Tagged: Interactions.org Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:22 pm on May 19, 2018 Permalink | Reply
    Tags: , , , Interactions.org, , , , The Future of HEP   

    From Interactions.org: “Quo Vadis, High Energy Physics?” 

    From Interactions.org

    16th May 2018
    Juan Rojo


    High Energy Physics finds itself at a crossroads, a fact commonly recognized within the scientific community. Paradoxically, the main reason for this state of affairs is none other than the extreme success of both our theoretical framework and our experimental programs. Indeed, our current understanding of elementary particles, as encapsulated by the Standard Model, has so far been confirmed with exquisite precision by countless experiments.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Standard Model of Particle Physics from Symmetry Magazine

    Even then, there are still enough urgent fundamental questions that are so far left unanswered!

    To begin with, the Standard Model (SM) does not provide a candidate for dark matter, the mysterious non-luminous form of matter five times more abundant than normal matter and whose existence we infer from astronomical observations.

    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016

    Dark matter cosmic web and the large-scale structure it forms The Millenium Simulation, V. Springel et al

    It does not provide either a microscopic mechanism for the dark energy accelerating the expansion of the universe.

    Reticulum II galaxy-Dark Energy Survey, DECam, CTIO/Blanco Telescope, Cerro Tololo, Chile

    Dark Energy Survey

    Dark Energy Camera [DECam], built at FNAL

    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    Neither does the SM explain how the observed asymmetry between matter and antimatter was generated in the early universe, nor the fact that neutrinos have non-zero masses.

    In addition to these ’observational’ conundrums, the SM also contains several puzzles of a more theoretical nature. To begin with, we still don’t know for sure if the scalar boson observed at the LHC is really the SM Higgs boson, or if it is instead a more complicated creature.

    CERN CMS Higgs Event

    CERN ATLAS Higgs Event


    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    For example, it could very well be that the Higgs is a composite particle itself. In addition, in the SM the mass of the Higgs boson is not protected by any symmetry, and for this reason it will tend to grow up to the highest energies at which the theory is valid. In this respect, we do not really understand the unbearable lightness of the Higgs particle. We also have no clue whatsoever of the origin of the flavour structure in the SM, for instance why there are three generations and not 27, and what mechanism determines the observed values of the masses of the SM particles. So there is definitely no lack of fascinating problems to be tackled!

    Going even deeper into the foundations of high-energy physics, we don’t know how to marry the two most arguably successful physical theories ever formulated, quantum mechanics and general relativity. Indeed, the ongoing quest for quantum gravity has turned out to be a formidable challenge attacked without success by some of the most brilliant physicists of the last decades. The fact that the experimental signatures of quantum gravity are in most cases orders of magnitude beyond our foreseeable experimental reach does for sure not help in this context. Quantum gravity has been so far the playground of mostly theoretical speculations, though there are hopes that its effects can be probed experimentally in the near future either from cosmological observations or from ultra-high precision measurements of quantum systems.

    I encourage the interested reader to take an interactive look at the various mysteries of the Standard Model and the various “Theories of Everything” that have been proposed in this infographic by Quanta Magazine.

    As I was saying, one of the main hopes for our field is that the thorough exploration of the Higgs boson properties can shed some light on the SM mysteries. For instance, we are now only starting to scratch the surface of the Higgs particle, and current and future measurements at the LHC will tell us more about its underlying nature. Indeed, one of the main goals of the High-Luminosity upgrade of the LHC (HL-LHC), which will deliver up to a factor 10 more collisions, is the accurate profiling of the properties of the Higgs boson, where any deviation with respect to the tightly fixed properties of the SM would represent a “smoking gun” for new physics beyond it.

    While the HEP community is certainly together in its support for the full exploitation of the physics potential of the HL-LHC as a major priority, it’s less clear what should come next. Should we build yet a bigger particle collider? A different type of collider? Perhaps the key is in the intensity, high-precision frontier? Should we focus on completely different types of experiments, perhaps more weighted towards astrophysics and cosmology? Something else that no one has even thought of before?

    In this context, one particularly attractive proposal goes under the name of Future Circular Collider (FCC).

    FCC Future Circular Collider at CERN

    The FCC would be a gargantuan particle collider with a radius of around 100 kilometers, dwarfing the already pretty huge LHC. This collider could accelerate protons up to the extreme energies of 100 TeV, about 7 times more powerful than those available at the LHC. In addition, this machine could also accommodate the collisions between electrons and positrons at high energy and luminosity, which would make extremely high precision characterization of SM particles possible, such as the Higgs boson, the W and Z gauge bosons, and the top quarks. Similar machines are under active study by the Chinese HEP community. Another proposal for the next collider is the International Linear Collider (ILC), a high energy linear accelerator of electrons and positrons, to be hosted by Japan.

    ILC schematic, being planned for the Kitakami highland, in the Iwate prefecture of northern Japan

    While it would be amazing if we had machines like this at our disposal, they will come with a hefty price tag of several billion euros at the very least. It is obviously not a decision that can be taken lightly, and the science case in each option must the weighted carefully. One particularly challenging aspect of the current situation for high-energy physics is that there is no machine that can guarantee discoveries, such as new particles or novel fundamental interactions. This was not the case in the past: at the LHC for instance there was a “no-lose” theorem guaranteeing that it would either discover the Higgs boson or instead an altogether novel force of nature. It is worth emphasizing that this is true also for many other fields, such as cosmology, where there is no current or planned experiment that can lead to guaranteed breakthroughs such as evidence for inflation or pinning down the nature of dark energy.

    For instance, despite frequent claims of the contrary, there is no guarantee that a high precision study of the properties of the Higgs boson will unveil new physics beyond the Standard Model. Of course, it could lead to the discovery of new physics, which would of course be awesome, and it is thus an extremely interesting and important experimental program. But we should make sure that we do not oversell our field and that we avoid making promises that we cannot fulfil.

    The bottom line of all this lengthy disquisition is that future progress in HEP should be driven by exploration, rather than by theoretical prejudice. For many years (better said, decades) HEP was driven by theoretical efforts, with experiments successfully confirming prediction after prediction. But now our field is experiencing a U-turn, where we should think outside the box and be ready for the unexpected. A nice example of the latter is provided by the recent anomalous in the b-quark sector presented by LHCb. These anomalies seem to indicate the violation of one of the cornerstones of the Standard Model, namely the symmetry telling us that leptons of different families (say muons and electrons) interact with other particles in exactly the same way. Only time will tell the fate of these anomalies, but if confirmed they would represent an arguably more important discovery than that of the Higgs itself!

    With the same motivation, and in order to make sure that no stone is left unturned, it is healthy for our field to develop a varied program of experiments that are not limited to high-energy colliders. For instance, CERN has recently set up a Working Group focusing on the potential of ’Physics beyond Colliders’. The idea underlying this approach is that high-precision measurements of specific properties of known particles can reveal the presence of new, heavy particles beyond the direct reach of future colliders. This is possible by means of quantum effects, where heavy virtual particles pop up from the vacuum for a fleeting moment, leaving a measurable imprint in the SM particles.


    A prime example of this precision program is shown above: the muon storage ring at Fermilab. There the “muon g-2” experiment aims to measure with exquisite precision the internal magnet of the muons, its so-called magnetic moment. The hope is to resolve a long-standing discrepancy between similar measurements and the SM predictions, which could unveil new physics beyond the SM.

    Can we now summarise what the best option is for the future of HEP? Well, not really, this is precisely the million dollar question! Every member of the HEP community, including of course famous bloggers, has something important to say there. I think that irrespective of the exact path that our field chooses for the next years, the future is bright for particle physics and everyone should certainly stay tuned for news from the high-energy frontier.

    See the full article here .

    Please help promote STEM in your local schools.


    Stem Education Coalition

  • richardmitnick 10:36 am on March 22, 2018 Permalink | Reply
    Tags: , , Interactions.org, , , ,   

    From Interactions.org: “SuperKEKB accelerator kicks into new gear” 



    KEK has begun a new stage of operation of the SuperKEKB electron-positron collider, with a brand new positron damping ring and the Belle II detector. Electron and positron beams will begin colliding soon for the first time in 8 years since the previous KEKB collider ceased its operations in 2010.


    On March 21, 2018, a beam of electrons was successfully stored in the main ring. A beam of positrons will be injected and stored around the beginning of April, and then final accelerator tuning for beam collisions will begin. The first collisions of electrons and positrons are expected in the coming months.

    This is the first step toward the SuperKEKB design luminosity1, which is a factor of 40 times higher than the current world record set by KEKB.


    SuperKEKB, along with the Belle II detector, is a facility designed to search for New Physics beyond the Standard Model by measuring rare decays of elementary particles such as b quarks, c quarks, and tau leptons.

    In contrast to the LHC at CERN in Geneva, Switzerland, which is the world’s highest energy hadron accelerator, SuperKEKB/Belle II located at KEK in Tsukuba, Japan is designed to have the world’s highest luminosity (a factor of 40 times higher than the earlier KEKB machine that holds many records for accelerator performance). Thus, SuperKEKB is the leading accelerator on the “luminosity frontier”.

    The Belle II detector at SuperKEKB was designed and built by an international collaboration of over 750 physicists from 25 countries. This collaboration is working closely with SuperKEKB accelerator experts to optimize the accelerator performance and backgrounds.

    Background information on the science goals of the SuperKEKB/Belle II facility is available on the Belle II public webpage.


    1.Luminosity is a measure of the rate or intensity of electron-positron collisions

    Received via email.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 10:36 am on March 21, 2018 Permalink | Reply
    Tags: , , , , , , Interactions.org, , , , RHIC and the Future   

    From BNL via Interactions.org: “Relativistic Heavy Ion Collider Begins 18th Year of Experiments” 

    Brookhaven Lab


    21 March 2018

    Media and Communications Office
    Peter Genzer
    + 1 631 344 5056

    The first smashups of two new types of particles at the Relativistic Heavy Ion Collider (RHIC —a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National Laboratory—will offer fresh insight into the effects of magnetism on the fireball of matter created in these collisions. Accomplishing this main goal of the 15-week run of RHIC’s 18th year will draw on more than a decade of accumulated expertise, enhancements to collider and detector components, and a collaborative effort with partners across the DOE complex and around the world.

    Physicists will also perform two different kinds of collisions with gold ions at low energies, including collisions of gold ions with a stationary target. These collisions will help scientists better understand the exotic matter created in RHIC’s highest energy collisions, including the strength of its magnetic field and how it evolves from a hot soup of matter’s fundamental building blocks (quarks and gluons) to the ordinary protons and neutrons that make up the bulk of visible matter in the universe today.

    As an added bonus—or rather, a testament to the efficiency of RHIC accelerator staff—the collider-accelerator team will also be implementing and fine-tuning several technologies important for future nuclear physics research.

    “In some ways this run is the culmination of two decades of facility development,” said Wolfram Fischer, Associate Chair for Accelerators in Brookhaven Lab’s Collider-Accelerator (C-AD) Department. “We will make use of many tools we have developed over many years, which we now need all at the same time. All this expertise in C-AD and support from DOE and other labs came together to make this possible.”

    Helen Caines, a physicist at Yale University who serves as co-spokesperson for RHIC’s STAR experiment, agreed and expressed her appreciation for RHIC’s unique versatility and ability to pack in so much in such a short time. “It’s going to be a busy 15 weeks!” she said.

    Studying magnetic effects

    RHIC collides ions (for example, the nuclei of heavy atoms such as gold that have been stripped of their electrons) to “melt” their protons and neutrons and set free those particles’ internal building blocks, known as quarks and gluons. Creating this “quark-gluon plasma” mimics the conditions of the very early universe and gives scientists a way to explore the force that governs how these fundamental particles interact. The nuclear physicists conduct these studies by tracking the particles emerging from the collisions.

    One intriguing finding from an earlier run at RHIC was an observation of differences in how negatively and positively charged particles flow out from the fireball created when two gold ions collide. Scientists suspect that this charge separation is triggered in part by something called the “chiral magnetic effect”—an interaction between the powerful magnetic field generated when the positively charged ions collide slightly off center (producing a swirling mass of charged matter) and each individual particle’s “chirality”. Chirality is a particle’s right- or left-handedness, which depends on whether it is spinning clockwise or counterclockwise relative to its direction of motion. According to this understanding, the charge separation should get stronger as the strength of the magnetic field increases—which is exactly what STAR scientists are testing in Run 18.

    “Instead of gold, we are using collisions with two different ‘isobars’—isotopes of atoms that have the same mass but different numbers of protons, and therefore different levels of positive charge,” said Caines. Collisions of two ruthenium ions (mass number 96 with 44 protons) will create a magnetic field that’s 10 percent stronger than collisions of two zirconium ions (mass number 96 with only 40 protons), she said.

    “We are keeping everything else the same—the size of nucleus, the energy, and the total number of particles participating in the collision. We’ll even be switching from one ion species to the other on close to a day-by-day basis to eliminate any variation running the two types of collisions weeks apart might cause. Since the only thing we are varying is the magnetic field, this should be a definitive test of the chiral magnetic effect.”

    A positive result would prove that the collisions are creating a very strong magnetic field—”the strongest ever observed,” Caines said. “It would also be definitive proof that the collisions are creating a medium made up of free quarks and gluons, a quark-gluon plasma, with an imbalance of left- and right-handed particles driven by quantum fluctuations.”

    Obtaining and prepping the isotopes

    Though the amount of matter needed to collide individual ions is extremely small (RHIC will use much less than a gram of gold in all its years of operation!), obtaining certain rare isotopes can be challenging. Zirconium-96 (the form needed for these experiments) makes up less than three percent of the naturally occurring supply of this element, while ruthenium-96 makes up less than six percent.

    “If you just used natural material for the ion sources that feed RHIC, the beam intensity would be way too low to collect the data needed,” said Fischer. “You can buy enriched samples of zirconium but there is no commercial source of enriched ruthenium.”

    Fortunately, there is a new facility for such isotope enrichment at DOE’s Oak Ridge National Laboratory (ORNL), the Enriched Stable Isotope Prototype Plant (ESIPP), which heated up the natural material and electromagnetically separated out the different masses. ESIPP is part of the DOE Isotope Program and started operations in FY 2018, re-establishing a general domestic capability to enrich stable isotopes.

    “With the help of the DOE Isotope Program in the Office of Science, ORNL put us at the top of their priority list to provide one-half gram of this material—a little vial with a bit of ‘dust’ in the bottom—in time for the run,” Fischer said.

    The ruthenium ions start their path of acceleration in Brookhaven’s Tandem Van De Graaff accelerator. So as not to waste any of the precious ion supply, the Tandem team, led by Peter Thieberger, first ran tests with higher-abundance forms of ruthenium, making sure they’d have the beam intensity needed. For the actual experiments, they dilute the ruthenium sample with aluminum to spread out the supply. Once accelerated, the ions get bunched and those bunches get combined into more and more tightly pack bunches as they circulate through the Booster ring and the Alternating Gradient Synchrotron (AGS), gaining energy at each step before being injected into RHIC’s two counter-circulating 2.4-mile-circumference rings for collisions at 200 billion electron volts (GeV).

    To get the zirconium ions for collisions on the alternating days, the Brookhaven team, led by Masahiro Okamura, sought help from Hiromitsu Haba and colleagues at Japan’s RIKEN laboratory who’d had experience with zirconium targets. “They generously shared everything they know about transforming zirconium into oxide targets we could use to extract the ions,” Fischer said.

    Scientists zap these zirconium oxide targets with a laser at Brookhaven’s Laser Ion Source to create a plasma containing positively charged zirconium ions. Those ions then enter the Electron Beam Ion Source (EBIS) to be transformed into a beam. From EBIS, the zirconium beam follows a path similar to that of ruthenium, with the ions merging into tighter and tighter bunches and gaining energy in the Booster and AGS before being injected into RHIC. Yet another team—Brookhaven’s own chemists from the Medical Isotope Research and Production Program, led by Cathy Cutler—recovers leftover target material and reprocess it to make new targets so that no valuable isotope material is left unused.

    Having the two types of ions enter RHIC from different sources makes it easier to switch from ruthenium to zirconium day by day. “These are two somewhat exotic species of ions, so we wanted two independent sources that can be optimized and run independently,” Fischer said. “If you run both out of one source, it’s harder to get the best performance out of both of them.”

    Once either set of ions enters the collider, additional enhancements made at RHIC over the years help maximize the number of data-producing collisions. Most significantly, a technique called “stochastic cooling”, implemented during this run by Kevin Mernick, detects when particles within the beams spread out (heat up), and sends corrective signals to devices ahead of the speeding ions to nudge them back into tight packs.

    “Without stochastic cooling it would be very hard if not impossible to reach the experimental goals because we would lose a lot of ions,” Fischer said. “And we couldn’t do this without all the different parts in DOE and at Brookhaven. We needed all our source knowledge in EBIS and at the Tandem, and we needed collaborators from RIKEN, ORNL, and our chemists in the Isotope Program at Brookhaven as well. It’s been an amazing collaborative effort.”

    “Switching from one species to another every day has never been done before in a collider,” Fischer said. “Greg Marr, the RHIC Run Coordinator this year, needs to draw on all tools available to make these transitions as quickly and seamlessly as possible.”

    More to learn from gold-gold

    Following the isobar run, STAR physicists will also study two kinds of gold-gold collisions. First, in collisions of gold beams at 27 GeV, they will look for differential effects in how particles called lambdas and oppositely charged antilambda particles emerge. Tracking lambdas recently led to the discovery that RHIC’s quark-gluon plasma is the fastest spinning fluid ever encountered. Measuring the difference in how lambdas and their antiparticle counterparts behave would give STAR scientists a precise way to measure the strength of the magnetic field that causes this “vorticity.”

    “This will help us improve our calculations of the chiral magnetic effect because we would have an actual measurement of the magnetic contribution. Until now, those values have been based purely on theoretical calculations,” Caines said.

    In the final phase of the run, accelerator physicists will configure RHIC to run as a fixed-target experiment. Instead of crashing two beams together in head-on collisions, they will slam one beam of gold ions into a gold foil placed within the STAR detector. The center of mass collision energy, 3.2 GeV, will be lower than in any previous RHIC run. These collisions will test to see if a signal the scientists saw at higher energies—large fluctuations in the production of protons— turns off. The disappearance of this signal could indicate that the fluctuations observed at higher energies were associated with a so-called “critical point” in the transition of free quarks and gluons to ordinary matter []. The search for this point—a particular set of temperature and pressure conditions where the type of phase transformation changes—has been another major research goal at RHIC.

    These lowest energy collisions will also form the start of the next “beam energy scan,” a series of collisions across a wide range of energies beginning in earnest next year, Caines said. That work will build on results from earlier efforts to map the various phases of quark-gluon matter.

    Tuning up detector and accelerator technologies

    Some newly upgraded components of the STAR detector will be essential to these and future studies of nuclear matter at RHIC, so STAR physicists will be closely monitoring their performance during this run. These include:

    • An inner component of the barrel-shaped Time Projection Chamber (the iTPC), developed with significant support from DOE and China’s National Natural Science Foundation and Ministry of Science and Technology.
    • An “endcap time of flight” (eTOF) detector developed by STAR physicists and a collaboration of scientists working on the Compressed Baryonic Matter experiment, which will be located at the future Facility for Antiproton and Ion Research in Darmstadt, Germany.
    • A new “event plane detector” developed by U.S. and Chinese collaborators in a project supported by the DOE, the U.S. National Science Foundation, and the Chinese Ministry of Science and Technology.

    The first two of these components work together to track and identify particles emerging from collisions closer to the beamline than ever before, enabling physicists to more precisely study directional preferences of particles. The event plane detector will track the orientation of the overlap region created by colliding particles—and therefore the orientation of the magnetic field.

    “The combination of these new components will enhance our ability to track and identify particles and study how the patterns of particles produced are influenced by collision conditions,” Caines said.

    On the accelerator front, Fischer notes two major efforts taking place in parallel with the Run 18 physics studies.

    One project is commissioning a newly installed electron accelerator for low energy electron cooling, an effort led by Alexei Fedotov. This major new piece of equipment uses a green-laser-triggered photocathode electron gun to produce a cool beam of electrons. The electrons get injected into a short section of each RHIC ring to mix with the ion beams and extract heat, which reduces spreading of the ions at low energies to maximize collision rates.

    The commissioning will include fine tuning the photocathode gun and the radiofrequency (RF) cavities that accelerate the electron beam after it leaves the gun to get it up to speed of RHIC’s gold beams. The physicists will also commission RF correctors that give extra kicks to lagging particles and slow down those that are too speedy to keep all the electrons closely spaced.

    “We have to make sure the electron beam has all the necessary properties—energy, size, momentum spread, and current—to cool the ion beam,” Fischer said. “If everything goes right, then we can use this system to start cooling the gold beam next year.”

    Physicists will also test another system for electron cooling at higher energies, which was developed in an effort led by Vladimir Litvinenko. In this system, called coherent electron cooling, electron beams are used as sensors for picking up irregularities in the ion beam. “The electron beam gets ‘imprinted’ by regions of low or high ion density,” Fischer said. Once amplified, this signal in the electron beam can be fed back to the ion beam “out of phase” to smooth out the irregularities.

    Though this type of cooling is not essential to the research program at RHIC, it would be essential for cooling beams in a high-energy Electron-Ion Collider (EIC), a possible future research facility that nuclear physicists hope to build. Testing the concept at RHIC helps lay the foundation for how it would work at an EIC, Fischer said.

    If the experience at RHIC is any guide, all the testing should pay off with future physics discoveries.

    BNL RHIC Campus

    BNL/RHIC Star Detector


    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 1:00 pm on November 10, 2017 Permalink | Reply
    Tags: Hyper-Kamiokande project, Interactions.org, , , MEXT, NNSO-Next-generation Neutrino Science Organization   

    From Interactions.org: “Inauguration of Next-generation Neutrino Science Organization for the Hyper-Kamiokande Nucleon Decay and Neutrino Experiment” 


    10 November 2017
    Kavli Institute for the Physics and Mathematics of the Universe

    Date Issued:
    November 10th, 2017
    Kavli Institute for the Physics and Mathematics of the Universe
    Press Release

    John Amari
    Public Relations Office
    The University of Tokyo International Institute for Advanced Studies
    Kavli Institute for the Physics and Mathematics of the Universe
    E-mail: press@ipmu.jp
    Tel: 04-7136-5977

    The Hyper-Kamiokande project aims to address the mysteries of the origin and evolution of the Universe’s matter as well as to confront theories of elementary particle unification.

    Hyper-Kamiokande, a neutrino physics laboratory located underground in the Mozumi Mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan.

    To realize these goals it will combine a high intensity neutrino beam from J-PARC with a new detector based upon precision neutrino experimental techniques developed in Japan and built to be approximately 10 times larger than the running Super-Kamiokande.

    Japan Proton Accelerator Research Complex J-PARC, located in Tokai village, Ibaraki prefecture, on the east coast of Japan

    On October 1st, 2017, The University of Tokyo launched its “Next-generation Neutrino Science Organization (NNSO),” in cooperation with the Institute for Cosmic Ray Research (ICRR), the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), and the University of Tokyo’s School of Science. The NNSO is a means of pioneering the future of neutrino physics through the development of neutrino research techniques and detector technologies. In particular, it aims to advance what will become its flagship facility, the Hyper-Kamiokande project. To mark the occasion, an inaugural ceremony was held on November 8th, 2017, at the Kamioka Observatory in Japan.

    Professor Takaaki Kajita, director of NNSO and a Nobel laureate for the discovery of neutrino oscillations demonstrating that neutrinos have mass, started the ceremony with opening remarks: “Understanding the neutrino, whose mass is extremely small, is not only important to particle physics, but is also thought to have deep connections to the origins of matter. Indeed, by observing neutrinos created with the high intensity proton accelerator J-PARC at Hyper-Kamiokande and testing whether or not neutrino and antineutrino oscillations are the same, we expect to close in on the mysteries of our matter-dominated universe. Further, we would like to discover the decay of the proton and thereby verify the unification of the three forces that act between elementary particles. Through the research represented by these goals, I would like to greatly expand our knowledge of elementary particles and the universe.”

    Professor Masashi Haneda, Executive Vice President of The University of Tokyo and Director of The University of Tokyo Institutes for Advanced Study, greeted attendees with these words: “Through the cooperation of these three important institutions, I’m sure that a world-class center for neutrino research will be established. Further, it will contribute much to cultivate talented young researchers. Succeeding Kamiokande and Super-Kamiokande, the Hyper-Kamiokande project will lead the world’s neutrino research. I would like to underline that the University of Tokyo will do our best to support this newly established organization.”

    Professor Hiroyuki Takeda, Dean of the School of Science, also gave an address: “The School of Science has a long and intimate relationship to the research in Kamioka, because Professor Koshiba started the original Kamiokande experiment when he was a faculty member of the School of Science. It is our great pleasure that we can further deepen the relationship with ICRR and Kavli IPMU through this organization to promote neutrino physics and the Hyper-Kamiokande project.”

    Professor Hitoshi Murayama, director of the Kavli Institute for the Physics and Mathematics of the Universe, delivered this message: “I firmly believe that the Hyper-Kamiokande experiment will be one of the most important experiments in the foreseeable future to study the Universe. Kavli IPMU would like to contribute to the Hyper-Kamiokande experiment with experimental expertise, theoretical support, and international networking. I’m very excited. Let’s make the Hyper-Kamiokande experiment happen!”

    Tomonori Nishii, Director of Scientific Research Institutes Division, Ministry of Education, Culture, Science and Technology (MEXT), Japan, presented congratulations: “In July of this year, the MEXT Roadmap 2017, which outlines the basic plan for pursuing large-scale projects, has been compiled by the Council for Science and Technology. It made the implementation priority of such projects clear. “Nucleon Decay and Neutrino Oscillation Experiment with a Large Advanced Detector”, that is Hyper-Kamiokande, is highly evaluated and listed in the roadmap with six other projects. MEXT, together with you, looks forward to seeing this new organization thrive as an international collaborative research hub and produce excellent scientific research achievements.”

    The ceremony was attended by about 100 people from MEXT, the University of Tokyo, KEK, local government and community, the Kamioka Mining and Smelting Company, and collaborating scientists. At the end, all attendees got together to take a group photo and celebrated the start of the new organization for promotion of neutrino physics and the Hyper-Kamiokande project.


    Hyper-Kamiokande, or Hyper-K, is a straightforward extension of the successful water Cherenkov detector experiment Super-Kamiokande.

    Super-Kamiokande Detector, located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan

    It employs well-proven and high-performance water Cherenkov detector technology with established capabilities of neutrino oscillation studies by accelerator and atmospheric neutrinos, proton decay searches, and precision measurements of solar and supernova neutrinos. Hyper-Kamiokande will provide major new capabilities to make new discoveries in particle and astroparticle physics thanks to an order of magnitude increase in detector mass and improvements in photon detection, along with the envisioned J-PARC Megawatt-class neutrino beam.

    An international Hyper-Kamiokande proto-collaboration has been formed to carry out the experiment; it consists of about 300 researchers from 15 countries as of April 2017. The Hyper-Kamiokande member states are Armenia, Brazil, Canada, Ecuador, France, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, Ukraine, and USA. The Institute for Cosmic Ray Research of the University of Tokyo and the Institute of Particle and Nuclear Studies of the High Energy Accelerator Research Organization KEK have signed a MoU affirming cooperation in the Hyper-K project to review and develop the program.

    Hyper-K is to be built as a tank with a 187 kiloton fiducial volume containing about 40,000 50-cm photo-multiplier tubes (PMTs), providing 40% photo cathode coverage. The proto-collaboration has succeeded in developing new PMTs with double the single-photon-sensitivity of those in Super-K.

    The Hyper-K and J-PARC neutrino beam measurement of neutrino oscillation is more likely to provide a 5-sigma discovery of CP violation than any other existing or proposed experiment. Hyper-K will also be the world leader for nucleon decays. The sensitivity to the partial lifetime of protons for the decay modes of p→e+π0 is expected to exceed 1035 years. This is the only known, realistic detector option capable of reaching such a sensitivity for the p→e+π0 mode. Finally, the astrophysical neutrino program involves precision measurement of solar neutrinos and their matter effects, as well as high-statistics supernova burst and supernova relic neutrinos.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 8:26 pm on May 21, 2017 Permalink | Reply
    Tags: , , Interactions.org, , , ,   

    From interactions.org: “XENON1T, the most sensitive detector on Earth searching for WIMP dark matter, releases its first result” 


    Laboratori Nazionali del Gran Sasso – INFN

    18 May 2017

    XENON spokesperson
    Prof. Elena Aprile, Columbia University, New York, US.
    Tel. +39 3494703313
    Tel. +1 212 854 3258

    INFN spokesperson
    Roberta Antolini
    + 39 0862 437216

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    INFN Gran Sasso ICARUS, since moved to FNAL

    “The best result on dark matter so far! … and we have just started!”

    This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, hosted in the INFN Laboratori Nazionali del Gran Sasso, Italy, commented on their first result from a short 30-day run presented today to the scientific community.

    XENON1T at Gran Sasso

    Dark matter is one of the basic constituents of the Universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, leading to a world-wide effort to observe directly dark matter particle interactions with ordinary matter in extremely sensitive detectors, which would confirm its existence and shed light on its properties. However, these interactions are so feeble that they have escaped direct detection up to this point, forcing scientists to build detectors that are more and more sensitive. The XENON Collaboration, that with XENON100 led the field for years in the past, is now back on the frontline with XENON1T. The result from a first short 30-day run shows that this detector has a new record low radioactivity level, many orders of magnitude below surrounding materials on Earth. With a total mass of about 3200 kg, XENON1T is at the same time the largest detector of this type ever built. The combination of significantly increased size with much lower background implies an excellent discovery potential in the years to come.

    The XENON Collaboration consists of 135 researchers from the US, Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates. The latest detector of the XENON family has been in science operation at the LNGS underground laboratory since autumn 2016. The only things you see when visiting the underground experimental site now are a gigantic cylindrical metal tank, filled with ultra-pure water to shield the detector at his center, and a three-story-tall, transparent building crowded with equipment to keep the detector running, with physicists from all over the world. The XENON1T central detector, a so-called Liquid Xenon Time Projection Chamber (LXeTPC), is not visible. It sits within a cryostat in the middle of the water tank, fully submersed, in order to shield it as much as possible from natural radioactivity in the cavern. The cryostat allows keeping the xenon at a temperature of -95°C without freezing the surrounding water.

    The mountain above the laboratory further shields the detector, preventing it to be perturbed by cosmic rays. But shielding from the outer world is not enough since all materials on Earth contain tiny traces of natural radioactivity. Thus extreme care was taken to find, select and process the materials making up the detector to achieve the lowest possible radioactive content. Laura Baudis, professor at the University of Zürich and professor Manfred Lindner from the Max-Planck-Institute for Nuclear Physics in Heidelberg emphasize that this allowed XENON1T to achieve record “silence”, which is necessary to listen with a larger detector much better for the very weak voice of dark matter.

    A particle interaction in liquid xenon leads to tiny flashes of light. This is what the XENON scientists are recording and studying to infer the position and the energy of the interacting particle and whether it might be dark matter or not. The spatial information allows to select interactions occurring in the central 1 ton core of the detector. The surrounding xenon further shields the core xenon target from all materials which already have tiny surviving radioactive contaminants. Despite the shortness of the 30-day science run the sensitivity of XENON1T has already overcome that of any other experiment in the field, probing un-explored dark matter territory.

    “WIMPs did not show up in this first search with XENON1T, but we also did not expect them so soon!” says Elena Aprile, Professor at Columbia University and spokesperson of the project. “The best news is that the experiment continues to accumulate excellent data which will allow us to test quite soon the WIMP hypothesis in a region of mass and cross-section with normal atoms as never before. A new phase in the race to detect dark matter with ultra-low background massive detectors on Earth has just began with XENON1T. We are proud to be at the forefront of the race with this amazing detector, the first of its kind.”

    Further information:

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: