Tagged: “IRSOL and IAC scientists solve a complex paradox in solar physics” Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:21 am on September 28, 2021 Permalink | Reply
    Tags: "IRSOL and IAC scientists solve a complex paradox in solar physics", ,   

    From IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) : “IRSOL and IAC scientists solve a complex paradox in solar physics” 

    Instituto de Astrofísica de Andalucía

    From IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES)

    18/08/2021

    Ernest Alsina Ballester
    ernest.alsina@iac.es

    Javier Trujillo Bueno
    jtb@iac.es

    In 1998, the journal Nature published a seminal letter concluding that the mysterious polarization signal that had been recently discovered in the light emitted by the sodium atoms of the solar atmosphere implies that the solar chromosphere (a very important layer of the solar atmosphere) is practically unmagnetized, in sharp contradiction with common wisdom. This paradox motivated laboratory experiments and theoretical investigations, which instead of providing a solution, raised new issues and even led some scientists to question the quantum theory of radiation-matter interaction. In an article published and highlighted today by the prestigious Physical Review Letters, Ernest Alsina Ballester (IRSOL – Istituto Ricerche Solari, Locarno, and IAC), Luca Belluzzi (IRSOL) and Javier Trujillo Bueno (IAC) show the solution to such intriguing paradox, which has puzzled solar physicists over the last decades. This research opens up a new window for exploring the elusive magnetic fields of the solar chromosphere in the present new era of large-aperture solar telescopes.

    Twenty-five years ago, an enigmatic signal was discovered [Nature] while analyzing the polarization of sunlight with a new instrument, the Zurich Imaging Polarimeter (ZIMPOL).

    This mysterious linear polarization signal appears at the 5896 Å wavelength of the D1 line of neutral sodium where, according to the line’s quantum numbers, no linear polarization due to scattering processes should be present. This polarization signal was therefore totally unexpected, and its interpretation immediately opened an intense scientific debate. The mystery further increased two years later, when the journal Nature published a letter with an explanation, which required that the sublevels of the lower level of the D1 line are not equally populated. In that theoretical work, the enigmatic polarization signal of the D1 line was reproduced remarkably well. However, the proposed explanation implied that the region of the solar atmosphere known as the chromosphere is completely unmagnetized, in apparent contradiction with established results, which instead indicate that the quiet regions (outside sunspots) of the solar chromosphere are permeated by magnetic fields in the gauss range. This opened a serious paradox, which has challenged solar physicists for many years, and even led some scientists to question the quantum theory of atom-photon interactions.

    A first breakthrough towards the resolution of the paradox was achieved in 2013 at the IAC, when Luca Belluzzi and Javier Trujillo Bueno theoretically discovered a new mechanism through which linear polarization can be produced in the sodium D1 line without the need of population imbalances in the lower level of the D1 line. However, that important step given by these researchers was for the idealized case of a solar atmosphere model without magnetic fields.

    2
    Figure 1: Variation with wavelength of the linear polarization (Q/I) of sunlight across the solar sodium D1 and D2 spectral lines (left panel) and across D1 (right panel). The black curves indicate the observed signals (the measurements were carried out at IRSOL with the ZIMPOL instrument). The red and blue curves show the results of theoretical calculations carried out neglecting (red) and including (blue) magnetic fields. An excellent agreement between the observation and the theoretical modeling is obtained when assuming that the quiet regions (outside sunspots) of the solar chromosphere are permeated by a magnetic field of 15 gauss.

    In an article published today by Physical Review Letters, the prestigious scientific journal of the American Physical Society, Ernest Alsina Ballester, Luca Belluzzi, and Javier Trujillo Bueno show the solution to this intriguing paradox, which has puzzled solar physicists since 1998. As shown in figure 1, this team of researchers has been able to reproduce the enigmatic observations of the D1 line polarization, in the presence of magnetic fields in the gauss range. To achieve this result, it was necessary to carry out the most complete theoretical modeling of this polarization signal ever attempted, accounting for the joint action of very complex physical mechanisms. This required three years of work, carried out through a close cooperation between the Istituto Ricerche Solari (IRSOL) in Locarno-Monti (affiliated to the Università della Svizzera italiana) and the POLMAG group of the Instituto de Astrofísica de Canarias (IAC) in Tenerife.

    See http://research.iac.es/proyecto/polmag/

    This result has very important consequences. Linear polarization signals, like the one observed in the D1 line of sodium, are extremely interesting because they encode unique information on the elusive magnetic fields present in the solar chromosphere. This key interface layer of the solar atmosphere, located between the underlying cooler photosphere and the overlying million-degree corona, is at the core of several enduring problems in solar physics, including the understanding and prediction of the eruptive phenomena that may strongly impact our technology-dependent society. The magnetic field is known to be the main driver of the spectacular dynamical activity of the solar chromosphere, but our empirical knowledge of its intensity and geometry is still largely unsatisfactory. The solution of the long-standing paradox of solar D1 line polarization proves the validity of the present quantum theory of spectral line polarization, and opens up a new window to explore the magnetism of the solar atmosphere in the present new era of large-aperture solar telescopes.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) operates two astronomical observatories in the Canary Islands:

    Roque de los Muchachos Observatory on La Palma
    Teide Observatory on Tenerife.

    The Instituto de Astrofísica the headquarters, which is in La Laguna (Tenerife).

    Observatorio del Roque de los Muchachos at La Palma (ES) at an altitude of 2400m.

    The seeing statistics at ORM make it the second-best location for optical and infrared astronomy in the Northern Hemisphere, after Mauna Kea Observatory Hawaii (US).

    Maunakea Observatories Hawai’i (US) altitude 4,213 m (13,822 ft)

    The site also has some of the most extensive astronomical facilities in the Northern Hemisphere; its fleet of telescopes includes the 10.4 m Gran Telescopio Canarias, the world’s largest single-aperture optical telescope as of July 2009, the William Herschel Telescope (second largest in Europe), and the adaptive optics corrected Swedish 1-m Solar Telescope.

    Gran Telescopio Canarias [Instituto de Astrofísica de Canarias ](ES) sited on a volcanic peak 2,267 metres (7,438 ft) above sea level.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    The observatory was established in 1985, after 15 years of international work and cooperation of several countries with the Spanish island hosting many telescopes from Britain, The Netherlands, Spain, and other countries. The island provided better seeing conditions for the telescopes that had been moved to Herstmonceux by the Royal Greenwich Observatory, including the 98 inch aperture Isaac Newton Telescope (the largest reflector in Europe at that time). When it was moved to the island it was upgraded to a 100-inch (2.54 meter), and many even larger telescopes from various nations would be hosted there.

    Teide Observatory [Observatorio del Teide], IAU code 954, is an astronomical observatory on Mount Teide at 2,390 metres (7,840 ft), located on Tenerife, Spain. It has been operated by the Instituto de Astrofísica de Canarias since its inauguration in 1964. It became one of the first major international observatories, attracting telescopes from different countries around the world because of the good astronomical seeing conditions. Later the emphasis for optical telescopes shifted more towards Roque de los Muchachos Observatory on La Palma.

     
  • richardmitnick 8:01 am on August 19, 2021 Permalink | Reply
    Tags: "IRSOL and IAC scientists solve a complex paradox in solar physics", , , This research opens up a new window for exploring the elusive magnetic fields of the solar chromosphere in the present new era of large-aperture solar telescopes.   

    From IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) : “IRSOL and IAC scientists solve a complex paradox in solar physics” 

    Instituto de Astrofísica de Andalucía

    From IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES)

    18/08/2021

    1
    Image of the solar atmosphere showing a coronal mass ejection. Credit: National Aeronautics Space Agency (US)/SDO.

    In 1998, the journal Nature published a seminal letter concluding that the mysterious polarization signal that had been recently discovered in the light emitted by the sodium atoms of the solar atmosphere implies that the solar chromosphere (a very important layer of the solar atmosphere) is practically unmagnetized, in sharp contradiction with common wisdom. This paradox motivated laboratory experiments and theoretical investigations, which instead of providing a solution, raised new issues and even led some scientists to question the quantum theory of radiation-matter interaction. In an article published and highlighted today by the prestigious Physical Review Letters, Ernest Alsina Ballester (IRSOL and IAC), Luca Belluzzi (IRSOL) and Javier Trujillo Bueno (IAC) show the solution to such intriguing paradox, which has puzzled solar physicists over the last decades. This research opens up a new window for exploring the elusive magnetic fields of the solar chromosphere in the present new era of large-aperture solar telescopes.

    Twenty-five years ago, an enigmatic signal was discovered while analyzing the polarization of sunlight with a new instrument, the Zurich Imaging Polarimeter (ZIMPOL) [Nature]. This mysterious linear polarization signal appears at the 5896 Å wavelength of the D1 line of neutral sodium where, according to the line’s quantum numbers, no linear polarization due to scattering processes should be present. This polarization signal was therefore totally unexpected, and its interpretation immediately opened an intense scientific debate. The mystery further increased two years later, when the journal Nature published a letter with an explanation, which required that the sublevels of the lower level of the D1 line are not equally populated. In that theoretical work, the enigmatic polarization signal of the D1 line was reproduced remarkably well. However, the proposed explanation implied that the region of the solar atmosphere known as the chromosphere is completely unmagnetized, in apparent contradiction with established results, which instead indicate that the quiet regions (outside sunspots) of the solar chromosphere are permeated by magnetic fields in the gauss range. This opened a serious paradox, which has challenged solar physicists for many years, and even led some scientists to question the quantum theory of atom-photon interactions.

    A first breakthrough towards the resolution of the paradox was achieved in 2013 at the IAC, when Luca Belluzzi and Javier Trujillo Bueno theoretically discovered a new mechanism through which linear polarization can be produced in the sodium D1 line without the need of population imbalances in the lower level of the D1 line. However, that important step given by these researchers was for the idealized case of a solar atmosphere model without magnetic fields.

    1
    Figure 1: Variation with wavelength of the linear polarization (Q/I) of sunlight across the solar sodium D1 and D2 spectral lines (left panel) and across D1 (right panel). The black curves indicate the observed signals (the measurements were carried out at IRSOL with the ZIMPOL instrument). The red and blue curves show the results of theoretical calculations carried out neglecting (red) and including (blue) magnetic fields. An excellent agreement between the observation and the theoretical modeling is obtained when assuming that the quiet regions (outside sunspots) of the solar chromosphere are permeated by a magnetic field of 15 gauss.

    In an article published today by Physical Review Letters, the prestigious scientific journal of the American Physical Society, Ernest Alsina Ballester, Luca Belluzzi, and Javier Trujillo Bueno show the solution to this intriguing paradox, which has puzzled solar physicists since 1998. As shown in figure 1, this team of researchers has been able to reproduce the enigmatic observations of the D1 line polarization, in the presence of magnetic fields in the gauss range. To achieve this result, it was necessary to carry out the most complete theoretical modeling of this polarization signal ever attempted, accounting for the joint action of very complex physical mechanisms. This required three years of work, carried out through a close cooperation between the Istituto Ricerche Solari (IRSOL) in Locarno-Monti (affiliated to the Università della Svizzera italiana) and the POLMAG group of the Instituto de Astrofísica de Canarias (IAC) in Tenerife (see http://research.iac.es/proyecto/polmag/).

    This result has very important consequences. Linear polarization signals, like the one observed in the D1 line of sodium, are extremely interesting because they encode unique information on the elusive magnetic fields present in the solar chromosphere. This key interface layer of the solar atmosphere, located between the underlying cooler photosphere and the overlying million-degree corona, is at the core of several enduring problems in solar physics, including the understanding and prediction of the eruptive phenomena that may strongly impact our technology-dependent society. The magnetic field is known to be the main driver of the spectacular dynamical activity of the solar chromosphere, but our empirical knowledge of its intensity and geometry is still largely unsatisfactory. The solution of the long-standing paradox of solar D1 line polarization proves the validity of the present quantum theory of spectral line polarization, and opens up a new window to explore the magnetism of the solar atmosphere in the present new era of large-aperture solar telescopes.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) operates two astronomical observatories in the Canary Islands:

    Roque de los Muchachos Observatory on La Palma
    Teide Observatory on Tenerife.

    The seeing statistics at ORM make it the second-best location for optical and infrared astronomy in the Northern Hemisphere, after Mauna Kea Observatory Hawaii (US).

    Maunakea Observatories Hawai’i (US) altitude 4,213 m (13,822 ft)

    The site also has some of the most extensive astronomical facilities in the Northern Hemisphere; its fleet of telescopes includes the 10.4 m Gran Telescopio Canarias, the world’s largest single-aperture optical telescope as of July 2009, the William Herschel Telescope (second largest in Europe), and the adaptive optics corrected Swedish 1-m Solar Telescope.

    [caption id="attachment_72536" align="alignnone" width="632"] Gran Telescopio Canarias [Instituto de Astrofísica de Canarias ](ES) sited on a volcanic peak 2,267 metres (7,438 ft) above sea level.

    The observatory was established in 1985, after 15 years of international work and cooperation of several countries with the Spanish island hosting many telescopes from Britain, The Netherlands, Spain, and other countries. The island provided better seeing conditions for the telescopes that had been moved to Herstmonceux by the Royal Greenwich Observatory, including the 98 inch aperture Isaac Newton Telescope (the largest reflector in Europe at that time). When it was moved to the island it was upgraded to a 100-inch (2.54 meter), and many even larger telescopes from various nations would be hosted there.

    Teide Observatory [Observatorio del Teide], IAU code 954, is an astronomical observatory on Mount Teide at 2,390 metres (7,840 ft), located on Tenerife, Spain. It has been operated by the Instituto de Astrofísica de Canarias since its inauguration in 1964. It became one of the first major international observatories, attracting telescopes from different countries around the world because of the good astronomical seeing conditions. Later the emphasis for optical telescopes shifted more towards Roque de los Muchachos Observatory on La Palma.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: