Tagged: Infrared spectroscopy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:54 pm on March 11, 2021 Permalink | Reply
    Tags: "Microbial Methane – New Fuel for Ocean Robots?", , Infrared spectroscopy, , Methane has a heat-trapping power 25 times greater than CO2. But fortunately very little of it ever leaves the ocean thanks to the expansive communities of marine microbes that eat it., , , Once the methane is in gas form the system combusts the gas to drive an engine and generator., The need for Autonomous Underwater Vehicles to travel over longer distances—and longer time periods—without having to surface to charge up is very real., The new device is being developed by Maritime Applied Physics Corporation(US)(MAPC)., The system could be an answer to power-hungry robots that are being asked to explore increasingly larger swaths of the ocean., Using methane to give ocean robots a power boost may sound like sci-fi but it may be closer than you think.   

    From Woods Hole Oceanographic Institution: “Microbial Methane – New Fuel for Ocean Robots?” 

    From Woods Hole Oceanographic Institution

    Evan Lubofsky

    A seep of methane bubbles up from the seafloor. Credit: National Oceanic and Atmospheric Administration(US) Office of Ocean Exploration and Research.

    Researchers at WHOI and Harvard University(US) are working on it. They’re collaborating with Maritime Applied Physics Corporation(US)(MAPC) — which is leading the effort with support from the Defense Advanced Research Projects Agency (DARPA)(US) — on an energy harvesting platform that extracts methane produced by microbes and converts it to electricity. The system could be an answer to power-hungry robots that are being asked to explore increasingly larger swaths of the ocean.

    “Deep sea microbes make tons of methane each year” says WHOI adjunct scientist and Harvard professor Peter Girguis. “So, we’re developing these harvesting systems that can be deployed above methane seeps to see if we can generate electricity from this methane.”

    When it comes to powering AUVs—or other underwater ocean technologies for that matter—methane is an ideal choice given its abundance. It’s also free, and tends to hang around.

    “It’s a crazy stable molecule,” says Girguis. “You can put it in a glass vial, and thousands of years later it will still be methane.”

    WHOI adjunct scientist and Harvard professor Peter Girguis Credit: Harvard University.

    It is, however, a potent greenhouse gas—the Environmental Protection Agency(US) suggests that methane has a heat-trapping power 25 times greater than CO2. But fortunately very little of it ever leaves the ocean thanks to the expansive communities of marine microbes that eat it.

    Using methane to give ocean robots a power boost may sound like sci-fi but it may be closer than you think. A prototype of what the researchers refer to as a ‘seafloor generator’ is being built for testing later this year. It’s roughly the size of a large dorm room fridge, and when deployed, sits above methane seeps bubbling up from the seafloor. As the gas bubbles enter the system, a device recovers the methane through a membrane. The new device is being developed by MAPC, in conjunction with Girguis and WHOI scientist Anna Michel, who has been collaborating with Girguis since 2013.

    “We utilize similar approaches for in situ chemical sensing of methane and carbon dioxide,” says Michel. “We extract gases from seawater and then measure them using infrared spectroscopy or mass spectrometry. These instruments require much less gas than we aim to use here. In my own lab, we’re especially interested in finding ways to power sensors underwater. So, working with WHOI Engineer Jason Kapit, we are investigating ways to scale up our extraction processes.”

    Once the methane is in gas form the system combusts the gas to drive an engine and generator. This is a common approach to converting chemical energy from the gas to electrical energy, but this would be the first time it’s been done on the seafloor for re-charging vehicles and powering sensors.

    “The exhaust gases produced are cooled and recirculated back to the inlet of the generator,” explains Tom Bein, a principal engineer with MAPC. This novel approach, he says, minimizes the power required by the system which maximizes the energy available to recharge AUVs or to power sensor networks.

    The seafloor generator, depicted here, is designed to continuously generate one kilowatt of power from methane seeps—enough power to recharge AUVs on long-endurance missions without having to resurface. Credit: MAPC)

    From Girguis’ perspective, the new system will help address a key question that’s been lingering over the ocean science community for decades: How do we sustain our presence in the deep sea? The need for Autonomous Underwater Vehicles to travel over longer distances—and longer time periods—without having to surface to charge up is very real. Particularly in endurance-sapping applications like geologic surveys, search and rescue missions, and oil spill monitoring.

    Girguis sees value in the “cabled observatories we all clamored for” but says their capabilities are limited to the regions of the seafloor that they can reach. There have been advances in battery technologies, and in low-power instrument design, that have spurred the launch of new high-endurance vehicles. WHOI’s Long Range Autonomous Underwater Vehicles (LRAUVs), for example, are ultramarathoners: they can operate continuously for more than two weeks over a distance of 620 miles (1,000 kilometers).

    But Girguis says that for autonomous vehicles to reach their potential, they will ultimately need underwater charging capabilities. He refers to the concept as a “Supercharger Network”—a network of underwater charging ports that provides rapid charging for an AUV on a mission—ideally in remote and deep locations throughout the global ocean. These networks could also power underwater sensors and other instruments.

    “Today, we have vehicle charging stations that make it possible for us to drive cross-country with an electric car,” says Girguis. “If I had my druthers, we’d have a supercharger highway beneath the surface that helps keep AUVs going as far as they need to.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    Mission Statement

    The Woods Hole Oceanographic Institution is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges. WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.


    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

  • richardmitnick 10:13 am on January 8, 2019 Permalink | Reply
    Tags: , , , Infrared spectroscopy, , , ,   

    From SLAC National Accelerator Lab: “Study shows single atoms can make more efficient catalysts” 

    From SLAC National Accelerator Lab

    January 7, 2019
    Glennda Chui

    Scientists used a combination of four techniques, represented here by four incoming beams, to reveal in unprecedented detail how a single atom of iridium catalyzes a chemical reaction. (Greg Stewart/SLAC National Accelerator Laboratory)

    Detailed observations of iridium atoms at work could help make catalysts that drive chemical reactions smaller, cheaper and more efficient.

    Catalysts are chemical matchmakers: They bring other chemicals close together, increasing the chance that they’ll react with each other and produce something people want, like fuel or fertilizer.

    Since some of the best catalyst materials are also quite expensive, like the platinum in a car’s catalytic converter, scientists have been looking for ways to shrink the amount they have to use.

    Now scientists have their first direct, detailed look at how a single atom catalyzes a chemical reaction. The reaction is the same one that strips poisonous carbon monoxide out of car exhaust, and individual atoms of iridium did the job up to 25 times more efficiently than the iridium nanoparticles containing 50 to 100 atoms that are used today.

    The research team, led by Ayman M. Karim of Virginia Tech, reported the results in Nature Catalysis.

    “These single-atom catalysts are very much a hot topic right now,” said Simon R. Bare, a co-author of the study and distinguished staff scientist at the Department of Energy’s SLAC National Accelerator Laboratory, where key parts of the work took place. “This gives us a new lens to look at reactions through, and new insights into how they work.”

    Karim added, “To our knowledge, this is the first paper to identify the chemical environment that makes a single atom catalytically active, directly determine how active it is compared to a nanoparticle, and show that there are very fundamental differences – entirely different mechanisms – in the way they react.”

    Is smaller really better?

    Catalysts are the backbone of the chemical industry and essential to oil refining, where they help break crude oil into gasoline and other products. Today’s catalysts often come in the form of nanoparticles attached to a surface that’s porous like a sponge – so full of tiny holes that a single gram of it, unfolded, might cover a basketball court. This creates an enormous area where millions of reactions can take place at once. When gas or liquid flows over and through the spongy surface, chemicals attach to the nanoparticles, react with each other and float away. Each catalyst is designed to promote one specific reaction over and over again.

    But catalytic reactions take place only on the surfaces of nanoparticles, Bare said, “and even though they are very small particles, the expensive metal on the inside of the nanoparticle is wasted.”

    Individual atoms, on the other hand, could offer the ultimate in efficiency. Each and every atom could act as a catalyst, grabbing chemical reactants and holding them close together until they bond. You could fit a lot more of them in a given space, and not a speck of precious metal would go to waste.

    Single atoms have another advantage: Unlike clusters of atoms, which are bound to each other, single atoms are attached only to the surface, so they have more potential binding sites available to perform chemical tricks – which in this case came in very handy.

    Research on single-atom catalysts has exploded over the past few years, Karim said, but until now no one has been able to study how they function in enough detail to see all the fleeting intermediate steps along the way.

    Grabbing some help

    To get more information, the team looked at a simple reaction where single atoms of iridium split oxygen molecules in two, and the oxygen atoms then react with carbon monoxide to create carbon dioxide.

    They used four approaches­ – infrared spectroscopy, electron microscopy, theoretical calculations and X-ray spectroscopy with beams from SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) – to attack the problem from different angles, and this was crucial for getting a complete picture.


    SLAC SSRL Campus

    “It’s never just one thing that gives you the full answer,” Bare said. “It’s always multiple pieces of the jigsaw puzzle coming together.”

    The team discovered that each iridium atom does, in fact, perform a chemical trick that enhances its performance. It grabs a single carbon monoxide molecule out of the passing flow of gas and holds onto it, like a person tucking a package under their arm. The formation of this bond triggers tiny shifts in the configuration of the iridium atom’s electrons that help it split oxygen, so it can react with the remaining carbon monoxide gas and convert it to carbon dioxide much more efficiently.

    More questions lie ahead: Will this same mechanism work in other catalytic reactions, allowing them to run more efficiently or at lower temperatures? How do the nature of the single-atom catalyst and the surface it sits on affect its binding with carbon monoxide and the way the reaction proceeds?

    The team plans to return to SSRL in January to continue the work.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: