capture something that looks awful and counterintuitively end up with a clearer final image.”

    Additionally, Foster’s team’s microendoscope doesn’t require movement to focus on objects at different depths; they use computational refocusing to determine where the light originated from in three dimensions. This allows their endoscope to be much smaller than traditional versions.

    Looking forward, the research team will test their microendoscope with fluorescent labeling procedures, in which active brain neurons are tagged and illuminated, to determine the endoscope’s accuracy in imaging neural activity.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus
    Johns Hopkins niversity opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:33 am on November 4, 2019 Permalink | Reply
    Tags: "Copper could help unlock the clean-energy potential of hydrogen fuel cells", , , , JHU HUB, ,   

    From JHU HUB: “Copper could help unlock the clean-energy potential of hydrogen fuel cells” 

    Johns Hopkins

    From JHU HUB

    11.1.19
    Lisa Ercolano
    Matthew Chin

    Hydrogen fuel cells may someday power automobiles and trucks, offering a source of energy that’s free of carbon emissions and pollutants. But their potential has been limited thus far by the high cost and instability of the platinum-nickel catalyst needed to spark the chemical reaction that produces clean electricity.

    Using experiments and computer simulations, materials scientists from Johns Hopkins University and the University of California, Los Angeles have taken a major leap toward making that future possible. Their study, published in Matter, sheds new light on a method of stabilizing catalysts by adding copper and provides details on why the method works.

    1
    Copper in the Periodic Table

    The UCLA team was led by Yu Huang, a professor of materials science and engineering. The Hopkins team was led by Tim Mueller, assistant professor of materials science and engineering.

    “The problem is that platinum-nickel catalysts, which are very promising for use in fuel cells, degrade over time as the nickel dissolves,” explains Mueller, whose research focuses on developing and applying computational methods to allow researchers to understand the real-world behavior of materials and to develop new materials for advanced technologies. “Professor Huang’s group discovered that adding copper to the catalysts helped reduce the amount of nickel dissolution, and our group helped them figure out why, which is important for people who want to build on this research.”

    In experiments, the UCLA researchers found that introducing copper atoms into specially shaped nanoparticles of platinum-nickel resulted in durability that proved to be 40% better, in terms of catalyst efficiency, than those without copper. These new catalysts were very stable—that is, more transition metals were retained in the platinum-nickel-copper particles, despite the corrosive condition that could leach them out. They were also more efficient in catalyzing the chemical reaction, compared to alloys of platinum-nickel and commercially used platinum-carbon.

    To figure out why this was happening, Mueller’s team at Hopkins devised a model based on experimental data and performed computer simulations that revealed how individual atoms moved around the nanoparticles in the type of environment that the catalysts would encounter in a fuel cell.

    “We ran simulations of the particles, both with and without copper, to see how the addition of copper affected the degradation of the particles,” said Liang Cao, a Johns Hopkins postdoctoral scholar of materials science and engineering, and a co-lead author of the study. “We were able to track the particles’ evolution on an atomic scale, and our simulations indicated that the particles that contained copper were more stable because they initially had more platinum on the surface, which protected the nickel and copper atoms from dissolving.”

    According to Huang, the new study is a milestone in understanding the “atomistic structure-function relations in nanoscale materials and opens the door to new design strategies for high-performing nanoscale catalysts.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus
    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 7:58 am on May 30, 2019 Permalink | Reply
    Tags: "Students teach robots to suture swarm and explore", , JHU HUB   

    From JHU HUB: “Students teach robots to suture, swarm, and explore” 

    Johns Hopkins

    From JHU HUB

    5.28.19
    Catherine Graham

    1
    Students teach robots to suture, swarm, and explore. Image credit: Will Kirk / Homewood Photography

    Inspired by real-world problems, students in Johns Hopkins University’s graduate-level Robot Systems Programming course build a full-scale robotics system that can perform at least two tasks, one of which must be done autonomously.

    In the “Robotorium” in Johns Hopkins University’s Hackerman Hall, the robot revolution has officially begun. On a recent afternoon, robots zipped through hallways, navigated obstacle courses, and even solved jigsaw puzzles.

    These activities were part of engineering students’ demonstration of robotics projects they conducted for their graduate-level Robot Systems Programming course, offered by the Whiting School of Engineering. Each year, students must teach a robot a set of new skills for the course’s capstone project. Working in small teams, they can select from a variety of platforms—robotic arms, underwater and aerial drones, electric cars—but they must build a full-scale robotics system that can perform at least two tasks, one of which must be done autonomously.

    Inspired by real-world problems, this year’s cohort designed robots that can be used in a variety of applications—a list that just keeps growing with each class.

    “Our students have already studied advanced mathematics, modeling, algorithms, and programming for robotics. But for most, this is the first time they are challenged to conceive of and develop a full-scale robotic system from the ground up, developing their own original software and hardware and utilizing a vast ecosystem of open-source hardware and software,” said Louis Whitcomb, professor of mechanical engineering and computer science, who created and taught the class this year, along with teaching assistants Chia-Hung Lin, Gabe Bariban, and Han Shi.

    The following three projects (out of 10 total projects) give an exciting glimpse of what Hopkins engineers can create at the cutting edge of robotics:

    Task-Drive Swarm

    They say many hands make light work, and students Kevin Chang, Joseph Chung, Minsung Chris Hong, and Panth Patel prove that old adage is true not just for humans. The team developed a “swarm” of robots that work together to search their environment for new objects. The “leader” robot uses computer vision to locate new objects in a given area and sends location data to two sub-robots. The sub-robots are then dispatched to investigate the new objects.


    Video: Panth Patel

    Getting multiple robots to communicate and collaborate with one another proved difficult. “Our biggest challenge was overcoming Wi-Fi network latency, or not having enough bandwidth for all the information,” said Patel. “Our system ran smoothly when we had two robots, but when we added in the third, we saw a lag with the data telemetry.”

    Multi-robot systems could have many helpful uses in everyday life. “We imagine this type of robot system could be very useful for delivery services,” said Chung. “The leader robot could be an autonomous delivery truck that identifies addresses, and the sub-robots would make the deliveries.”

    TurtleBoat

    Robotics is a fun and exciting way to introduce young children to engineering, but robot parts can be expensive, making it difficult for some schools to offer hands-on robotic activities.

    2
    The TurtleBoat prototype gets its feet wet.

    The TurtleBoat, created by Alexander Cohen and Florian Pontani, is an affordable robot boat that will help young students learn to maneuver aquatic robots. The battery-powered TurtleBoat, whose hull is made from a common Tupperware container, has an on-board computer “brain” that controls two electrically-actuated propellers, navigation sensors, and a low-cost laser/camera system for surveying the seafloor.

    “We wanted a robust design that was inexpensive and easy to build, but also fun to use,” said Cohen. “When you introduce kids to robots, the first thing they ask is what can you do with it? We chose to make a robotic boat because there are so many things you can do with it. Marine robots can be utilized to map the ocean floor, track underwater objects, and study marine life.”

    Smart Tissue Autonomous Robot

    Robots in the operating room help surgeons perform safer, less invasive surgical procedures. The Smart Tissue Autonomous Robot, or STAR, created by researchers at the Children’s National Health System, University of Maryland, and Johns Hopkins University, is a surgical robot designed to suture soft tissue. While the device has been successful in animal surgeries, it still needs to be tested on human subjects—and that’s where Hopkins engineering graduate students Wei-Lun Huang and Yeping Wang are stepping in, with the guidance and mentorship of Simon Leonard, an assistant research professor in computer science.

    3
    A still from the STAR system simulation

    The STAR system will need a more complex motion planning algorithm to perform surgery in a living body. Huang and Wang have developed a simulation platform to test how these algorithms will perform in real life. Ultimately, the project could help researchers get a step closer to using STAR on real patients.

    “Our challenge was integrating simulation software with an existing system,” said Huang. “Our software needs to mimic the main functions of the STAR system as closely as possible. We spent a lot of time trying to understand and model every aspect of the STAR system.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:44 am on February 1, 2019 Permalink | Reply
    Tags: Accelerometers- most modern smartphones have them—to determine position and navigation, CheMin instrument on the rover which determines the mineralogy of the rock, Gale Crater on Mars, Gravity effect-Additional downward pull of the mass of Mount Sharp itself allowing the researchers to estimate the density of the rocks beneath the rover, Gravity was not falling off as fast as expected from its change in elevation, JHU HUB, Johns Hopkins University's Earth and Planetary Sciences department, Mount Sharp on Mars, , Upper layers of the mountain formed by wind-driven processes rather than in a lake   

    From JHU HUB: “Scientists discover new use for science instrument on the Mars Curiosity Rover” 

    Johns Hopkins

    From JHU HUB

    1.31.19
    Sukanya Charuchandra

    1
    Image credit: NASA / JPL-CALTECH / MSSS

    A group of researchers at Johns Hopkins University has found a new purpose for the Mars Curiosity rover, which has been ambling around the Gale Crater on Mars for nearly seven years. The team discovered a way to use the rover to gather the first surface gravity measurements on a planet other than Earth.

    2
    Gale Crater on Mars

    Details on the new measurements, based on reams of data the rover produces every day, are published today in Science.

    “Curiosity, essentially, has a new science instrument six and a half years into its mission,” said the lead author Kevin Lewis, an assistant professor in Johns Hopkins University’s Earth and Planetary Sciences department. “This allows us to get new information about the subsurface of Mars in ways the rover was never designed to do.”


    Video: JPL / NASA

    Scientists can learn a lot about a planet by measuring what lies beneath the surface at a particular location. By examining variations in gravity, they can calculate the density of the underlying rock, revealing all sorts of things about its history. In addition to the overall pull of Mars’ gravity, higher density rocks in the subsurface exert a slightly greater downward gravitational force than lower density rocks.

    Typically, to measure gravity on Mars and other planets, researchers rely on orbiting satellites like the Mars Reconnaissance Orbiter. But because the satellites are so far away from their targets, the spatial resolution is limited. For example, one can barely make out Gale Crater in the satellite gravity data of Mars—a feature that with a 150 kilometer span.

    This limitation frustrated Lewis. He decided to try calibrating the rover’s engineering accelerometers to measure surface gravity as the rover climbed Mount Sharp, a 5 kilometer high mountain within the crater and the main focus of Curiosity’s exploration.

    3
    Mars Mount Sharp

    The rover contains a set of accelerometers for the same reason most modern smartphones have them—to determine position and navigation. As it turned out, Curiosity had already collected hundreds of measurements over much of the mission that the team could use to measure subtle changes in gravitational acceleration.

    First, they took into account Mars’ rotation to accommodate expected changes in acceleration. Next, they calibrated this raw information, accounting for the effects of temperature, the tilt of the rover, and other factors.

    Lewis’ group was surprised to find that Curiosity was moving over low-density rock. The CheMin instrument on the rover, which determines the mineralogy of the rock, had previously told them the minerals themselves were not low density, meaning the sedimentary rock must be highly porous.

    3
    CheMin instrument

    As Curiosity ascended Mount Sharp getting farther from the center of Mars, the gravitational pull of the planet became very slightly weaker. Measurements using the rover’s accelerometers showed, however, that the gravity was not falling off as fast as expected from its change in elevation. The difference between the predicted and modeled measurements, the team determined, were the result of the additional downward pull of the mass of Mount Sharp itself, allowing the researchers to estimate the density of the rocks beneath the rover.

    When sediments are first deposited by geologic processes, they typically contain lots of empty space. As they are buried to deeper depths over time, sediments become more compacted, increasing their density.

    Scientists have previously suggested that the Gale Crater may have been completely filled in with sedimentary rock, and over time Mount Sharp was carved out of these layered sediments by erosion. However, the low subsurface density Lewis’ team found along Curiosity’s traverse at the base of Mount Sharp suggests that it was never buried very deeply and that the layers of Mount Sharp never completely filled the crater. One explanation is that the upper layers of the mountain formed by wind-driven processes rather than in a lake.

    Going forward, there might be even more coming from Curiosity and its newest instrument.

    “There’s all sorts of ways you can use the rover, which is essentially a big complex box of electronics,” Lewis said. “There may still be new science instruments waiting to be discovered on Curiosity.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 12:31 pm on December 18, 2018 Permalink | Reply
    Tags: , , , , JHU HUB, , Planetary HAZE (PHAZER) chamber   

    From JHU HUB: “Alien imposters: Planets with oxygen don’t necessarily have life, study finds” 

    Johns Hopkins

    From JHU HUB

    12.17.18
    Chanapa Tantibanchachai

    1
    Chao He shows off the lab’s PHAZER setup. Image credit: Chanapa Tantibanchachai

    In their search for life in solar systems near and far, researchers have often accepted the presence of oxygen in a planet’s atmosphere as the surest sign that life may be present there. A new Johns Hopkins study, however, recommends a reconsideration of that rule of thumb.

    Simulating in the lab the atmospheres of planets beyond the solar system, researchers successfully created both organic compounds and oxygen, absent of life.

    The findings, published Dec. 11 by the journal ACS Earth and Space Chemistry, serve as a cautionary tale for researchers who suggest the presence of oxygen and organics on distant worlds is evidence of life there.

    2
    A CO2-rich planetary atmosphere exposed to a plasma discharge in Sarah Hörst’s lab. Image credit: Chao He

    “Our experiments produced oxygen and organic molecules that could serve as the building blocks of life in the lab, proving that the presence of both doesn’t definitively indicate life,” says Chao He, assistant research scientist in the Johns Hopkins University Department of Earth and Planetary Sciences and the study’s first author. “Researchers need to more carefully consider how these molecules are produced.”

    Oxygen makes up 20 percent of Earth’s atmosphere and is considered one of the most robust biosignature gases in Earth’s atmosphere. In the search for life beyond Earth’s solar system, however, little is known about how different energy sources initiate chemical reactions and how those reactions can create biosignatures like oxygen. While other researchers have run photochemical models on computers to predict what exoplanet atmospheres might be able to create, no such simulations to his knowledge have before now been conducted in the lab.

    The research team performed the simulation experiments in a specially designed Planetary HAZE (PHAZER) chamber in the lab of Sarah Hörst, assistant professor of Earth and planetary sciences and the paper’s co-author. The researchers tested nine different gas mixtures, consistent with predictions for super-Earth and mini-Neptune type exoplanet atmospheres; such exoplanets are the most abundant type of planet in our Milky Way galaxy. Each mixture had a specific composition of gases such as carbon dioxide, water, ammonia, and methane, and each was heated at temperatures ranging from about 80 to 700 degrees Fahrenheit.

    He and the team allowed each gas mixture to flow into the PHAZER setup and then exposed the mixture to one of two types of energy, meant to mimic energy that triggers chemical reactions in planetary atmospheres: plasma from an alternating current glow discharge or light from an ultraviolet lamp. Plasma, an energy source stronger than UV light, can simulate electrical activities like lightning and/or energetic particles, and UV light is the main driver of chemical reactions in planetary atmospheres such as those on Earth, Saturn, and Pluto.

    After running the experiments continuously for three days, corresponding to the amount of time gas would be exposed to energy sources in space, the researchers measured and identified resulting gasses with a mass spectrometer, an instrument that sorts chemical substances by their mass to charge ratio.

    The research team found multiple scenarios that produced both oxygen and organic molecules that could build sugars and amino acids—raw materials for which life could begin—such as formaldehyde and hydrogen cyanide.

    “People used to suggest that oxygen and organics being present together indicates life, but we produced them abiotically in multiple simulations,” He says. “This suggests that even the co-presence of commonly accepted biosignatures could be a false positive for life.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:44 am on November 1, 2018 Permalink | Reply
    Tags: , , , , , JHU HUB, , ,   

    From JHU HUB: “The fastest, hottest mission under the sun” Parker Solar Probe 

    Johns Hopkins

    From JHU HUB

    1
    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

    The Parker Solar Probe shatters records as it prepares for its first solar encounter.

    10.31.18
    Geoff Brown

    The Parker Solar Probe, designed, built, and operated by the Johns Hopkins Applied Physics Laboratory, now holds two operational records for a spacecraft and will continue to set new records during its seven-year mission to the sun.

    The Parker Solar Probe is now the closest spacecraft to the sun—it passed the current record of 26.55 million miles from the sun’s surface at 1:04 p.m. on Monday, as calculated by the Parker Solar Probe team. As the mission progresses, the spacecraft will make a final close approach of 3.83 million miles from the sun’s surface, expected in 2024.

    Also on Monday, Parker Solar Probe surpassed a speed of 153,454 miles per hour at 10:54 p.m., making it the fastest human-made object relative to the sun. The spacecraft will also accelerate over the course of the mission, achieving a top speed of about 430,000 miles per hour in 2024.

    The previous records for closest solar approach and speed were set by the German-American Helios 2 spacecraft in April 1976.

    “It’s been just 78 days since Parker Solar Probe launched, and we’ve now come closer to our star than any other spacecraft in history,” said project manager Andy Driesman of APL’s Space Exploration Sector. “It’s a proud moment for the team, though we remain focused on our first solar encounter, which begins [today].”

    The Parker Solar Probe team periodically measures the spacecraft’s precise speed and position using NASA’s Deep Space Network, or DSN. The DSN sends a signal to the spacecraft, which then retransmits it back, allowing the team to determine the spacecraft’s speed and position based on the timing and characteristics of the signal. The Parker Solar Probe’s speed and position were calculated using DSN measurements made up to Oct. 24, and the team used that information along with known orbital forces to calculate the spacecraft’s speed and position from that point on.

    NASA Deep Space Network

    NASA Deep Space Network


    NASA Deep Space Network dish, Goldstone, CA, USA


    NASA Canberra, AU, Deep Space Network

    The Parker Solar Probe will begin its first solar encounter today, continuing to fly closer and closer to the sun’s surface until it reaches its first perihelion—the name for the point where it is closest to the sun—at approximately 10:28 p.m. on Nov. 5, at a distance of about 15 million miles from the sun.

    The spacecraft will face brutal heat and radiation while providing unprecedented, close-up observations of a star and helping us understand phenomena that have puzzled scientists for decades. These observations will add key knowledge to our understanding of the sun, where changing conditions can propagate out into the solar system, affecting Earth and other planets.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:03 am on August 7, 2018 Permalink | Reply
    Tags: , , , , JHU HUB, , ,   

    From JHU HUB: “Can the Parker Solar Probe take the heat?” 

    Johns Hopkins

    From JHU HUB

    8.6.18
    By Tracy Vogel

    1
    NASA JHUAPL Parker Solar Probe approaches the sun.

    Researchers at the Applied Physics Lab develop a shield strong enough to protect the spacecraft’s sensitive instruments during its mission to “touch” the sun.

    The star of the show is a dark gray block, about the size of a textbook, and several inches thick. As an audience of reporters watches, an engineer runs a flaming blowtorch over the block until its face heats to a red glow.

    “You want to take a touch of the back surface?” she invites a NASA T-shirt-clad volunteer.

    The volunteer reaches tentatively out to the back, first with one finger, and then with her whole hand.

    “How does it feel?”

    “Lukewarm,” the volunteer responds. “Not even—normal.”


    Video: NASA Goddard

    The demonstration, dubbed “Blowtorch vs. Heat Shield” on YouTube, represents the culmination of years of research, trial and error, and painstaking analysis by engineers at the Johns Hopkins University Applied Physics Laboratory to solve what they call the “thermal problem” of the Parker Solar Probe, a spacecraft that will travel within 4 million miles of the surface of the sun.

    The “thermal problem” is a gentle way of referring to the complications of performing this record-breaking dive directly into our star’s outer atmosphere, or corona. While the Parker Solar Probe orbits the star and records data with its onboard instruments, a thermal protection system, or TPS, will shield the spacecraft from the heat. Combined with a water-powered cooling system, the TPS will keep the majority of the spacecraft’s instruments at about 85 degrees Fahrenheit—a nice summer day—while the TPS itself endures a temperature of 2500 degrees Fahrenheit.

    Without the TPS, there’s no probe.

    “This was the technology that enabled us to do this mission—to enable it to fly,” says Elisabeth Abel, TPS thermal lead. “It’s going to be incredibly exciting to see something you put a lot of energy and hard work into, to see it actually fly. It’s going to be a big day.”

    The “thermal problem” is a gentle way of referring to the complications of performing this record-breaking dive directly into our star’s outer atmosphere, or corona. While the Parker Solar Probe orbits the star and records data with its onboard instruments, a thermal protection system, or TPS, will shield the spacecraft from the heat. Combined with a water-powered cooling system, the TPS will keep the majority of the spacecraft’s instruments at about 85 degrees Fahrenheit—a nice summer day—while the TPS itself endures a temperature of 2500 degrees Fahrenheit.

    The Parker Solar Probe is expected to launch from Kennedy Space Center in Cape Canaveral, Florida, this month—its launch window opens Saturday and runs through Aug. 23. During its seven-year mission, it’ll explore some of the sun’s greatest mysteries: Why is the solar wind a breeze closer to the sun but supersonic torrent farther away? Why is the corona itself millions of degrees hotter than the surface of the sun? What are the mechanisms behind the astoundingly fast-moving solar energetic particles that can interfere with spacecraft, disrupt communications on Earth, and endanger astronauts?

    The launch will conclude 60 years of planning and effort, and more than a decade spent creating the heat shield that deflects the worst of the sun’s energy.

    The front and back faces of the heat shield are made of sheets of carbon-carbon, a lightweight material with superior mechanical properties especially suited for high temperatures. At less than a tenth of an inch thick, the two carbon-carbon sheets are thin enough to bend, even if they were laid on top of each other. Between them is about 4.5 inches of carbon foam, typically used in the medical industry for bone replacement. This sandwich design stiffens everything up—like corrugated cardboard—while allowing the 8-foot heat shield to weigh in at only about 160 pounds.

    The foam also performs the heat shield’s most essential structural functions. Carbon itself conducts heat, but carbon foam is 97 percent air. In addition to cutting the weight of the spacecraft to help it get into orbit, the foam structure means there’s just not that much material for heat to travel through. The heat shield will be 2500 degrees Fahrenheit on the side facing the sun, but only 600 degrees Fahrenheit at the back.

    The foam wasn’t easy to test. It’s extremely fragile, and there was another problem.

    “When you get it hot, it can combust,” Abel says.

    Combustion isn’t an issue in a vacuum (like in space), but leftover air in test chambers would cause the foam to char. So the engineers built their own vacuum chamber at Oak Ridge National Laboratory, where a high-temperature plasma-arc lamp facility could heat the material to the incredible temperatures the heat shield would endure.

    3
    Image credit: Greg Stanley / Office of Communications

    But all of the carbon foam’s impressive heat-dispersing properties weren’t enough to keep the spacecraft at its required temperature. Because there’s no air in space to provide cooling, the only way for material to expel heat is to scatter light and eject heat in the form of photons. For that, another layer of protection was necessary: a white coating that would reflect heat and light.

    For that, APL turned to the Advanced Technology Laboratory in Johns Hopkins University’s Whiting School of Engineering, where a fortunate coincidence had led to the assembly of a heat shield–coating dream team: experts in high-temperature ceramics, chemistry, and plasma spray coatings.

    After extensive engineering and testing, the team settled on a coating based on bright white aluminum oxide. But that coating could react with the carbon of the heat shield in high temperatures and turn gray, so the engineers added a layer of tungsten, thinner than a strand of hair, between the heat shield and the coating to stop the two from interacting. They added nanoscale dopants to make the coating whiter and to inhibit the expansion of aluminum oxide grains when exposed to heat.

    Then the engineers had to determine how best to create and apply the coating.

    “The whole thing was struggling to find a ceramic coating that both reflects light and emits the heat,” says Dennis Nagle, principal research engineer at the Center for Systems Science and Engineering.

    Typically when working with enamel, Nagle says, a hard, nonporous coating is preferred—one that’ll crack when hit with a hammer. But under the temperatures faced by the Parker Solar Probe, a smooth coating would shatter like a window hit with a rock. Instead the goal was a uniformly porous coating that would withstand extreme environments. When cracks start in a porous coating, they’ll stop when they hit a pore. The coating was made of several rough, grainy layers—enough that one set of ceramic grains would reflect light that another layer misses.

    “I always tell people it works because it’s a lousy coating,” jokes Nagle. “If you want to make a good coating, it’ll fail.”

    After the Parker Solar Probe launches, it will spin repeatedly around Venus in a gradually narrowing orbit that will take it closer and closer to the sun. Scientists are eagerly awaiting the flood of new data from the probe’s instruments, but those who helped make the heat shield a reality say the thrill will be in seeing that final dip into the sun’s atmosphere, seven times closer than any previous spacecraft, the car-sized probe and its precious cargo defended from the sun’s might by their work.

    But seven years is a long time to wait for a final test of success, so the launch will have to do for now.

    “This was highly challenging,” says Dajie Zhang, a senior staff scientist in APL’s Research and Exploratory Development Department who worked on the TPS coating. “It makes me feel much better coming into work every day. The solar probe’s success showed me I can do it, and our team can do it.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: