Tagged: JHU HUB Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:58 am on May 30, 2019 Permalink | Reply
    Tags: "Students teach robots to suture swarm and explore", , JHU HUB   

    From JHU HUB: “Students teach robots to suture, swarm, and explore” 

    Johns Hopkins

    From JHU HUB

    5.28.19
    Catherine Graham

    1
    Students teach robots to suture, swarm, and explore. Image credit: Will Kirk / Homewood Photography

    Inspired by real-world problems, students in Johns Hopkins University’s graduate-level Robot Systems Programming course build a full-scale robotics system that can perform at least two tasks, one of which must be done autonomously.

    In the “Robotorium” in Johns Hopkins University’s Hackerman Hall, the robot revolution has officially begun. On a recent afternoon, robots zipped through hallways, navigated obstacle courses, and even solved jigsaw puzzles.

    These activities were part of engineering students’ demonstration of robotics projects they conducted for their graduate-level Robot Systems Programming course, offered by the Whiting School of Engineering. Each year, students must teach a robot a set of new skills for the course’s capstone project. Working in small teams, they can select from a variety of platforms—robotic arms, underwater and aerial drones, electric cars—but they must build a full-scale robotics system that can perform at least two tasks, one of which must be done autonomously.

    Inspired by real-world problems, this year’s cohort designed robots that can be used in a variety of applications—a list that just keeps growing with each class.

    “Our students have already studied advanced mathematics, modeling, algorithms, and programming for robotics. But for most, this is the first time they are challenged to conceive of and develop a full-scale robotic system from the ground up, developing their own original software and hardware and utilizing a vast ecosystem of open-source hardware and software,” said Louis Whitcomb, professor of mechanical engineering and computer science, who created and taught the class this year, along with teaching assistants Chia-Hung Lin, Gabe Bariban, and Han Shi.

    The following three projects (out of 10 total projects) give an exciting glimpse of what Hopkins engineers can create at the cutting edge of robotics:

    Task-Drive Swarm

    They say many hands make light work, and students Kevin Chang, Joseph Chung, Minsung Chris Hong, and Panth Patel prove that old adage is true not just for humans. The team developed a “swarm” of robots that work together to search their environment for new objects. The “leader” robot uses computer vision to locate new objects in a given area and sends location data to two sub-robots. The sub-robots are then dispatched to investigate the new objects.


    Video: Panth Patel

    Getting multiple robots to communicate and collaborate with one another proved difficult. “Our biggest challenge was overcoming Wi-Fi network latency, or not having enough bandwidth for all the information,” said Patel. “Our system ran smoothly when we had two robots, but when we added in the third, we saw a lag with the data telemetry.”

    Multi-robot systems could have many helpful uses in everyday life. “We imagine this type of robot system could be very useful for delivery services,” said Chung. “The leader robot could be an autonomous delivery truck that identifies addresses, and the sub-robots would make the deliveries.”

    TurtleBoat

    Robotics is a fun and exciting way to introduce young children to engineering, but robot parts can be expensive, making it difficult for some schools to offer hands-on robotic activities.

    2
    The TurtleBoat prototype gets its feet wet.

    The TurtleBoat, created by Alexander Cohen and Florian Pontani, is an affordable robot boat that will help young students learn to maneuver aquatic robots. The battery-powered TurtleBoat, whose hull is made from a common Tupperware container, has an on-board computer “brain” that controls two electrically-actuated propellers, navigation sensors, and a low-cost laser/camera system for surveying the seafloor.

    “We wanted a robust design that was inexpensive and easy to build, but also fun to use,” said Cohen. “When you introduce kids to robots, the first thing they ask is what can you do with it? We chose to make a robotic boat because there are so many things you can do with it. Marine robots can be utilized to map the ocean floor, track underwater objects, and study marine life.”

    Smart Tissue Autonomous Robot

    Robots in the operating room help surgeons perform safer, less invasive surgical procedures. The Smart Tissue Autonomous Robot, or STAR, created by researchers at the Children’s National Health System, University of Maryland, and Johns Hopkins University, is a surgical robot designed to suture soft tissue. While the device has been successful in animal surgeries, it still needs to be tested on human subjects—and that’s where Hopkins engineering graduate students Wei-Lun Huang and Yeping Wang are stepping in, with the guidance and mentorship of Simon Leonard, an assistant research professor in computer science.

    3
    A still from the STAR system simulation

    The STAR system will need a more complex motion planning algorithm to perform surgery in a living body. Huang and Wang have developed a simulation platform to test how these algorithms will perform in real life. Ultimately, the project could help researchers get a step closer to using STAR on real patients.

    “Our challenge was integrating simulation software with an existing system,” said Huang. “Our software needs to mimic the main functions of the STAR system as closely as possible. We spent a lot of time trying to understand and model every aspect of the STAR system.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:44 am on February 1, 2019 Permalink | Reply
    Tags: Accelerometers- most modern smartphones have them—to determine position and navigation, CheMin instrument on the rover which determines the mineralogy of the rock, Gale Crater on Mars, Gravity effect-Additional downward pull of the mass of Mount Sharp itself allowing the researchers to estimate the density of the rocks beneath the rover, Gravity was not falling off as fast as expected from its change in elevation, JHU HUB, Johns Hopkins University's Earth and Planetary Sciences department, Mount Sharp on Mars, , Upper layers of the mountain formed by wind-driven processes rather than in a lake   

    From JHU HUB: “Scientists discover new use for science instrument on the Mars Curiosity Rover” 

    Johns Hopkins

    From JHU HUB

    1.31.19
    Sukanya Charuchandra

    1
    Image credit: NASA / JPL-CALTECH / MSSS

    A group of researchers at Johns Hopkins University has found a new purpose for the Mars Curiosity rover, which has been ambling around the Gale Crater on Mars for nearly seven years. The team discovered a way to use the rover to gather the first surface gravity measurements on a planet other than Earth.

    2
    Gale Crater on Mars

    Details on the new measurements, based on reams of data the rover produces every day, are published today in Science.

    “Curiosity, essentially, has a new science instrument six and a half years into its mission,” said the lead author Kevin Lewis, an assistant professor in Johns Hopkins University’s Earth and Planetary Sciences department. “This allows us to get new information about the subsurface of Mars in ways the rover was never designed to do.”


    Video: JPL / NASA

    Scientists can learn a lot about a planet by measuring what lies beneath the surface at a particular location. By examining variations in gravity, they can calculate the density of the underlying rock, revealing all sorts of things about its history. In addition to the overall pull of Mars’ gravity, higher density rocks in the subsurface exert a slightly greater downward gravitational force than lower density rocks.

    Typically, to measure gravity on Mars and other planets, researchers rely on orbiting satellites like the Mars Reconnaissance Orbiter. But because the satellites are so far away from their targets, the spatial resolution is limited. For example, one can barely make out Gale Crater in the satellite gravity data of Mars—a feature that with a 150 kilometer span.

    This limitation frustrated Lewis. He decided to try calibrating the rover’s engineering accelerometers to measure surface gravity as the rover climbed Mount Sharp, a 5 kilometer high mountain within the crater and the main focus of Curiosity’s exploration.

    3
    Mars Mount Sharp

    The rover contains a set of accelerometers for the same reason most modern smartphones have them—to determine position and navigation. As it turned out, Curiosity had already collected hundreds of measurements over much of the mission that the team could use to measure subtle changes in gravitational acceleration.

    First, they took into account Mars’ rotation to accommodate expected changes in acceleration. Next, they calibrated this raw information, accounting for the effects of temperature, the tilt of the rover, and other factors.

    Lewis’ group was surprised to find that Curiosity was moving over low-density rock. The CheMin instrument on the rover, which determines the mineralogy of the rock, had previously told them the minerals themselves were not low density, meaning the sedimentary rock must be highly porous.

    3
    CheMin instrument

    As Curiosity ascended Mount Sharp getting farther from the center of Mars, the gravitational pull of the planet became very slightly weaker. Measurements using the rover’s accelerometers showed, however, that the gravity was not falling off as fast as expected from its change in elevation. The difference between the predicted and modeled measurements, the team determined, were the result of the additional downward pull of the mass of Mount Sharp itself, allowing the researchers to estimate the density of the rocks beneath the rover.

    When sediments are first deposited by geologic processes, they typically contain lots of empty space. As they are buried to deeper depths over time, sediments become more compacted, increasing their density.

    Scientists have previously suggested that the Gale Crater may have been completely filled in with sedimentary rock, and over time Mount Sharp was carved out of these layered sediments by erosion. However, the low subsurface density Lewis’ team found along Curiosity’s traverse at the base of Mount Sharp suggests that it was never buried very deeply and that the layers of Mount Sharp never completely filled the crater. One explanation is that the upper layers of the mountain formed by wind-driven processes rather than in a lake.

    Going forward, there might be even more coming from Curiosity and its newest instrument.

    “There’s all sorts of ways you can use the rover, which is essentially a big complex box of electronics,” Lewis said. “There may still be new science instruments waiting to be discovered on Curiosity.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 12:31 pm on December 18, 2018 Permalink | Reply
    Tags: , , , , JHU HUB, , Planetary HAZE (PHAZER) chamber   

    From JHU HUB: “Alien imposters: Planets with oxygen don’t necessarily have life, study finds” 

    Johns Hopkins

    From JHU HUB

    12.17.18
    Chanapa Tantibanchachai

    1
    Chao He shows off the lab’s PHAZER setup. Image credit: Chanapa Tantibanchachai

    In their search for life in solar systems near and far, researchers have often accepted the presence of oxygen in a planet’s atmosphere as the surest sign that life may be present there. A new Johns Hopkins study, however, recommends a reconsideration of that rule of thumb.

    Simulating in the lab the atmospheres of planets beyond the solar system, researchers successfully created both organic compounds and oxygen, absent of life.

    The findings, published Dec. 11 by the journal ACS Earth and Space Chemistry, serve as a cautionary tale for researchers who suggest the presence of oxygen and organics on distant worlds is evidence of life there.

    2
    A CO2-rich planetary atmosphere exposed to a plasma discharge in Sarah Hörst’s lab. Image credit: Chao He

    “Our experiments produced oxygen and organic molecules that could serve as the building blocks of life in the lab, proving that the presence of both doesn’t definitively indicate life,” says Chao He, assistant research scientist in the Johns Hopkins University Department of Earth and Planetary Sciences and the study’s first author. “Researchers need to more carefully consider how these molecules are produced.”

    Oxygen makes up 20 percent of Earth’s atmosphere and is considered one of the most robust biosignature gases in Earth’s atmosphere. In the search for life beyond Earth’s solar system, however, little is known about how different energy sources initiate chemical reactions and how those reactions can create biosignatures like oxygen. While other researchers have run photochemical models on computers to predict what exoplanet atmospheres might be able to create, no such simulations to his knowledge have before now been conducted in the lab.

    The research team performed the simulation experiments in a specially designed Planetary HAZE (PHAZER) chamber in the lab of Sarah Hörst, assistant professor of Earth and planetary sciences and the paper’s co-author. The researchers tested nine different gas mixtures, consistent with predictions for super-Earth and mini-Neptune type exoplanet atmospheres; such exoplanets are the most abundant type of planet in our Milky Way galaxy. Each mixture had a specific composition of gases such as carbon dioxide, water, ammonia, and methane, and each was heated at temperatures ranging from about 80 to 700 degrees Fahrenheit.

    He and the team allowed each gas mixture to flow into the PHAZER setup and then exposed the mixture to one of two types of energy, meant to mimic energy that triggers chemical reactions in planetary atmospheres: plasma from an alternating current glow discharge or light from an ultraviolet lamp. Plasma, an energy source stronger than UV light, can simulate electrical activities like lightning and/or energetic particles, and UV light is the main driver of chemical reactions in planetary atmospheres such as those on Earth, Saturn, and Pluto.

    After running the experiments continuously for three days, corresponding to the amount of time gas would be exposed to energy sources in space, the researchers measured and identified resulting gasses with a mass spectrometer, an instrument that sorts chemical substances by their mass to charge ratio.

    The research team found multiple scenarios that produced both oxygen and organic molecules that could build sugars and amino acids—raw materials for which life could begin—such as formaldehyde and hydrogen cyanide.

    “People used to suggest that oxygen and organics being present together indicates life, but we produced them abiotically in multiple simulations,” He says. “This suggests that even the co-presence of commonly accepted biosignatures could be a false positive for life.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub
    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:44 am on November 1, 2018 Permalink | Reply
    Tags: , , , , , JHU HUB, , ,   

    From JHU HUB: “The fastest, hottest mission under the sun” Parker Solar Probe 

    Johns Hopkins

    From JHU HUB

    1
    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

    The Parker Solar Probe shatters records as it prepares for its first solar encounter.

    10.31.18
    Geoff Brown

    The Parker Solar Probe, designed, built, and operated by the Johns Hopkins Applied Physics Laboratory, now holds two operational records for a spacecraft and will continue to set new records during its seven-year mission to the sun.

    The Parker Solar Probe is now the closest spacecraft to the sun—it passed the current record of 26.55 million miles from the sun’s surface at 1:04 p.m. on Monday, as calculated by the Parker Solar Probe team. As the mission progresses, the spacecraft will make a final close approach of 3.83 million miles from the sun’s surface, expected in 2024.

    Also on Monday, Parker Solar Probe surpassed a speed of 153,454 miles per hour at 10:54 p.m., making it the fastest human-made object relative to the sun. The spacecraft will also accelerate over the course of the mission, achieving a top speed of about 430,000 miles per hour in 2024.

    The previous records for closest solar approach and speed were set by the German-American Helios 2 spacecraft in April 1976.

    “It’s been just 78 days since Parker Solar Probe launched, and we’ve now come closer to our star than any other spacecraft in history,” said project manager Andy Driesman of APL’s Space Exploration Sector. “It’s a proud moment for the team, though we remain focused on our first solar encounter, which begins [today].”

    The Parker Solar Probe team periodically measures the spacecraft’s precise speed and position using NASA’s Deep Space Network, or DSN. The DSN sends a signal to the spacecraft, which then retransmits it back, allowing the team to determine the spacecraft’s speed and position based on the timing and characteristics of the signal. The Parker Solar Probe’s speed and position were calculated using DSN measurements made up to Oct. 24, and the team used that information along with known orbital forces to calculate the spacecraft’s speed and position from that point on.

    NASA Deep Space Network

    NASA Deep Space Network


    NASA Deep Space Network dish, Goldstone, CA, USA


    NASA Canberra, AU, Deep Space Network

    The Parker Solar Probe will begin its first solar encounter today, continuing to fly closer and closer to the sun’s surface until it reaches its first perihelion—the name for the point where it is closest to the sun—at approximately 10:28 p.m. on Nov. 5, at a distance of about 15 million miles from the sun.

    The spacecraft will face brutal heat and radiation while providing unprecedented, close-up observations of a star and helping us understand phenomena that have puzzled scientists for decades. These observations will add key knowledge to our understanding of the sun, where changing conditions can propagate out into the solar system, affecting Earth and other planets.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:03 am on August 7, 2018 Permalink | Reply
    Tags: , , , , JHU HUB, , ,   

    From JHU HUB: “Can the Parker Solar Probe take the heat?” 

    Johns Hopkins

    From JHU HUB

    8.6.18
    By Tracy Vogel

    1
    NASA JHUAPL Parker Solar Probe approaches the sun.

    Researchers at the Applied Physics Lab develop a shield strong enough to protect the spacecraft’s sensitive instruments during its mission to “touch” the sun.

    The star of the show is a dark gray block, about the size of a textbook, and several inches thick. As an audience of reporters watches, an engineer runs a flaming blowtorch over the block until its face heats to a red glow.

    “You want to take a touch of the back surface?” she invites a NASA T-shirt-clad volunteer.

    The volunteer reaches tentatively out to the back, first with one finger, and then with her whole hand.

    “How does it feel?”

    “Lukewarm,” the volunteer responds. “Not even—normal.”


    Video: NASA Goddard

    The demonstration, dubbed “Blowtorch vs. Heat Shield” on YouTube, represents the culmination of years of research, trial and error, and painstaking analysis by engineers at the Johns Hopkins University Applied Physics Laboratory to solve what they call the “thermal problem” of the Parker Solar Probe, a spacecraft that will travel within 4 million miles of the surface of the sun.

    The “thermal problem” is a gentle way of referring to the complications of performing this record-breaking dive directly into our star’s outer atmosphere, or corona. While the Parker Solar Probe orbits the star and records data with its onboard instruments, a thermal protection system, or TPS, will shield the spacecraft from the heat. Combined with a water-powered cooling system, the TPS will keep the majority of the spacecraft’s instruments at about 85 degrees Fahrenheit—a nice summer day—while the TPS itself endures a temperature of 2500 degrees Fahrenheit.

    Without the TPS, there’s no probe.

    “This was the technology that enabled us to do this mission—to enable it to fly,” says Elisabeth Abel, TPS thermal lead. “It’s going to be incredibly exciting to see something you put a lot of energy and hard work into, to see it actually fly. It’s going to be a big day.”

    The “thermal problem” is a gentle way of referring to the complications of performing this record-breaking dive directly into our star’s outer atmosphere, or corona. While the Parker Solar Probe orbits the star and records data with its onboard instruments, a thermal protection system, or TPS, will shield the spacecraft from the heat. Combined with a water-powered cooling system, the TPS will keep the majority of the spacecraft’s instruments at about 85 degrees Fahrenheit—a nice summer day—while the TPS itself endures a temperature of 2500 degrees Fahrenheit.

    The Parker Solar Probe is expected to launch from Kennedy Space Center in Cape Canaveral, Florida, this month—its launch window opens Saturday and runs through Aug. 23. During its seven-year mission, it’ll explore some of the sun’s greatest mysteries: Why is the solar wind a breeze closer to the sun but supersonic torrent farther away? Why is the corona itself millions of degrees hotter than the surface of the sun? What are the mechanisms behind the astoundingly fast-moving solar energetic particles that can interfere with spacecraft, disrupt communications on Earth, and endanger astronauts?

    The launch will conclude 60 years of planning and effort, and more than a decade spent creating the heat shield that deflects the worst of the sun’s energy.

    The front and back faces of the heat shield are made of sheets of carbon-carbon, a lightweight material with superior mechanical properties especially suited for high temperatures. At less than a tenth of an inch thick, the two carbon-carbon sheets are thin enough to bend, even if they were laid on top of each other. Between them is about 4.5 inches of carbon foam, typically used in the medical industry for bone replacement. This sandwich design stiffens everything up—like corrugated cardboard—while allowing the 8-foot heat shield to weigh in at only about 160 pounds.

    The foam also performs the heat shield’s most essential structural functions. Carbon itself conducts heat, but carbon foam is 97 percent air. In addition to cutting the weight of the spacecraft to help it get into orbit, the foam structure means there’s just not that much material for heat to travel through. The heat shield will be 2500 degrees Fahrenheit on the side facing the sun, but only 600 degrees Fahrenheit at the back.

    The foam wasn’t easy to test. It’s extremely fragile, and there was another problem.

    “When you get it hot, it can combust,” Abel says.

    Combustion isn’t an issue in a vacuum (like in space), but leftover air in test chambers would cause the foam to char. So the engineers built their own vacuum chamber at Oak Ridge National Laboratory, where a high-temperature plasma-arc lamp facility could heat the material to the incredible temperatures the heat shield would endure.

    3
    Image credit: Greg Stanley / Office of Communications

    But all of the carbon foam’s impressive heat-dispersing properties weren’t enough to keep the spacecraft at its required temperature. Because there’s no air in space to provide cooling, the only way for material to expel heat is to scatter light and eject heat in the form of photons. For that, another layer of protection was necessary: a white coating that would reflect heat and light.

    For that, APL turned to the Advanced Technology Laboratory in Johns Hopkins University’s Whiting School of Engineering, where a fortunate coincidence had led to the assembly of a heat shield–coating dream team: experts in high-temperature ceramics, chemistry, and plasma spray coatings.

    After extensive engineering and testing, the team settled on a coating based on bright white aluminum oxide. But that coating could react with the carbon of the heat shield in high temperatures and turn gray, so the engineers added a layer of tungsten, thinner than a strand of hair, between the heat shield and the coating to stop the two from interacting. They added nanoscale dopants to make the coating whiter and to inhibit the expansion of aluminum oxide grains when exposed to heat.

    Then the engineers had to determine how best to create and apply the coating.

    “The whole thing was struggling to find a ceramic coating that both reflects light and emits the heat,” says Dennis Nagle, principal research engineer at the Center for Systems Science and Engineering.

    Typically when working with enamel, Nagle says, a hard, nonporous coating is preferred—one that’ll crack when hit with a hammer. But under the temperatures faced by the Parker Solar Probe, a smooth coating would shatter like a window hit with a rock. Instead the goal was a uniformly porous coating that would withstand extreme environments. When cracks start in a porous coating, they’ll stop when they hit a pore. The coating was made of several rough, grainy layers—enough that one set of ceramic grains would reflect light that another layer misses.

    “I always tell people it works because it’s a lousy coating,” jokes Nagle. “If you want to make a good coating, it’ll fail.”

    After the Parker Solar Probe launches, it will spin repeatedly around Venus in a gradually narrowing orbit that will take it closer and closer to the sun. Scientists are eagerly awaiting the flood of new data from the probe’s instruments, but those who helped make the heat shield a reality say the thrill will be in seeing that final dip into the sun’s atmosphere, seven times closer than any previous spacecraft, the car-sized probe and its precious cargo defended from the sun’s might by their work.

    But seven years is a long time to wait for a final test of success, so the launch will have to do for now.

    “This was highly challenging,” says Dajie Zhang, a senior staff scientist in APL’s Research and Exploratory Development Department who worked on the TPS coating. “It makes me feel much better coming into work every day. The solar probe’s success showed me I can do it, and our team can do it.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 8:02 am on July 24, 2018 Permalink | Reply
    Tags: , , , JHU HUB, ,   

    From JHU HUB: “Evidence revealed for a new property of quantum matter” 

    Johns Hopkins

    From JHU HUB

    June 12, 2018 [Where has this been? Just popped into JHU email.]

    A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team led by a Johns Hopkins scientist reports.

    The study findings, published online in the journal Science, show that a particular quantum material first synthesized 20 years ago, called k-(BEDT-TTF)2Hg(SCN)2 Br, behaves like a metal but is derived from organic compounds. The material can demonstrate electrical dipole fluctuations—irregular oscillations of tiny charged poles on the material—even in extremely cold conditions, in the neighborhood of minus 450 degrees Fahrenheit.

    “What we found with this particular quantum material is that, even at super-cold temperatures, electrical dipoles are still present and fluctuate according to the laws of quantum mechanics,” said Natalia Drichko, associate research professor in physics at Johns Hopkins University and the study’s senior author.

    2
    Natalia Drichko in her lab. Image credit: Jon Schroeder

    “Usually we think of quantum mechanics as a theory of small things, like atoms, but here we observe that the whole crystal is behaving quantum-mechanically.”

    Classical physics describes most of the behavior of physical objects we see and experience in everyday life. In classical physics, objects freeze at extremely low temperatures, Drichko said. In quantum physics—science that primarily describes the behavior of matter and energy at the atomic level and smaller—there is motion even at those frigid temperatures, Drichko said.

    “That’s one of the major differences between classical and quantum physics that condensed matter physicists are exploring,” she said.

    An electrical dipole is a pair of equal but oppositely charged poles separated by some distance. Such dipoles can, for instance, allow a hair to “stick” to a comb through the exchange of static electricity: Tiny dipoles form on the edge of the comb and the edge of the hair.

    2
    The structure of the crystal that was studied in the research; an individual molecule is highlighted in red. Image credit: Institute for Quantum Matter/JHU

    Drichko’s research team observed the new extreme-low-temperature electrical state of the quantum matter in Drichko’s Raman spectroscopy lab, where the key work was done by graduate student Nora Hassan. Team members focused light on a small crystal of the material. Employing techniques from other disciplines, including chemistry and biology, they found proof of the dipole fluctuations.

    The study was possible because of the team’s home-built, custom-engineered spectrometer, which increased the sensitivity of the measurements 100 times.

    The unique quantum effect the team found could potentially be used in quantum computing, a type of computing in which information is captured and stored in ways that take advantage of the quantum states of matter.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:16 am on July 17, 2018 Permalink | Reply
    Tags: , , , , , JHU HUB, , Touching the Sun   

    From JHU HUB: “A look behind the scenes at the Parker Solar Probe” 

    Johns Hopkins

    From JHU HUB

    1

    7.16.18

    Videographer Lee Hobson and photographer Ed Whitman spend their days documenting mankind’s mission to “touch” the sun.

    By Hub staff report / Published a day ago

    Lee Hobson and Ed Whitman flew to Florida in style three months ago, touching down in the Sunshine State in a Boeing C-17 loaded with priceless cargo: the Parker Solar Probe.

    NASA Parker Solar Probe Plus

    Hobson, director of photography for the Johns Hopkins Applied Physics Laboratory, is the video documentary lead for the APL-led mission to “touch” the sun. He and Whitman, APL’s senior photographer, have spent the past four years painstakingly documenting the construction and testing of the probe, which is scheduled to launch in August. Flying through the sun’s corona, or atmosphere, and facing heat and radiation like no spacecraft before it, the Parker Solar Probe will provide new data on solar activity and make critical contributions to scientists’ ability to forecast major space-weather events that impact life on Earth.

    2
    Lee Hobson (left) and Ed Whitman inside the clean room at Cape Canaveral. Image credit: Johns Hopkins Applied Physics Laboratory

    The Hub caught up with Hobson and Whitman to talk about their work, the mission, and what it’s like to stand in the presence of the spacecraft that could change humanity’s understanding of Earth’s closest star.

    How did you get involved with APL and documenting its projects?

    Ed Whitman: As a kid, I was always fascinated with how things worked. There was nothing in my home that was safe from me and a screwdriver. I knew early on that I wanted to do photography, and I had my own company for many years, but when the opportunity at APL came up it just seemed like the right fit. I took the position and just loved it because, you know, I’m basically a frustrated engineer.

    Lee Hobson: I joined in 1988 as a staff photographer and then moved into the video sector in 1996. On any given day I could be working in air defense or force projections, or national security analysis and research, or of course space exploration. That’s what’s really cool about APL—there’s a lot of different things we work on.

    3
    “[W]e’re working next to the spacecraft that’s going to fly within 4 million miles of the sun, and I get to walk around the launchpad. That’s really cool,” says Hobson.
    Image credit: Ed Whitman / Applied Physics Laboratory

    What’s it like to document the Parker Solar Probe?

    LH: The average day is about 10 hours here, but it’s sometimes as long as 15 hours depending on what we’re doing. Ed and I are unique in that when the day’s operation is finished, we don’t go home, we come back to the office to edit footage. So it can be a really long day.

    EW: We do press releases for the public, and those are more like the milestone events when significant things happen. But day to day, I’m working with the mechanical team, shooting everything that’s being integrated into the spacecraft—every nut, every bolt, every process that takes place. And that’s helpful because if the mechanical team gets a faulty software reading or a piece of hardware that’s not functioning properly, they can go back through our photos and images and diagnose the problem.


    Video: Lee Hobson / Johns Hopkins Applied Physics Laboratory

    What’s been your favorite experience documenting the Solar Probe?

    LH: I’ve really enjoyed writing and editing the Solar 60 video series. I wanted to come up with a way of telling a story through the eyes of our different technicians and scientists and engineers. They get to be the reporters, and they have great camera presence, and I get to be the producer and script writer. So that’s a lot of fun, getting to tell those stories. And, of course, the access that I have to the spacecraft. I mean, we’re working next to the spacecraft that’s going to fly within 4 million miles of the sun, and I get to walk around the launchpad. So that’s really cool.

    EW: For me, it’s interesting to see the process of building something that’s so highly engineered and thought out but is still a one-off that’s never been built before. And I got to integrate my photography with the mechanical team for a test they needed to conduct: They had to lift the spacecraft way up in the sky and then drop down this magnetometer boom, and they had to do it really carefully so they could see how things were working. As it was coming down, I was walking around taking photos in 360 degrees, and I was shooting the photos to the lead engineer using my iPad. I mean, this $2 billion spacecraft is dangling from this lift in front of me and from my photos, the engineer can see the boom harness and determine the clearance and how it interacts with the spacecraft.

    4
    Engineers created a bank of lasers to test the solar arrays that will power the spacecraft. “When we turned off the lights, magical things happened,” says Whitman. “Reflections and a purple glow everywhere… Visually, it was really incredible.” Image credit: Ed Whitman / Applied Physics Laboratory

    What’s the most surprising thing about your work with the Solar Probe?

    EW: The spacecraft is so light! It’s only 1,500 pounds, and it’s being launched in literally the biggest launch vehicle ever built, the Delta IV Heavy. It’s a monster! It stands in front of you like a building. You feel so tiny and insignificant when you look at it, and the spacecraft—they call it a hood ornament—it’s this tiny thing in this giant housing, but those are the things that are going to fall away during launch. It’s just mind-boggling to me.

    6
    “[The spacecraft is] being launched in literally the biggest launch vehicle ever built, the Delta IV Heavy. It’s a monster! It stands in front of you like a building,” says Whitman.
    Image credit: Ed Whitman / Applied Physics Laboratory

    How do you think you’ll feel when the Parker Solar Probe finally launches?

    EW: I’ll feel probably sad and elated. Happy that I was part of something that’s just so awesome, but sad in the sense that I don’t want it to end because it’s just so exciting and so interesting.

    LH: I’m always really proud when we have a successful launch, and we’ve gotten that telemetry maybe 20 minutes after launch that means it survived and that the engineers built a really good spacecraft. But also I’ll feel really proud when we start to get the data sent back. I mean, the Parker Solar Probe is going to rewrite the textbooks with new information about the sun and the corona, and I’ve touched it—the spacecraft that’s going to fly around our sun and give scientists information that they never knew before. That’s really exciting.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:42 am on June 21, 2018 Permalink | Reply
    Tags: Biomedical engineering - Bringing a human touch to modern prosthetics, JHU HUB   

    From JHU HUB: “Biomedical engineering – Bringing a human touch to modern prosthetics” 

    Johns Hopkins

    From JHU HUB

    1

    ‘Electronic skin’ allows user to experience a sense of touch and pain; ‘After many years, I felt my hand, as if a hollow shell got filled with life again,’ amputee volunteer says.

    6.20.18
    Amy Lunday

    Amputees often experience the sensation of a “phantom limb”—a feeling that a missing body part is still there.

    That sensory illusion is closer to becoming a reality thanks to a team of engineers at Johns Hopkins University that has created an electronic skin. When layered on top of prosthetic hands, this e-dermis brings back a real sense of touch through the fingertips.

    “After many years, I felt my hand, as if a hollow shell got filled with life again,” says the amputee who served as the team’s principal volunteer. (The research protocol used in the study does not allow identification of the amputee volunteers.)

    Made of fabric and rubber laced with sensors to mimic nerve endings, e-dermis recreates a sense of touch as well as pain by sensing stimuli and relaying the impulses back to the peripheral nerves.

    “We’ve made a sensor that goes over the fingertips of a prosthetic hand and acts like your own skin would,” says Luke Osborn, a graduate student in biomedical engineering. “It’s inspired by what is happening in human biology, with receptors for both touch and pain.

    1
    Luke Osborn interacts with a prosthetic hand sporting the e-dermis. Image credit: Larry Canner / Homewood Photography

    “This is interesting and new,” Osborn adds, “because now we can have a prosthetic hand that is already on the market and fit it with an e-dermis that can tell the wearer whether he or she is picking up something that is round or whether it has sharp points.”

    The work, published online in the journal Science Robotics, shows it’s possible to restore a range of natural, touch-based feelings to amputees who use prosthetic limbs. The ability to detect pain could be useful, for instance, not only in prosthetic hands but also in lower limb prostheses, alerting the user to potential damage to the device.

    Human skin is made up of a complex network of receptors that relay a variety of sensations to the brain. This network provided a biological template for the research team, which includes members from the Johns Hopkins departments of Biomedical Engineering, Electrical and Computer Engineering, and Neurology, and from the Singapore Institute of Neurotechnology.


    Video: American Academy for the Advancement of Science

    Bringing a more human touch to modern prosthetic designs is critical, especially when it comes to incorporating the ability to feel pain, Osborn says.

    “Pain is, of course, unpleasant, but it’s also an essential, protective sense of touch that is lacking in the prostheses that are currently available to amputees,” he says. “Advances in prosthesis designs and control mechanisms can aid an amputee’s ability to regain lost function, but they often lack meaningful, tactile feedback or perception.”

    That’s where the e-dermis comes in, conveying information to the amputee by stimulating peripheral nerves in the arm, making the so-called phantom limb come to life. Inspired by human biology, the e-dermis enables its user to sense a continuous spectrum of tactile perceptions, from light touch to noxious or painful stimulus.

    The e-dermis does this by electrically stimulating the amputee’s nerves in a non-invasive way, through the skin, says the paper’s senior author, Nitish Thakor, a professor of biomedical engineering and director of the Biomedical Instrumentation and Neuroengineering Laboratory at Johns Hopkins.

    “For the first time, a prosthesis can provide a range of perceptions from fine touch to noxious to an amputee, making it more like a human hand,” says Thakor, co-founder of Infinite Biomedical Technologies, the Baltimore-based company that provided the prosthetic hardware used in the study.

    The team created a “neuromorphic model” mimicking the touch and pain receptors of the human nervous system, allowing the e-dermis to electronically encode sensations just as the receptors in the skin would. Tracking brain activity via electroencephalography, or EEG, the team determined that the test subject was able to perceive these sensations in his phantom hand.

    The researchers then connected the e-dermis output to the volunteer by using a noninvasive method known as transcutaneous electrical nerve stimulation, or TENS. In a pain-detection task the team determined that the test subject and the prosthesis were able to experience a natural, reflexive reaction to both pain while touching a pointed object and non-pain when touching a round object.

    The e-dermis is not sensitive to temperature—for this study, the team focused on detecting object curvature (for touch and shape perception) and sharpness (for pain perception). The e-dermis technology could be used to make robotic systems more human, and it could also be used to expand or extend to astronaut gloves and space suits, Osborn says.

    The researchers plan to further develop the technology and work to better understand how to provide meaningful sensory information to amputees in the hopes of making the system ready for widespread patient use.

    Johns Hopkins is a pioneer in the field of upper limb dexterous prosthesis. More than a decade ago, the university’s Applied Physics Laboratory led the development of the advanced Modular Prosthetic Limb, which an amputee patient controls with the muscles and nerves that once controlled his or her real arm or hand.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 9:36 am on May 3, 2018 Permalink | Reply
    Tags: , , JHU HUB,   

    From JHU HUB: “U.S. autism rate rises to highest level on record, according to CDC report” 

    Johns Hopkins
    JHU HUB

    5.1.18
    Michelle Landrum

    1
    Image credit: Pixabay

    The prevalence of autism spectrum disorder at 11 surveillance sites was one in 59 among 8-year-olds in 2014, according to a new U.S. Centers for Disease Control and Prevention report, a 15 percent increase from the most recent report two years ago and the highest prevalence since the CDC began tracking ASD in 2000.

    Consistent with previous reports, boys were four times more likely to be identified with ASD than girls. The rate is one in 38 among boys (or 2.7 percent) and one in 152 among girls (or 0.7 percent). Researchers at the Johns Hopkins Bloomberg School of Public Health contributed to the report.

    ASD is a developmental disorder characterized by social and communication impairments, combined with limited interests and repetitive behaviors. Early diagnosis and intervention are key to improving learning and skills. Rates have been rising since the 1960s, but researchers do not know how much of this rise is due to an increase in actual cases. There are other factors that may be contributing, such as increased awareness, screening, diagnostic services, treatment and intervention services, better documentation of ASD behaviors, and changes in diagnostic criteria.

    For this new report, the CDC collected data at 11 regional monitoring sites that are part of the Autism and Developmental Disabilities Monitoring Network in the following states: Arizona, Arkansas, Colorado, Georgia, Maryland, Minnesota, Missouri, New Jersey, North Carolina, Tennessee, and Wisconsin. (A report with individual state findings is available online [CDC]).The Maryland monitoring site is based at the Bloomberg School in Baltimore.

    This is the sixth report by the ADDM Network, which has used the same surveillance methods for more than a decade. Estimated prevalence rates of ASD in the U.S. reported by previous data were:

    One in 68 children in the 2016 report that looked at 2012 data
    One in 68 children in the 2014 report that looked at 2010 data
    One in 88 children in the 2012 report that looked at 2008 data
    One in 110 children in the 2009 report that looked at 2006 data
    One in 150 children in the 2007 report that looked at 2000 and 2002 data

    “The estimated overall prevalence rates reported by ADDM at the monitoring sites have more than doubled since the report was first published in 2007,” says Li-Ching Lee, a psychiatric epidemiologist with the Bloomberg School’s departments of Epidemiology and Mental Health and the principal investigator for Maryland-ADDM. “Although we continue to see disparities among racial and ethnic groups, the gap is closing.”

    Autism spectrum disorder prevalence was reported to be approximately 20 to 30 percent higher among white children as compared with black children in previous ADDM reports. In the current report, the difference has dropped to 7 percent. In addition, approximately 70 percent of children with ASD had borderline, average, or above average intellectual ability, a proportion higher than that found in ADDM data prior to 2012.

    Some trends in the latest CDC report remain similar, such as the greater likelihood of boys being diagnosed with ASD, the age of earliest comprehensive evaluation, and presence of a previous ASD diagnosis or classification. Specifically, non-white children with ASD are being identified and evaluated at a later age than white children. The majority of children identified with ASD by the ADDM Network (80 percent) had a previous ASD diagnosis or a special educational classification.

    In Maryland, the prevalence of ASD was higher than in the network as a whole. An estimated one in 50 children (2 percent) was identified as having ASD—one in 31 among boys and one in 139 among girls. The data were derived from health and special education records of children who were 8 years old and living in Baltimore County in 2014.

    Lee notes, similar to previous reports, the vast majority of children identified with ASD in Maryland had a developmental concern in their records by age 3 (92 percent), but only 56 percent of them received a comprehensive evaluation by that age.

    “This lag may delay the timing for children with ASD to get diagnosed and to start receiving needed services,” says Lee, an associate director of the school’s Wendy Klag Center for Autism and Developmental Disabilities.

    The causes of autism are not completely understood; studies show that both environment and genetics may play a role. The CDC recommends that parents track their child’s development and act quickly to get their child screened if they have a concern, and has made available online a free checklist and information resource for parents, physicians, and child care providers.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 7:26 am on April 5, 2018 Permalink | Reply
    Tags: , JHU HUB, ,   

    From JHU HUB: “With new technique, researchers create metallic alloy nanoparticles with unprecedented chemical capabilities” 

    Johns Hopkins
    JHU HUB

    4.4.18
    Rachel Wallach

    1
    New, stable nanoparticles are expected to have useful applications in the chemical and energy industries. Image credit: Getty Images

    Johns Hopkins researchers have teamed with colleagues from three other universities to combine up to eight different metals into single, uniformly mixed nanoparticles, creating new and stable nanoparticles with useful applications in the chemical and energy industries, the researchers said.

    Metallic alloy nanoparticles—particles ranging from about a billionth to 100 billionths of a meter in size—are often used as catalysts in the production of industrial products such as fertilizers and plastics. Until now, only a small set of alloy nanoparticles have been available because of complications that arise when combining extremely different metals.

    In the March 30 cover article of the journal Science, the researchers reported that their new technique made it possible to combine multiple metals, including those not usually considered capable of mixing.

    “This method enables new combinations of metals that do not exist in nature and do not otherwise go together,” said Chao Wang, an assistant professor in the Department of Chemical and Biomolecular Engineering at Johns Hopkins and one of the study’s co-authors.

    The new materials, known as high-entropy-alloy nanoparticles, have created unprecedented catalytic mechanisms and reaction pathways and are expected to improve energy efficiency in the manufacturing process and lower production costs.

    The new method uses shock waves to heat the metals to extremely high temperatures—2,000 degrees Kelvin (more than 3,140 Fahrenheit) and higher—at exceptionally rapid rates, both heating and cooling them in the span of milliseconds. The metals are melted together to form small droplets of liquid solutions at the high temperatures and are then rapidly cooled to form homogeneous nanoparticles. Traditional methods, which rely on relatively slow and low-temperature heating and cooling techniques, often result in clumps of metal instead of separate particles.

    Based on these new nanoparticles, Wang’s research group designed a five-metal nanoparticle that demonstrated superior catalytic performance for selective oxidation of ammonia to nitrogen oxide, a reaction used by the chemical industry to produce nitric acid, which is used in the large-scale production of fertilizers and other products.

    In addition to nitric acid production, the researchers are exploring use of the nanoparticles in reactions like the removal of nitrogen oxide from vehicle exhaust. The work in Wang’s lab was part of a collaboration with colleagues from the University of Maryland, College Park; the University of Illinois at Chicago; and MIT.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: