Tagged: Infrared Astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:16 am on October 27, 2021 Permalink | Reply
    Tags: "NASA’s Webb Will Join Forces with the Event Horizon Telescope to Reveal the Milky Way’s Supermassive Black Hole", , Infrared Astronomy, , ,   

    From NASA/ESA/CSA James Webb Space Telescope: “NASA’s Webb Will Join Forces with the Event Horizon Telescope to Reveal the Milky Way’s Supermassive Black Hole” 

    NASA Webb Header

    From NASA/ESA/CSA James Webb Space Telescope

    October 27, 2021

    MEDIA CONTACT:

    Leah Ramsay
    Space Telescope Science Institute, Baltimore, Maryland

    Christine Pulliam
    cpulliam@stsci.edu
    Space Telescope Science Institute, Baltimore, Maryland

    Multiwavelength View of Galactic Center
    1
    About This Image

    An enormous swirling vortex of hot gas glows with infrared light, marking the approximate location of the supermassive black hole at the heart of our Milky Way galaxy. This multiwavelength composite image includes near-infrared light captured by NASA’s Hubble Space Telescope, and was the sharpest infrared image ever made of the galactic center region when it was released in 2009.

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope

    Dynamic flickering flares in the region immediately surrounding the black hole, named Sagittarius A*, have complicated the efforts of the Event Horizon Telescope (EHT) collaboration to create a closer, more detailed image.

    EHT map.

    While the black hole itself does not emit light and so cannot be detected by a telescope, the EHT team is working to capture it by getting a clear image of the hot glowing gas and dust directly surrounding it.

    NASA’s upcoming James Webb Space Telescope, scheduled to launch in December 2021, will combine Hubble’s resolution with even more infrared light detection. In its first year of science operations, Webb will join with EHT in observing Sagittarius A*, lending its infrared data for comparison to EHT’s radio data, making it easier to determine when bright flares are present, producing a sharper overall image of the region.

    In the composite image shown here, colors represent different wavelengths of light. Hubble’s near-infrared observations are shown in yellow, revealing hundreds of thousands of stars, stellar nurseries, and heated gas. The deeper infrared observations of NASA’s Spitzer Space Telescope are shown in red, revealing even more stars and gas clouds. Light detected by NASA’s Chandra X-ray Observatory is shown in blue and violet, indicating where gas is heated to millions of degrees by stellar explosions and by outflows from the supermassive black hole.

    National Aeronautics and Space Administration(US) Spitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    National Aeronautics and Space Administration Chandra X-ray telescope(US)

    Credits:

    SCIENCE: NASA, ESA, Caltech SSC Spitzer Science Center (US), Chandra X-ray Center (US), STScI.

    Multiwavelength view of Sagittarius A* Compass Image
    2

    About This Image

    Credits: SCIENCE: NASA, ESA, SSC, CXC, STScI

    Summary
    Webb will tackle the challenge of the supermassive black hole’s puzzling flares, which have proved both intriguing and frustrating for astronomers.

    In its first year of operations, NASA’s James Webb Space Telescope will join forces with a global collaborative effort to create an image of the area directly surrounding the supermassive black hole at the heart of our Milky Way galaxy. The Event Horizon Telescope (EHT) is famous for its first image of the “shadow” of the black hole at the core of galaxy Messier 87, and it has now turned its efforts to the more complex environment of Sagittarius A*, the Milky Way’s supermassive black hole. While Messier 87’s core presented a steady target, Sagittarius A* exhibits mysterious flickering flares on an hourly basis, which make the imaging process much more difficult. Webb will assist with its own infrared images of the black hole region, providing data about when flares are present that will be a valuable reference to the EHT team.
    ___________________________________________________________________________

    On isolated mountaintops across the planet, scientists await word that tonight is the night: The complex coordination between dozens of telescopes on the ground and in space is complete, the weather is clear, tech issues have been addressed—the metaphorical stars are aligned. It is time to look at the supermassive black hole at the heart of our Milky Way galaxy.

    This “scheduling Sudoku,” as the astronomers call it, happens each day of an observing campaign by the Event Horizon Telescope (EHT) collaboration, and they will soon have a new player to factor in; NASA’s James Webb Space Telescope will be joining the effort. During Webb’s first slate of observations, astronomers will use its infrared imaging power to address some of the unique and persistent challenges presented by the Milky Way’s black hole, named Sagittarius A* (Sgr A*; the asterisk is pronounced as “star”).

    In 2017, EHT used the combined imaging power of eight radio telescope facilities across the planet to capture the historic first view of the region immediately surrounding a supermassive black hole, in the galaxy Messier 87.

    Messier 87*, The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via The Event Horizon Telescope Collaboration released on 10 April 2019 via National Science Foundation(US).

    Sgr A* is closer but dimmer than Messier 87’s black hole, and unique flickering flares in the material surrounding it alter the pattern of light on an hourly basis, presenting challenges for astronomers.

    “Our galaxy’s supermassive black hole is the only one known to have this kind of flaring, and while that has made capturing an image of the region very difficult, it also makes Sagittarius A* even more scientifically interesting,” said astronomer Farhad Yusef-Zadeh, a professor at Northwestern University(US) and principal investigator on the Webb program to observe Sgr A*.

    The flares are due to the temporary but intense acceleration of particles around the black hole to much higher energies, with corresponding light emission. A huge advantage to observing Sgr A* with Webb is the capability of capturing data in two infrared wavelengths (F210M and F480M) simultaneously and continuously, from the telescope’s location beyond the Moon. Webb will have an uninterrupted view, observing cycles of flaring and calm that the EHT team can use for reference with their own data, resulting in a cleaner image.

    The source or mechanism that causes Sgr A*’s flares is highly debated. Answers as to how Sgr A*’s flares begin, peak, and dissipate could have far-reaching implications for the future study of black holes, as well as particle and plasma physics, and even flares from the Sun.

    “Black holes are just cool,” said Sera Markoff, an astronomer on the Webb Sgr A* research team and currently vice chairperson of EHT’s Science Council. “The reason that scientists and space agencies across the world put so much effort into studying black holes is because they are the most extreme environments in the known universe, where we can put our fundamental theories, like general relativity, to a practical test.”

    Black holes, predicted by Albert Einstein as part of his general theory of relativity, are in a sense the opposite of what their name implies—rather than an empty hole in space, black holes are the most dense, tightly-packed regions of matter known. A black hole’s gravitational field is so strong that it warps the fabric of space around itself, and any material that gets too close is bound there forever, along with any light the material emits. This is why black holes appear “black.” Any light detected by telescopes is not actually from the black hole itself, but the area surrounding it. Scientists call the ultimate inner edge of that light the event horizon, which is where the EHT collaboration gets its name.

    The EHT image of Messier 87 was the first direct visual proof that Einstein’s black hole prediction was correct. Black holes continue to be a proving ground for Einstein’s theory, and scientists hope carefully scheduled multi-wavelength observations of Sgr A* by EHT, Webb, X-ray, and other observatories will narrow the margin of error on general relativity calculations, or perhaps point to new realms of physics we don’t currently understand.

    As exciting as the prospect of new understanding and/or new physics may be, both Markoff and Zadeh noted that this is only the beginning. “It’s a process. We will likely have more questions than answers at first,” Markoff said. The Sgr A* research team plans to apply for more time with Webb in future years, to witness additional flaring events and build up a knowledge base, determining patterns from seemingly random flares. Knowledge gained from studying Sgr A* will then be applied to other black holes, to learn what is fundamental to their nature versus what makes one black hole unique.

    So the stressful scheduling Sudoku will continue for some time, but the astronomers agree it’s worth the effort. “It’s the noblest thing humans can do, searching for truth,” Zadeh said. “It’s in our nature. We want to know how the universe works, because we are part of the universe. Black holes could hold clues to some of these big questions.”

    NASA’s Webb telescope will serve as the premier space science observatory for the next decade and explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, and everything in between. Webb will reveal new and unexpected discoveries, and help humanity understand the origins of the universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for October 2021.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRspec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 12:55 pm on October 26, 2021 Permalink | Reply
    Tags: , , , , Infrared Astronomy,   

    From The University of California-Santa Cruz (US) : “As launch of James Webb Space Telescope nears astronomers anticipate new era of discoveries” 

    From The University of California-Santa Cruz (US)

    October 26, 2021
    Tim Stephens
    (831) 459-4352
    stephens@ucsc.edu

    National Aeronautics Space Agency(USA)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope(US) James Webb Space Telescope annotated. Scheduled for launch in October 2021 delayed to December 2021.

    UCSC astronomers will be among the first to use the powerful new space telescope, and have been involved in the project from the start.

    NASA’s James Webb Space Telescope (JWST), scheduled to launch December 18 from the European Spaceport in French Guiana, is the largest, most powerful and complex telescope ever launched into space. The $10 billion infrared telescope will complement and extend the discoveries of the Hubble Space Telescope, providing greater sensitivity with its much larger primary mirror and capturing longer wavelengths of light.

    “JWST is so much more powerful than our best current telescopes—100 times Hubble—it’s going to impact every area of astronomy, just like Hubble did,” said Garth Illingworth, a distinguished professor emeritus of astronomy and astrophysics at UC Santa Cruz. “And when you look at the UCSC astronomy group, there’s no doubt we are well positioned to play a major role in this mission, as we’ve done with Hubble.”

    Illingworth himself has been a key player in JWST’s long journey from concept to completion—leading initial planning studies, chairing important advisory committees such as the JWST Science Advisory Committee (JSTAC), which he chaired for 8 years, and most recently serving as an external advisor on JWST to the director of NASA Goddard Space Flight Center. JSTAC played a key role in maximizing the science return from JWST by, for example, defining the Early Release Science program, which gives astronomers quick access to fully open, public data, as well as advising NASA on the resources needed to fund JWST’s science programs.

    Seeing the telescope as it underwent final tests before being shipped to the launch site, Illingworth couldn’t help but think back to his work more than three decades ago on what was then called the Next Generation Space Telescope (NGST). At the time, he was deputy director of the Space Telescope Science Institute (STScI), and Hubble had not even been launched yet.

    “It’s a little unbelievable to see it finished,” he said. “Although the details of the implementation are very different, the core features of the concept we came up with in 1987 is basically what we’re flying.”

    JWST will probe the earliest, most distant galaxies in the universe, peer into stellar nurseries shrouded in dust, and observe faint planets orbiting nearby stars, opening new windows for exploring every phase of cosmic history.

    The telescope’s 21-foot (6.5-meter) primary mirror enables it to gather more light from faint objects than Hubble’s 8-foot (2.4-meter) mirror, and its infrared vision, capturing wavelengths longer than visible light but shorter than radio waves, gives it unprecedented powers. Ultraviolet and visible light emitted by the first stars more than 13 billion years ago has been stretched by the expansion of the universe and is reaching us today as infrared light. Infrared light also penetrates the clouds of gas and dust in which stars and planets form.

    Other worlds

    UCSC astronomers will be involved in projects within each of the four main science themes JWST will study (first stars and galaxies, galaxies over time, lifecycle of stars, and planetary systems). A large group of UCSC astronomers is studying planets around other stars (exoplanets), one of the most exciting areas in which JWST is expected to open new territory.

    “It’s going to be transformational,” said Jonathan Fortney, professor of astronomy and astrophysics and director of the Other Worlds Laboratory at UCSC. “JWST will revolutionize the field in terms of telling us about the atmospheres of exoplanets in a way we haven’t been able to do before. Hubble is great, but it was never designed to get spectra of exoplanets.”

    A spectrum shows the wavelengths of light from an object and can be used to identify the molecules present in a planet’s atmosphere. Infrared spectra from JWST’s instruments will reveal the chemical fingerprints of exoplanet atmospheres. “Infrared is good for seeing things like water, methane, ammonia—really common molecules in our solar system that we will now be able to see in other planetary systems,” Fortney said.

    UCSC astronomers will be leading the first observations of exoplanets with JWST through the Early Release Science (ERS) program.

    Exoplanet hub

    “We’re on the threshold of a new decade of exoplanet observations that will be characterized by the study of their atmospheres, and UCSC is a hub for atmospheric exoplanet science,” said Natalie Batalha, professor of astronomy and astrophysics and principal investigator of an ERS program to study transiting exoplanets.

    A transiting exoplanet is one that passes in front of its host star, allowing astronomers to analyze light filtered through the planet’s atmosphere.

    Planet transit. NASA/Ames

    Direct imaging of exoplanets is the focus of another ERS program co-led by Associate Professor Andrew Skemer.

    Example of direct imaging-This false-color composite image traces the motion of the planet Fomalhaut b, a world captured by direct imaging. Credit: NASA, ESA, and P. Kalas, University of California-Berkeley and SETI Institute.

    Skemer explained that the ERS programs are intended to give the astronomy community a quick assessment of the performance of the telescope’s instruments in each of their specific observation modes.

    “The exoplanet observations are unusual compared to other JWST observations. For transits you need very precise time series, and for direct imaging you have to subtract the glare of the star so you can see the faint planet,” he said. “There’s never been a telescope like JWST before, so figuring out how to do this optimally is very important, and we want to get these important datasets into the hands of the community as soon as possible. In the process, we’ll be doing some interesting science.”

    In addition to the ERS programs, UCSC astronomers will be involved in a broad range of projects in JWST’s Cycle 1 programs, including several major exoplanet studies. Batalha said she is particularly excited to learn more about the abundant “super-Earths” found by NASA’s Kepler Mission, for which she was project scientist.

    NASA Kepler Space Telescope (US).

    “Kepler taught us that the diversity of exoplanets far exceeds the diversity in our own solar system,” she said. “The most common type of exoplanets are these super-Earths or sub-Neptunes that are intermediate in size between terrestrial planets and giant planets. We need to understand what those planets are like, because that has significant implications for understanding the propensity for life in the galaxy.”

    Batalha, who leads a NASA Interdisciplinary Consortium for Astrobiology Research, will also be collaborating Natasha Batalha at NASA Ames Research Center, the principal investigator of the largest exoplanet program in Cycle 1 (and Natalie’s daughter). Fortney, Skemer, and Aarynn Carter, a postdoctoral scholar working with both Batalha and Skemer, will be leading several other exoplanet projects, including a search for newly formed planets lurking in the disks of protoplanetary material observed around some stars.

    “We’re going to be James Webb exoplanet central here,” Skemer said. “And that’s just the exoplanet research.”

    First galaxies

    UCSC astronomers are also key players in investigations of the earliest galaxies. Professor of Astronomy and Astrophysics Brant Robertson is involved in several major programs using JWST to map the distribution of galaxies in the early universe and study how the first galaxies formed and evolved over time. With its infrared vision and large mirror, JWST will be a powerful time machine, peering deeper into the universe and further back in time than ever before possible.

    Robertson serves on the steering committee for the largest single program in Cycle 1, the JWST Advanced Deep Extragalactic Survey (JADES), a collaboration between two instrument teams that will use about 800 hours of observing time. As part of the Guaranteed Time Observations program, the JADES collaboration will retain the data for an initial exclusive access period.

    “JADES is designed so we can take deep images to find the most distant galaxies, and then follow up by taking spectra of those galaxies, which will allow us to pinpoint their ages and measure all kinds of amazing properties, such as how fast they are making stars and how rich in metals they are,” he said. “We will be able to look at the first population of galaxies in the universe and say what they are and how they came to be.”

    Robertson is also the lead theorist for the COSMOS-Webb galaxy survey, the largest of the Cycle 1 General Observer Programs, with more than 200 hours of observing time, and is a co-investigator of PRIMER, a major public Treasury Program. Each of these complementary galaxy surveys will make important contributions to understanding the story of how galaxies formed in the early universe. COSMOS covers the widest area but not as deeply as the other surveys, PRIMER is the next biggest in area and goes slightly deeper, and JADES goes even deeper and adds spectroscopy to tease out the properties of the galaxies.

    “They’re like the tiers of a wedding cake, and we’ll be learning different things about the galaxy population with each one,” Robertson said.

    Illingworth is involved in “first galaxies” projects, too, including serving as the U.S. lead for PRIMER and another international Treasury Program (FRESCO), both of which, like the ERS programs, will provide unrestricted data access. Illingworth’s team pushed Hubble and the Spitzer Space Telescope to their limits to capture the most distant galaxies ever observed.

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope

    National Aeronautics and Space Administration(US) Spitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Now JWST is poised to go much further and transform our understanding of the earliest galaxies. Illingworth said he expects JWST to yield new discoveries even in its first few days of observations.

    “It’s so astonishingly powerful, it will answer a lot of questions about how the first galaxies are growing in the first 1 to 2 percent of the life of the universe,” he said. “First galaxies were at the heart of what JWST was conceived to do over 20 years ago. Tackling this incredibly challenging problem is going to be so exciting.”

    Neutron stars

    Other UCSC faculty leading JWST observations include astrophysicist Ryan Foley, whose team will be using the space telescope for follow-up observations of gravitational wave sources, capturing infrared light from the “kilonova” explosion when two neutron stars collide. “It’s really an exciting program,” he said. “We need JWST’s unique capability to go deeper into the infrared and capture a real picture of what’s going on in these events.”

    Like many projects of this size and complexity, JWST was plagued by delays and cost overruns. Illingworth has been in the thick of it in his various roles, responding to funding crises and advising Congress and NASA administrators to help keep the project moving forward. Under-budgeting was at the root of many issues, he said. “Every project needs to carry large enough reserves so you have money available to fix problems immediately when they arise, because the costs go up so fast whenever there are delays,” he said.

    Now that the telescope is finally ready for launch, the anticipation is mounting for astronomers at UCSC and throughout the world.

    “In certain fields, JWST is going to blow everything else away,” Skemer said. “Some types of observations we will never do from the ground again.”

    JWST is an international collaboration between NASA, the European Space Agency, and the Canadian Space Agency. The Space Telescope Science Institute (US) will operate the telescope after launch. It will take about a month to get the telescope and its sunshield deployed and settled into its orbit 1 million miles from Earth, and another 5 months to get JWST fully commissioned and operational before it can begin observations.

    Received via email .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz (US) campus.

    The University of California-Santa Cruz (US) , opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    UC Santa Cruz (US) Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)
    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    Alumna Shelley Wright, now an assistant professor of physics at UC San Diego (US), discusses the dichroic filter of the NIROSETI instrument, developed at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) and brought to UCSD and installed at the UC Santa Cruz (US) Lick Observatory Nickel Telescope (Photo by Laurie Hatch). “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego (US) who led the development of the new instrument while at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA).

    Shelley Wright of UC San Diego with (US) NIROSETI, developed at U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz
    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, UCSD; Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley (US) researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    Drake Equation, Frank Drake, Seti Institute (US).

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

     
  • richardmitnick 12:45 pm on October 14, 2021 Permalink | Reply
    Tags: "UArizona Astronomers to Help NASA's James Webb Space Telescope Peer into Space's Past", Infrared Astronomy, The Hubble and Spitzer Space Telescopes revolutionized our understanding of the cosmos but with Webb we'll be able to probe galaxies much closer to the Big Bang than ever before., The university's strength in this field allowed it to successfully compete for observing time on the new telescope., UArizona husband-and-wife researchers Marcia and George Rieke who both have leadership roles in the James Webb Space Telescope have worked toward this moment for two decades.,   

    From University of Arizona (US) : “UArizona Astronomers to Help NASA’s James Webb Space Telescope Peer into Space’s Past” 

    From University of Arizona (US)

    10.12.21
    Daniel Stolte

    Following a brief ocean voyage, NASA’s new flagship space observatory has arrived in French Guinea, where it will be readied for launch atop an Ariane 5 rocket on Dec. 18. University of Arizona astronomers played key roles in designing and building the telescope’s infrared “eyes” that will allow it to peer deeper into the cosmos than any telescope before.

    National Aeronautics Space Agency(USA)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope(US) James Webb Space Telescope annotated. Scheduled for launch in October 2021.Delayed to December 2021.

    The worlds largest and most complex space science observatory will now be driven to its launch site, Europe’s Spaceport in Kourou, where it will begin two months of operational preparations before its launch. At the launch site, the telescope will be stowed folded inside the nose cone on top of an Ariane 5 rocket, designed to protect the space observatory from the air blast and the drastic drop in temperature as the rocket lifts off and leaves Earth behind in the span of a few minutes.

    University of Arizona husband-and-wife researchers Marcia and George Rieke who both have leadership roles in the James Webb Space Telescope have worked toward this moment for two decades. However, because of the launch site’s remote location, access to the site is extremely limited, and even the Riekes will have to attend the launch virtually with their research teams at UArizona.

    Though it is often billed as the “successor” to NASA’s Hubble Space Telescope, the James Webb Space Telescope – or Webb, as astronomers like to call it – is an entirely new and different beast, according to Marcia Rieke, a Regents Professor of Astronomy at the University of Arizona’s Steward Observatory.

    “The Hubble and Spitzer Space Telescopes revolutionized our understanding of the cosmos,” she said. “But with Webb, we’ll be able to probe galaxies much closer to the Big Bang than ever before.”

    Marcia Rieke is principal investigator for the Near Infrared Camera, or NIRCam, which sits at the heart of the Webb Telescope. She led the development of the instrument, which was conceived to carry out the telescope’s original purpose: to discover what astronomers refer to as “first light” galaxies at the moment of their formation in the very early universe.

    “We can currently see galaxies back to 500 to 600 million years post-Big Bang, nearly 13 billion years ago,” Marcia Rieke said. “And even though the universe was so young at that time, the things we see still look pretty familiar – lots of stars have formed, there are supermassive black holes, quasars and so on.

    “However, logic dictates that at some point during the first few hundred million years, these familiar-looking objects must have come from somewhere and evolved,” she explained. “After all, galaxies don’t spring up from nothing, virtually overnight.”

    Her team will work with the Webb spectrometer team to peer into this formative stage of the familiar present-day universe. Because the universe is expanding, light from the earliest galaxies has been stretched, or “redshifted,” from visible light into longer wavelength infrared light, which is invisible to the human eye. NIRCam will be able to visualize infrared light, making the instrument essential to examining the early phases of star and galaxy formation, and studying the shapes and colors of distant galaxies.

    George Rieke, also a Regents Professor of Astronomy, is science team lead for the Mid-Infrared Instrument, or MIRI, built by a consortium of European scientists and engineers and JPL/Caltech-NASA (US).

    European Space Agency [Agence spatiale européenne](EU) Webb MIRI schematic.

    MIRI was added to Webb to expand the telescope’s reach even farther into the infrared spectrum and enable many additional investigations. Two other instruments, supplied by the European and Canadian Space Agencies, round out Webb’s scientific package.

    The University of Arizona’s leadership of two of Webb’s core instruments is a family affair for the Riekes, but it also reflects the university’s 60 years of leadership in infrared astronomy. The university’s strength in this field allowed it to successfully compete for observing time on the new telescope. The combined time allocated by NASA to the two University of Arizona instrument teams and other University of Arizona astronomers accounts for 13% of the total observing time awarded, giving University of Arizona more time than any other astronomy center in the world.

    “The university’s contributions to the design and development of advanced instrumentation aboard the JWST is a testament to our bold, inventive approach to astronomy,” said Elizabeth “Betsy” Cantwell, University of Arizona senior vice president for research and innovation. “This telescope has the potential to answer some truly wondrous and fundamental questions about the characteristics of faraway planets and the origins of the universe itself; I am confident it will transform our understanding of the cosmos, and proud of the role of University of Arizona researchers in that feat.”

    Bigger, Colder and Sharper

    3
    A sensor array for the NIRCam instrument, designed and tested by Marcia Rieke’s research group at Steward Observatory. Credit: Marcia Rieke.

    Webb is revolutionary for astronomy because it will be both cold and large.

    “Getting into space is critical for infrared astronomy,” said George Rieke, explaining that while observing in the infrared with ground-based telescopes is possible, the effort is plagued by heat “noise” coming from the instrument itself, as well as the atmosphere.

    “Astronomical sources have to be detected against this overwhelming and highly variable foreground, so it’s a bit like trying to find a match in a blast furnace,” he said.

    Ground-based telescopes can’t be cooled down enough to get rid of their heat emission, he explained, as water would condense on them and blind them. However, in the vacuum of space, this is not a problem, allowing the Webb Telescope to shed its heat energy until it reaches a temperature of minus 234 degrees Celsius, or minus 390 degrees Fahrenheit. A tennis-court-sized sunshade shields the telescope from the heat emanating from the sun, Earth and moon.

    Previous infrared space telescopes, such as the Spitzer Space Telescope, have also worked this way, but compared to Webb, Spitzer was tiny – just 34 inches in diameter, compared to Webb’s 21 feet.

    National Aeronautics and Space Administration(US) Spitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Not only does Webb’s huge size boost its sensitivity, it also makes the images captured by the telescope much sharper. However, 21 feet is too much to fit into any rocket cone. Therefore, Webb will be folded up to be as slim as possible, similar to a closed umbrella.

    Towering more than 150 feet above the ground and overlooking murky, shallow waters of an expansive bay on the Atlantic coast, the Ariane 5 rocket that will carry Webb into space weighs 780 tons. Its two boosters stand more than 100 feet tall, each packing 238 metric tons of solid propellant. Once in space, Webb will unfold, its instruments will be thoroughly checked and calibrated, and the mirror will be adjusted to optical perfection. This happens during a six-month period after which the telescope will be a million miles from Earth, four times farther away than the moon. This special point in space will allow Webb to fly effortlessly with the Earth around the sun, making it possible for the telescope to radio its huge amount of data back to Earth.

    The worldwide astronomical community will be nervously watching Webb’s journey at every stage, the Riekes said.

    “Anyone asking us astronomers what we want to do with Webb would be greeted by an enthusiastic chorus of excited voices,” George Rieke said.

    Veterans in Infrared Astronomy

    The Riekes are veterans in the infrared astronomy world, and Webb is not the first space telescope mission for them. Marcia Rieke was deputy principal investigator to University of Arizona professor Rodger Thompson on the NICMOS instrument installed in the Hubble Space Telescope in 1997.

    NASA/Hubble NICMOS

    George Rieke led the development of the Multiband Imaging Photometer, a far-infrared instrument on NASA’s Spitzer Space Telescope, which launched in 2003.

    4
    MIPS (Multiband Imaging Photometer for Spitzer.

    “The gains that Webb gives us over Spitzer, which until now has been the most powerful space infrared telescope, are nearly 100 times in sensitivity, nearly 100 times in angular resolution element, and, with modern arrays of infrared detectors, more than 100 times in number of pixels,” George Rieke said.

    Marcia Rieke added: “Making full use of such an advance might boggle astronomers’ imaginations, but not for our local astronomers, who saw the potential to make huge leaps in understanding scientific puzzles they had pursued for years, from the formation of supermassive black holes and emergence of the first galaxies in the universe, to the growth of young stars and the properties of exoplanets resembling our own solar system.”

    University of Arizona President Robert C. Robbins said George and Marcia Rieke embody the University of Arizona’s spirit of determination.

    “At a time when infrared astronomy was widely dismissed as being too difficult, they insisted on pushing the technology,” Robbins said. “Driven by the discoveries they foresaw, they kept chipping away at the challenges, and in the process, they helped establish infrared astronomy – one of astronomy’s most fruitful subdisciplines – right here in Tucson.”

    The James Webb Space Telescope is an international partnership of The National Aeronautics and Space Agency (US), The European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) and The Canadian Space Agency [Agence Spatiale Canadienne](CA), with contributions from 26 research organizations, three space agencies and 11 countries. Partners include The Goddard Space Flight Center | NASA (US), JPL/Caltech-NASA (US),The Space Telescope Science Institute (US), Northrop Grumman, EADS–Astrium and Raytheon.

    Bill Ochs, Webb project manager at NASA’s Goddard Space Flight Center, had this to say about the achievement of launching the largest and most advanced telescope ever put into space: “After completing the final steps of the James Webb Space Telescope’s testing regimen, I can’t help but see the reflections of the thousands of individuals who have dedicated so much of their lives to Webb, every time I look at that beautiful gold (telescope) mirror.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    As of 2019, the University of Arizona (US) enrolled 45,918 students in 19 separate colleges/schools, including the UArizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). UArizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association(US). The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), the UArizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. UArizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved the UArizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university (Arizona State University(US) was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by they time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    UArizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration(US) for research. UArizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally. The UArizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. UArizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter. While using the HiRISE camera in 2011, UArizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. UArizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech(US)-funded universities combined. As of March 2016, the UArizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    UArizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    UArizona is a member of the Association of Universities for Research in Astronomy(US), a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory(US) just outside Tucson. Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at UArizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope(CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    Giant Magellan Telescope, 21 meters, to be at the NOIRLab(US) National Optical Astronomy Observatory(US) Carnegie Institution for Science’s(US) Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.


    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at UArizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Administration(US) mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, the UArizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory(US), a part of UArizona Department of Astronomy Steward Observatory(US), operates the Submillimeter Telescope on Mount Graham.

    The National Science Foundation(US) funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.
    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 9:53 am on September 22, 2021 Permalink | Reply
    Tags: "NASA’s Webb to Explore Forming Planetary Systems", , , , Infrared Astronomy, ,   

    From NASA/ESA/CSA James Webb Space Telescope: “NASA’s Webb to Explore Forming Planetary Systems” 

    NASA Webb Header

    From NASA/ESA/CSA James Webb Space Telescope

    September 22, 2021

    RELEASE: National Aeronautics Space Agency (US), The European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), Canadian Space Agency [Agence Spatiale Canadienne](CA)

    MEDIA CONTACT:

    Claire Blome
    claire.blome@gmail.com
    Space Telescope Science Institute, Baltimore, Maryland

    Christine Pulliam
    cpulliam@stsci.edu
    Space Telescope Science Institute, Baltimore, Maryland

    1
    ALMA’s Survey of Protoplanetary Disks
    About This Image

    The researchers will use NASA’s James Webb Space Telescope to survey 17 of the 20 nearby protoplanetary disks observed by Chile’s Atacama Large Millimeter/submillimeter Array (ALMA) in 2018 for its Disk Substructures at High Angular Resolution Project (DSHARP).

    ALMA delivered excellent data about the outer disks, but Webb will detail the inner disks by delivering spectra, which spread light out into a rainbow, revealing the chemical compositions of each object.
    Credits:

    SCIENCE: Nicolas Lira, S. Andrews. ALMA, ESO, NAOJ, NRAO.

    2
    Simulated Spectrum of a Protoplanetary Disk.
    About This Image
    The James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) will deliver incredibly rich information about the molecules that are present in the inner disks of still-forming planetary systems (known as protoplanetary disks).

    This simulated spectrum, which produces a detailed pattern of colors based on the wavelengths of light emitted, helps researchers take inventories of each molecule. This spectrum shows how much of the gasses like methane, ammonia, and carbon dioxide exist. Most of the unidentified features are water. Since spectra are teeming with details, they will help astronomers draw conclusions about the system’s contents as planets form.
    Credits:

    SCIENCE: NASA, ESA, CSA
    ARTWORK: Leah Hustak

    Summary:
    Researchers will observe more than a dozen protoplanetary systems to gather data about their inner disks – where Earth-like planets may be forming

    What was our Solar System like as it was forming billions of years ago? Over time, particles bumped into one another, building ever-larger rocks. Eventually, these rocks got big enough to form planets. We have some basic understanding of planet formation, but we don’t know the details – especially details about the solar system’s early chemical composition, and how it may have changed with time. And how did water make its way to Earth? While we can’t time travel to get the answers, we can detail how other planetary systems are forming right now – and learn quite a lot. Researchers will train one of Webb’s powerful instruments on the inner regions of 17 bright, actively forming planetary systems to begin to build an inventory of their contents. Element by element, they – along with researchers around the world – will be able to uncover what’s present and how the disks’ chemical makeup affects their contents, including planets that may be forming.
    _____________
    Planetary systems take millions of years to form, which introduces quite a challenge for astronomers. How do you identify which stage they are in, or categorize them? The best approach is to look at lots of examples and keep adding to the data we have – and NASA’s upcoming James Webb Space Telescope will be able to provide an infrared inventory. Researchers using Webb will observe 17 actively forming planetary systems. These particular systems were previously surveyed by the Atacama Large Millimeter/submillimeter Array (ALMA), the largest radio telescope in the world, for the Disk Substructures at High Angular Resolution Project (DSHARP
    ).

    Webb will measure spectra that can reveal molecules in the inner regions of these protoplanetary disks, complementing the details ALMA has provided about the disks’ outer regions. These inner regions are where rocky, Earth-like planets can start to form, which is one reason why we want to know more about which molecules exist there.

    A research team led by Colette Salyk of Vassar College (US) in Poughkeepsie, New York, and Klaus Pontoppidan of the Space Telescope Science Institute (US) in Baltimore, Maryland, seek the details found in infrared light. “Once you switch to infrared light, specifically to Webb’s range in mid-infrared light, we will be sensitive to the most abundant molecules that carry common elements,” explained Pontoppidan.

    Researchers will be able to assess the quantities of water, carbon monoxide, carbon dioxide, methane, and ammonia – among many other molecules – in each disk. Critically, they will be able to count the molecules that contain elements essential to life as we know it, including oxygen, carbon, and nitrogen. How? With spectroscopy: Webb will capture all the light emitted at the center of each protoplanetary disk as a spectrum, which produces a detailed pattern of colors based on the wavelengths of light emitted. Since every molecule imprints a unique pattern on the spectrum, researchers can identify which molecules are there and build inventories of the contents within each protoplanetary disk. The strength of these patterns also carries information about the temperature and quantity of each molecule.

    “Webb’s data will also help us identify where the molecules are within the overall system,” Salyk said. “If they’re hot, that implies they are closer to the star. If they’re cooler, they may be farther away.” This spatial information will help inform models that scientists build as they continue examining this program’s data.

    Knowing what’s in the inner regions of the disks has other benefits as well. Has water, for example, made it to this area, where habitable planets may be forming? “One of the things that’s really amazing about planets – change the chemistry just a little bit and you can get these dramatically different worlds,” Salyk continued. “That’s why we’re interested in the chemistry. We’re trying to figure out how the materials initially found in a system may end up as different types of planets.”

    If this sounds like a significant undertaking, do not worry – it will be a community effort. This is a Webb Treasury Program, which means that the data is released as soon as it’s taken to all astronomers, allowing everyone to immediately pull the data, begin assessing what’s what in each disk, and share their findings.

    “Webb’s infrared data will be intensively studied,” added co-investigator Ke Zhang of the University of Wisconsin–Madison. “We want the whole research community to be able to approach the data from different angles.”

    Why the Up-Close Examination?

    Let’s step back, to see the forest for the trees. Imagine you are on a research boat off the coast of a distant terrain. This is the broadest view. If you were to land and disembark, you could begin counting how many trees there are and how many of each tree species. You could start identifying specific insects and birds and match up the sounds you heard offshore to the calls you hear under the treetops. This detailed cataloging is very similar to what Webb will empower researchers to do – but swap trees and animals for chemical elements.

    The protoplanetary disks in this program are very bright and relatively close to Earth, making them excellent targets to study. It’s why they were surveyed by ALMA. It’s also why researchers studied them with NASA’s Spitzer Space Telescope.

    These objects have only been studied in depth since 2003, making this a relatively newer field of research. There’s a lot Webb can add to what we know.

    The telescope’s Mid-Infrared Instrument (MIRI) [schematic above] provides many advantages. Webb’s location in space means that it can capture the full range of mid-infrared light (Earth’s atmosphere filters it out). Plus, its data will have high resolution, which will reveal many more lines and wiggles in the spectra that the researchers can use to tease out specific molecules.

    The researchers were also selective about the types of stars chosen for these observations. This sample includes stars that are about half the mass of the Sun to about twice the mass of the Sun. Why? The goal is to help researchers learn more about systems that may be like our own as it formed. “With this sample, we can start to determine if there are any common features between the disks’ properties and their inner chemistry,” Zhang continued. “Eventually, we want to be able to predict which types of systems are more likely to generate habitable planets.”

    Beginning to Answer Big Questions

    This program may also help researchers begin to answer some classic questions: Are the forms taken by some of the most abundant elements found in protoplanetary disks, like carbon, nitrogen, and oxygen, “inherited” from the interstellar clouds that formed them? Or does the precise mix of chemicals change over time? “We think we can get to some of those answers by making inventories with Webb,” Pontoppidan explained. “It’s obviously a tremendous amount of work to do – and cannot be done only with these data – but I think we are going to make some major progress.”

    Thinking even more broadly about the incredibly rich spectra Webb will provide, Salyk added, “I’m hoping that we’ll see things that surprise us and then begin to study those serendipitous discoveries.”

    This research will be conducted as part of Webb General Observer (GO) programs, which are competitively selected using a dual-anonymous review system, the same system that is used to allocate time on the Hubble Space Telescope.

    The James Webb Space Telescope will be the world’s premier space science observatory when it launches in 2021. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for October 2021.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRspec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 3:23 pm on August 26, 2021 Permalink | Reply
    Tags: , A core-collapse supernova occurs when a massive star more than 10 times the mass of our sun runs out of fuel and its core collapses into a black hole or neutron star., A thermonuclear supernova occurs when a white dwarf star — the remains of a star up to eight times the mass of the sun — explodes., Above: two known types of supernovae., Explaining the "Crab Nebula" supernova remnant, In 1980 Ken’ichi Nomoto at The University of Tokyo[(東京大] (JP) predicted a third type called an electron capture supernova., Infrared Astronomy, , , Supernova 2018zd was detected in March 2018 about three hours after the explosion., Supernova 2018zd was detected in March 2018 by Hubble and Spitzer and confirmed by Keck, The Keck spectra observed clearly confirm that SN 2018zd is our best candidate to be an electron capture supernova., ,   

    From University of California-Davis (US): ” ‘New’ Third Type of Supernova Observed” 

    UC Davis bloc

    From University of California-Davis (US)

    June 28, 2021 [brorght forward today 8.26.21]

    Stefano Valenti, Physics and Astronomy
    University of California-Davis
    424-270-4461,
    stfn.valenti@gmail.com

    Andy Fell
    News and Media Relations
    530-304-8888,
    ahfell@ucdavis.edu

    1
    Supernova 2018zd, marked with a white circle on the outskirts of galaxy NGC2146, is the first example of a new, third type of supernova predicted 40 years ago. Composite image with data from the NASA/ESA Hubble Space Telescope, Las Cumbres Observatory Global Telescope Network, and other sources. (Joseph Depasquale, Space Telescope Science Institute (US)).

    An international team of astronomers has observed the first example of a new type of supernova. The discovery, confirming a prediction made four decades ago, could lead to new insights into the life and death of stars. The work is published June 28 in Nature Astronomy.

    “One of the main questions in astronomy is to compare how stars evolve and how they die,” said Stefano Valenti, professor of physics and astronomy at the University of California-Davis, and a member of the team that discovered and described supernova 2018zd. “There are many links still missing, so this is very exciting.”

    There are two known types of supernova. A core-collapse supernova occurs when a massive star more than 10 times the mass of our sun runs out of fuel and its core collapses into a black hole or neutron star. A thermonuclear supernova occurs when a white dwarf star — the remains of a star up to eight times the mass of the sun — explodes.

    In 1980 Ken’ichi Nomoto of the The University of Tokyo[(東京大] (JP) predicted a third type called an electron capture supernova.

    What keeps most stars from collapsing under their own gravity is the energy produced in their central core. In an electron capture supernova, as the core runs out of fuel, gravity forces electrons in the core into their atomic nuclei, causing the star to collapse in on itself.

    Evidence from late spectrum

    Supernova 2018zd was detected in March 2018 about three hours after the explosion. Archival images from the Hubble Space Telescope and Spitzer Space Telescope showed a faint object that was likely the star before explosion.

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU) Hubble Space Telescope

    National Aeronautics and Space Administration(US) Spitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    The supernova is relatively close to Earth, at a distance of about 31 million light years in galaxy NGC2146.

    The team, led by Daichi Hiramatsu, graduate student at The University of California-Santa Barbara (US) and Las Cumbres Observatory, collected data on the supernova over the next two years. Astronomers from UC Davis, including Valenti and graduate students Azalee Bostroem and Yize Dong, contributed a spectral analysis of the supernova two years after the explosion, one of the lines of evidence demonstrating that 2018zd was an electron capture supernova.

    “We had a really exquisite, really complete dataset following its rise and fade,” Bostroem said. That included very late data collected with the 10-meter telescope at the W.M. Keck Observatory in Hawaii, Dong added.

    W.M. Keck Observatory two ten meter telescopes operated by California Institute of Technology(US) and the University of California(US), Maunakea Hawaii USA, altitude 4,207 m (13,802 ft). Credit: Caltech.

    Theory predicts that electron capture supernovae should show an unusual stellar chemical spectrum years later.

    “The Keck spectra we observed clearly confirm that SN 2018zd is our best candidate to be an electron capture supernova,” Valenti said.

    The late spectrum data were not the only piece of the puzzle. The team looked through all published data on supernovae, and found that while some had a few of the indicators predicted for electron capture supernovae, only SN 2018zd had all six: an apparent progenitor star of the Super-Asymptotic Giant Branch (SAGB) type; strong pre-supernova mass loss; an unusual stellar chemical spectrum; a weak explosion; little radioactivity; and a neutron-rich core.

    “We started by asking ‘what’s this weirdo?’ Then we examined every aspect of SN 2018zd and realized that all of them can be explained in the electron-capture scenario,” Hiramatsu said.

    Explaining the Crab Nebula

    The new discoveries also illuminate some mysteries of the most famous supernova of the past. In A.D. 1054 a supernova occurred in the Milky Way. According to Chinese records it was so bright that it could be seen in the daytime for 23 days, and at night for nearly two years. The resulting remnant — the Crab Nebula — has been studied in great detail. It was previously the best candidate for an electron capture supernova, but this was uncertain partly because the explosion happened nearly a thousand years ago. The new result increases the confidence that the event that formed the Crab Nebula was an electron capture supernova.

    “I am very pleased that the electron capture supernova was finally discovered, which my colleagues and I predicted to exist and have a connection to the Crab Nebula 40 years ago. This is a wonderful case of the combination of observations and theory,” said Nomoto, who is also an author on the current paper.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California-Davis is a public land-grant research university near Davis, California. Named a “Public Ivy”, it is the northernmost of the ten campuses of the University of California system. The institution was first founded as an agricultural branch of the system in 1905 and became the seventh campus of the University of California in 1959.

    The university is classified among “R1: Doctoral Universities – Very high research activity”. The University of California-Davis faculty includes 23 members of the National Academy of Sciences (US), 30 members of the American Academy of Arts and Sciences (US), 17 members of The American Law Institute, 14 members of The Institute of Medicine (US), and 14 members of The National Academy of Engineering. Among other honors that university faculty, alumni, and researchers have won are two Nobel Prizes, a Presidential Medal of Freedom, three Pulitzer Prizes, three MacArthur Fellowships, and a National Medal of Science.

    Founded as a primarily agricultural campus, the university has expanded over the past century to include graduate and professional programs in medicine (which includes the UC Davis Medical Center), law, veterinary medicine, education, nursing, and business management, in addition to 90 research programs offered by UC Davis Graduate Studies. The UC Davis School of Veterinary Medicine is the largest veterinary school in the United States and has been ranked first in the world for five consecutive years (2015–19). UC Davis also offers certificates and courses, including online classes, for adults and non-traditional learners through its Division of Continuing and Professional Education.

    The UC Davis Aggies athletic teams compete in NCAA Division I, primarily as members of the Big West Conference with additional sports in the Big Sky Conference (football only) and the Mountain Pacific Sports Federation.

    UC Davis is one of 62 members in the Association of American Universities (US), an organization of leading research universities devoted to maintaining a strong system of academic research and education. It consists of sixty universities in the United States (both public and private) and two universities in Canada.

    Research centers and laboratories

    The campus supports a number of research centers and laboratories including:

    Advanced Highway Maintenance Construction Technology Research Laboratory
    BGI at UC Davis Joint Genome Center (in planning process)[97]
    Bodega Marine Reserve
    C-STEM Center
    CalEPR Center
    California Animal Health and Food Safety Laboratory System
    California International Law Center
    California National Primate Research Center
    California Raptor Center
    Center for Health and the Environment
    Center for Mind and Brain
    Center for Poverty Research
    Center for Regional Change
    Center for the Study of Human Rights in the Americas
    Center for Visual Sciences
    Contained Research Facility
    Crocker Nuclear Laboratory
    Davis Millimeter Wave Research Center (A joint effort of Agilent Technologies Inc. and UC Davis) (in planning process)
    Information Center for the Environment
    John Muir Institute of the Environment (the largest research unit at UC Davis, spanning all Colleges and Professional Schools)
    McLaughlin Natural Reserve
    MIND Institute
    Plug-in Hybrid Electric Vehicle Research Center
    Quail Ridge Reserve
    Stebbins Cold Canyon Reserve
    Tahoe Environmental Research Center (TERC) (a collaborative effort with Sierra Nevada University)
    UC Center Sacramento
    UC Davis Nuclear Magnetic Resonance Facility
    University of California Pavement Research Center
    University of California Solar Energy Center (UC Solar)
    Energy Efficiency Center (the very first university run energy efficiency center in the Nation).
    Western Institute for Food Safety and Security

    The Crocker Nuclear Laboratory on campus has had a nuclear accelerator since 1966. The laboratory is used by scientists and engineers from private industry, universities and government to research topics including nuclear physics, applied solid state physics, radiation effects, air quality, planetary geology and cosmogenics. UC Davis is the only UC campus, besides The University of California-Berkeley (US), that has a nuclear laboratory.

    Agilent Technologies will also work with the university in establishing a Davis Millimeter Wave Research Center to conduct research into millimeter wave and THz systems.

     
  • richardmitnick 11:45 am on August 23, 2021 Permalink | Reply
    Tags: "Fastest Orbiting Asteroid Discovered at NOIRLab’s CTIO", Cerro Tololo Inter-American Observatory (CL) (US), , DECam - built at DOE's Fermi National Accelerator Laboratory (US), Infrared Astronomy, , Magellan Baade and Clay 6.5 meter telescopes located at Carnegie Institution for Science(US) Las Campanas Observatory(CL), , , Space rock 2021 PH27 is the Sun’s nearest neighbor.   

    From NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory) (US): “Fastest Orbiting Asteroid Discovered at NOIRLab’s CTIO” 

    From NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory) (US)

    23 August 2021

    Scott Sheppard
    Earth and Planets Laboratory
    Carnegie Institution for Science (US)
    ssheppard@carnegiescience.edu

    Lars Lindberg Christensen
    NSF’s NOIRLab
    Head of Communications, Education & Engagement
    Cell: +1 520 461 0433
    lars.christensen@noirlab.edu

    About a kilometer across, space rock 2021 PH27 is the Sun’s nearest neighbor.

    1
    Using the powerful 570-megapixel Dark Energy Camera (DECam) in Chile, astronomers just ten days ago discovered an asteroid with the shortest orbital period of any known asteroid in the Solar System. The orbit of the approximately 1-kilometer-diameter asteroid takes it as close as 20 million kilometers (12 million miles or 0.13 au), from the Sun every 113 days. Asteroid 2021 PH27, revealed in images acquired during twilight, also has the smallest mean distance (semi-major axis) of any known asteroid in our Solar System — only Mercury has a shorter period and smaller semi-major axis. The asteroid is so close to the Sun’s massive gravitational field, it experiences the largest general relativistic effects of any known Solar System object.

    The asteroid designated 2021 PH27 was discovered by Scott S. Sheppard of the Carnegie Institution of Science in data collected by the Dark Energy Camera (DECam) mounted on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory (CTIO) in Chile.

    ______________________________________________________________________________________________________________
    Dark Energy Survey

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.
    ______________________________________________________________________________________________________________

    The discovery images of the asteroid were taken by Ian Dell’antonio and Shenming Fu of Brown University (US) in the twilight skies on the evening of 13 August 2021. Sheppard had teamed up with Dell’antonio and Fu while conducting observations with DECam for the Local Volume Complete Cluster Survey, which is studying most of the massive galaxy clusters in the local Universe [1]. They took time out from observing some of the largest objects millions of light-years away to search for far smaller objects — asteroids — closer to home.

    One of the highest-performance, wide-field CCD imagers in the world, DECam was designed for the Dark Energy Survey (DES) funded by the Department of Energy (US) , was built and tested at DOE’s Fermi National Accelerator Laboratory (US), and was operated by the DOE and National Science Foundation (US) between 2013 and 2019. At present DECam is used for programs covering a huge range of science. The DECam science archive is curated by the Community Science and Data Center (CSDC). CTIO and CSDC are programs of NSF’s NOIRLab.

    Twilight, just after sunset or before sunrise, is the best time to hunt for asteroids that are interior to Earth’s orbit, in the direction of the two innermost planets, Mercury and Venus. As any stargazer will tell you, Mercury and Venus never appear to get very far from the Sun in the sky and are always best visible near sunrise or sunset. The same holds for asteroids that also orbit close to the Sun.

    Following 2021 PH27’s discovery, David Tholen of the University of Hawai‘i (US) measured the asteroid’s position and predicted where it could be observed the following evening. Subsequently, on 14 August 2021, it was observed once more by DECam, and also by the Magellan Telescopes at the Las Campanas Observatory in Chile.

    Then, on the evening of the 15th, Marco Micheli of the European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) used the Las Cumbres Observatory network of 1- to 2-meter telescopes to observe it from CTIO in Chile and from South Africa, in addition to further observations from DECam and Magellan, as astronomers postponed their originally scheduled observations to get a sight of the newly found asteroid.

    “Though telescope time for astronomers is very precious, the international nature and love of the unknown make astronomers very willing to override their own science and observations to follow up new, interesting discoveries like this,” says Sheppard.

    Planets and asteroids orbit the Sun in elliptical (or oval-shaped) orbits, with the widest axis of the ellipse having a radius described as the semi-major axis. 2021 PH27 has a semi-major axis of 70 million kilometers (43 million miles or 0.46 au), giving it a 113-day orbital period on a elongated orbit that crosses the orbits of both Mercury and Venus [2].

    It may have begun life in the main Asteroid Belt between Mars and Jupiter and got dislodged by gravitational disturbances from the inner planets that drew it closer to the Sun. Its high orbital inclination of 32 degrees suggests, however, that it might instead be an extinct comet from the outer Solar System that got captured into a closer short-period orbit when passing near one of the terrestrial planets. Future observations of the asteroid will shed more light on its origins.

    Its orbit is probably also unstable over long periods of time, and it will likely eventually either collide with Mercury, Venus or the Sun in a few million years, or be ejected from the inner Solar System by the inner planets’ gravitational influence.

    Astronomers have a hard time finding these interior asteroids because they are very often hidden by the glare of the Sun. When asteroids get so close to our nearest star, they experience a variety of stresses, such as thermal stresses from the Sun’s heat, and physical stresses from gravitational tidal forces. These stresses could cause some of the more fragile asteroids to break up.

    “The fraction of asteroids interior to Earth and Venus compared to exterior will give us insights into the strength and make-up of these objects,” says Sheppard. If the population of asteroids on similar orbits to 2021 PH27 appears depleted, it could tell astronomers what fraction of near-Earth asteroids are piles of rubble that are loosely held together, as opposed to solid chunks of rock, which could have consequences for asteroids that might be on a collision course with Earth and how we might deflect them.

    “Understanding the population of asteroids interior to Earth’s orbit is important to complete the census of asteroids near Earth, including some of the most likely Earth impactors that may approach Earth during daylight and that cannot easily be discovered in most surveys that are observing at night, away from the Sun,” says Sheppard. He adds that since 2021 PH27 approaches so close to the Sun, “…its surface temperature gets to almost 500 degrees C (around 900 degrees F) at closest approach, hot enough to melt lead”.

    Because 2021 PH27 is so close to the Sun’s massive gravitational field, it experiences the largest general relativistic effects of any known Solar System object. This reveals itself as a slight angular deviation in the asteroid’s elliptical orbit over time, a movement called precession, which amounts to about one arcminute per century [3].

    The asteroid is now entering solar conjunction when from our point of view it is seen to move behind the Sun. It is expected to return to visibility from Earth early in 2022, when new observations will be able to determine its orbit in more detail, allowing the asteroid to get an official name.
    Notes

    [1] The Local Volume Complete Cluster Survey (LoVoCCS) is an NSF’s NOIRLab survey program that is using DECam to measure the dark matter distribution and the galaxy population in 107 nearby galaxy clusters. These deep exposures will allow a clean comparison of faint variable objects when combined with data from Vera C. Rubin Observatory.

    [2] 2021 PH27 is only one of around 20 known Atira asteroids that have their orbits completely interior to the Earth’s orbit.

    [3] Observation of Mercury’s precession puzzled scientists until Einstein’s general theory of relativity explained its orbital adjustments over time. 2021 PH27’s precession is even faster than Mercury’s.

    More information

    This research was reported to the Minor Planet Center.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What is NOIRLab?

    NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory) (US), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (US) (a facility of National Science Foundation (US), NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and Korea Astronomy and Space Science Institute [한국천문연구원] (KR)), NOAO Kitt Peak National Observatory(US) (KPNO), Cerro Tololo Inter-American Observatory(CL) (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (in cooperation with DOE’s SLAC National Accelerator Laboratory (US)). It is managed by the Association of Universities for Research in Astronomy (AURA) (US) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawaiʻi, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

    National Science Foundation(US) NOIRLab (US) NOAO (US) Kitt Peak National Observatory (US) on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    NOIRLab(US)NOAO Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

    The NOAO-Community Science and Data Center(US)

    The NSF NOIRLab Vera C. Rubin Observatory. It is managed by the Association of Universities for Research in Astronomy(US) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawaiʻi, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

    NSF (US) NOIRLab (US) NOAO (US) Vera C. Rubin Observatory [LSST] Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing NSF (US) NOIRLab (US) NOAO (US) Gemini South Telescope and NSF (US) NOIRLab (US) NOAO (US) Southern Astrophysical Research Telescope.

     
  • richardmitnick 1:30 pm on August 18, 2021 Permalink | Reply
    Tags: "Astronomers Find a ‘Break’ in One of the Milky Way’s Spiral Arms", , , , Infrared Astronomy,   

    From NASA JPL-Caltech (US) : “Astronomers Find a ‘Break’ in One of the Milky Way’s Spiral Arms” 

    NASA JPL Banner

    From NASA JPL-Caltech (US)

    Aug 17, 2021

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    An illustration of the large-scale structure of the Milky Way. (Image credit: R Hurt/ NASA/JPL-Caltech).

    2
    A group of young stars and gas clouds in our Milky Way galaxy, seen in the inset of this NASA graphic, is jutting out like a broken arm 3,000 light-years long, a new study has found. The region is home to the Eagle, Omega, Trifid and Lagoon nebulas. (Image credit: NASA/JPL-Caltech.)

    The newly discovered feature offers insight into the large-scale structure of our galaxy, which is difficult to study from Earth’s position inside it.

    Scientists have spotted a previously unrecognized feature of our Milky Way galaxy: A contingent of young stars and star-forming gas clouds is sticking out of one of the Milky Way’s spiral arms like a splinter poking out from a plank of wood. Stretching some 3,000 light-years, this is the first major structure identified with an orientation so dramatically different than the arm’s.

    Astronomers have a rough idea of the size and shape of the Milky Way’s arms, but much remains unknown: They can’t see the full structure of our home galaxy because Earth is inside it. It’s akin to standing in the middle of Times Square and trying to draw a map of the island of Manhattan. Could you measure distances precisely enough to know if two buildings were on the same block or a few streets apart? And how could you hope to see all the way to the tip of the island with so many things in your way?

    To learn more, the authors of the new study [Astronomy & Astrophysics] focused on a nearby portion of one of the galaxy’s arms, called the Sagittarius Arm. Using NASA’s Spitzer Space Telescope prior to its retirement in January 2020, they sought out newborn stars, nestled in the gas and dust clouds (called nebulae) where they form.

    National Aeronautics and Space Administration(US) Spitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Spitzer detected infrared light that can penetrate those clouds, while visible light (the kind human eyes can see) is blocked.

    Young stars and nebulae are thought to align closely with the shape of the arms they reside in. To get a 3D view of the arm segment, the scientists used the latest data release from the ESA (European Space Agency) Gaia mission to measure the precise distances to the stars.

    European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) GAIA satellite

    The combined data revealed that the long, thin structure associated with the Sagittarius Arm is made of young stars moving at nearly the same velocity and in the same direction through space.

    “A key property of spiral arms is how tightly they wind around a galaxy,” said Michael Kuhn, an astrophysicist at Caltech and lead author of the new paper. This characteristic is measured by the arm’s pitch angle. A circle has a pitch angle of 0 degrees, and as the spiral becomes more open, the pitch angle increases. “Most models of the Milky Way suggest that the Sagittarius Arm forms a spiral that has a pitch angle of about 12 degrees, but the structure we examined really stands out at an angle of nearly 60 degrees.”

    Similar structures – sometimes called spurs or feathers – are commonly found jutting off the arms of other spiral galaxies. For decades scientists have wondered whether our Milky Way’s spiral arms are also dotted with these structures or if they are relatively smooth.

    Measuring the Milky Way

    The newly discovered feature contains four nebulae known for their breathtaking beauty: the Eagle Nebula (which contains the Pillars of Creation), the Omega Nebula, the Trifid Nebula, and the Lagoon Nebula. In the 1950s, a team of astronomers made rough distance measurements to some of the stars in these nebulae and were able to infer the existence of the Sagittarius Arm. Their work provided some of the first evidence of our galaxy’s spiral structure.

    Four Famous Nebulae

    3

    These four nebulae (star-forming clouds of gas and dust) are known for their breathtaking beauty: the Eagle Nebula (which contains the Pillars of Creation), the Omega Nebula, the Trifid Nebula, and the Lagoon Nebula. In the 1950s, a team of astronomers made rough distance measurements to some of the stars in these nebulae and were able to infer the existence of the Sagittarius Arm. Their work provided some of the first evidence of our galaxy’s spiral structure. In a new study, astronomers have shown that these nebulae are part of a substructure within the arm that is angled differently from the rest of the arm.

    A key property of spiral arms is how tightly they wind around a galaxy. This characteristic is measured by the arm’s pitch angle. A circle has a pitch angle of 0 degrees, and as the spiral becomes more open, the pitch angle increases. Most models of the Milky Way suggest that the Sagittarius Arm forms a spiral that has a pitch angle of about 12 degrees, but the protruding structure has a pitch angle of nearly 60 degrees.

    Similar structures – sometimes called spurs or feathers – are commonly found jutting out of the arms of other spiral galaxies. For decades scientists have wondered whether our Milky Way’s spiral arms are also dotted with these structures or if they are relatively smooth.

    “Distances are among the most difficult things to measure in astronomy,” said co-author Alberto Krone-Martins, an astrophysicist and lecturer in informatics at the University of California-Irvine (US) and a member of the ESA DPAC Consortium – Gaia – Cosmos [Data Processing and Analysis Consortium] (EU). “It is only the recent, direct distance measurements from Gaia that make the geometry of this new structure so apparent.”

    In the new study, researchers also relied on a catalog of more than a hundred thousand newborn stars discovered by Spitzer in a survey of the galaxy called the NASA GLIMPSE the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (US).

    “When we put the Gaia and Spitzer data together and finally see this detailed, three-dimensional map, we can see that there’s quite a bit of complexity in this region that just hasn’t been apparent before,” said Kuhn.

    Astronomers don’t yet fully understand what causes spiral arms to form in galaxies like ours. Even though we can’t see the Milky Way’s full structure, the ability to measure the motion of individual stars is useful for understanding this phenomenon: The stars in the newly discovered structure likely formed around the same time, in the same general area, and were uniquely influenced by the forces acting within the galaxy, including gravity and shear due to the galaxy’s rotation.

    “Ultimately, this is a reminder that there are many uncertainties about the large-scale structure of the Milky Way, and we need to look at the details if we want to understand that bigger picture,” said one the paper’s co-authors, Robert Benjamin, an astrophysicist at the University of Wisconsin-Whitewater and a principal investigator on the GLIMPSE survey. “This structure is a small piece of the Milky Way, but it could tell us something significant about the Galaxy as a whole.”

    More About the Mission

    The Gaia spacecraft operations team works from the ESA European Space Operations Center [ESOC] (DE), while the science operations are performed at the ESA – European Space Astronomy Centre [ESAC] (ES). A consortium of more than 400 scientists and engineers are responsible for the processing of the data.

    More information on the Gaia Data Releases can be found here:

    https://www.cosmos.esa.int/web/gaia/release

    For more information about Gaia, visit:

    https://sci.esa.int/web/gaia

    https://www.cosmos.esa.int/web/gaia

    https://archives.esac.esa.int/gaia

    NASA’s Jet Propulsion Laboratory, a division of Caltech, managed Spitzer mission operations for NASA’s Science Mission Directorate in Washington. Science operations were conducted at the Spitzer Science Center at IPAC at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. The Spitzer data archive is housed at the Infrared Science Archive at IPAC at Caltech in Pasadena, California.

    For more information about NASA’s Spitzer mission, go to:

    https://www.jpl.nasa.gov/missions/spitzer-space-telescope

    https://www.ipac.caltech.edu/project/spitzer

    For more information about the Gaia mission, go to:

    https://www.cosmos.esa.int/gaia

    https://archives.esac.esa.int/gaia

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) (US) ) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration (US). The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

     
  • richardmitnick 10:35 am on August 18, 2021 Permalink | Reply
    Tags: "Mapping the Universe's Earliest Structures with COSMOS-Webb", , , , , Infrared Astronomy, , Revolutionizing Our Understanding of the Reionization Era., , University of Texas-Austin (US)   

    From NASA/ESA/CSA James Webb Space Telescope: “Mapping the Universe’s Earliest Structures with COSMOS-Webb” 

    NASA Webb Header

    From NASA/ESA/CSA James Webb Space Telescope

    August 18, 2021

    MEDIA CONTACTS:
    Ann Jenkins
    Space Telescope Science Institute, Baltimore, Maryland

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland

    1
    About This Image
    The COSMOS-Webb survey will map 0.6 square degrees of the sky—about the area of three full Moons—using the James Webb Space Telescope’s Near Infrared Camera (NIRCam) instrument, while simultaneously mapping a smaller 0.2 square degrees with the Mid Infrared Instrument (MIRI). The jagged edges of the Hubble field’s outline are due to the separate images that make up the survey field. Credits: SCIENCE: National Aeronautics Space Agency (US), European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), Jeyhan Kartaltepe (Rochester Institute of Technology (US))[below], Caitlin Casey (The University of Texas-Austin (US))[below], Anton M. Koekemoer (Space Telescope Science Institute (US))

    Summary

    This ambitious program will study half a million galaxies in a field the size of three full Moons.

    Peering deeply into a huge patch of sky the size of three full Moons, NASA’s James Webb Space Telescope will undertake an ambitious program to study half a million galaxies. Called COSMOS-Webb, this survey is the largest project Webb will undertake during its first year. With more than 200 hours of observing time, it will build upon previous discoveries to make advances in three particular areas of study. These include revolutionizing our understanding of the Reionization Era; looking for early, fully evolved galaxies; and learning how dark matter evolved with galaxies’ stellar content. With its rapid public release of the data, this survey will be a primary legacy dataset from Webb for scientists worldwide studying galaxies beyond the Milky Way.
    ______________________________________________________________________________________________________________

    When NASA’s James Webb Space Telescope begins science operations in 2022, one of its first tasks will be an ambitious program to map the earliest structures in the universe. Called COSMOS-Webb, this wide and deep survey of half-a-million galaxies is the largest project Webb will undertake during its first year.

    With more than 200 hours of observing time, COSMOS-Webb will survey a large patch of the sky—0.6 square degrees—with the Near-Infrared Camera (NIRCam). That’s the size of three full moons. It will simultaneously map a smaller area with the Mid-Infrared Instrument (MIRI).

    “It’s a large chunk of sky, which is pretty unique to the COSMOS-Webb program. Most Webb programs are drilling very deep, like pencil-beam surveys that are studying tiny patches of sky,” explained Caitlin Casey, an assistant professor at the University of Texas at Austin and co-leader of the COSMOS-Webb program. “Because we’re covering such a large area, we can look at large-scale structures at the dawn of galaxy formation. We will also look for some of the rarest galaxies that existed early on, as well as map the large-scale dark matter distribution of galaxies out to very early times.”

    (Dark matter does not absorb, reflect, or emit light, so it cannot be seen directly. We know that dark matter exists because of the effect it has on objects that we can observe.)

    COSMOS-Webb will study half-a-million galaxies with multi-band, high-resolution, near-infrared imaging, and an unprecedented 32,000 galaxies in the mid-infrared. With its rapid public release of the data, this survey will be a primary legacy dataset from Webb for scientists worldwide studying galaxies beyond the Milky Way.

    Building on Hubble’s Achievements

    The COSMOS survey began in 2002 as a Hubble program to image a much larger patch of sky, about the area of 10 full moons. From there, the collaboration snowballed to include most of the world’s major telescopes on Earth and in space. Now COSMOS is a multi-wavelength survey that covers the entire spectrum from the X-ray through the radio.

    Because of its location on the sky, the COSMOS field is accessible to observatories around the world. Located on the celestial equator, it can be studied from both the northern and southern hemispheres, resulting in a rich and diverse treasury of data.

    “COSMOS has become the survey that a lot of extragalactic scientists go to in order to conduct their analyses because the data products are so widely available, and because it covers such a wide area of the sky,” said Rochester Institute of Technology’s Jeyhan Kartaltepe, assistant professor of physics and co-leader of the COSMOS-Webb program. “COSMOS-Webb is the next installment of that, where we’re using Webb to extend our coverage in the near- and mid-infrared part of the spectrum, and therefore pushing out our horizon, how far away we’re able to see.”

    The ambitious COSMOS-Webb program will build upon previous discoveries to make advances in three particular areas of study, including: revolutionizing our understanding of the Reionization Era; looking for early, fully evolved galaxies; and learning how dark matter evolved with galaxies’ stellar content.

    Goal 1: Revolutionizing Our Understanding of the Reionization Era.

    Epoch of Reionization and first stars. Credit: California Institute of Technology (US).

    Soon after the big bang, the universe was completely dark. Stars and galaxies, which bathe the cosmos in light, had not yet formed. Instead, the universe consisted of a primordial soup of neutral hydrogen and helium atoms and invisible dark matter. This is called the cosmic dark ages.

    After several hundred million years, the first stars and galaxies emerged and provided energy to reionize the early universe. This energy ripped apart the hydrogen atoms that filled the universe, giving them an electric charge and ending the cosmic dark ages. This new era where the universe was flooded with light is called the Reionization Era.

    The first goal of COSMOS-Webb focuses on this epoch of reionization, which took place from 400,000 to 1 billion years after the big bang. Reionization likely happened in little pockets, not all at once. COSMOS-Webb will look for bubbles showing where the first pockets of the early universe were reionized. The team aims to map the scale of these reionization bubbles.

    “Hubble has done a great job of finding handfuls of these galaxies out to early times, but we need thousands more galaxies to understand the reionization process,” explained Casey.

    Scientists don’t even know what kind of galaxies ushered in the Reionization Era, whether they’re very massive or relatively low-mass systems. COSMOS-Webb will have a unique ability to find very massive, rare galaxies and see what their distribution is like in large-scale structures. So, are the galaxies responsible for reionization living in the equivalent of a cosmic metropolis, or are they mostly evenly distributed across space? Only a survey the size of COSMOS-Webb can help scientists to answer this.

    Goal 2: Looking for Early, Fully Evolved Galaxies.

    COSMOS-Webb will search for very early, fully evolved galaxies that shut down star birth in the first 2 billion years after the big bang. Hubble has found a handful of these galaxies, which challenge existing models about how the universe formed. Scientists struggle to explain how these galaxies could have old stars and not be forming any new stars so early in the history of the universe.

    With a large survey like COSMOS-Webb, the team will find many of these rare galaxies. They plan detailed studies of these galaxies to understand how they could have evolved so rapidly and turned off star formation so early.

    Goal 3: Learning How Dark Matter Evolved with Galaxies’ Stellar Content.

    COSMOS-Webb will give scientists insight into how dark matter in galaxies has evolved with the galaxies’ stellar content over the universe’s lifetime.

    Galaxies are made of two types of matter: normal, luminous matter that we see in stars and other objects, and invisible dark matter, which is often more massive than the galaxy and can surround it in an extended halo. Those two kinds of matter are intertwined in galaxy formation and evolution. However, presently there’s not much knowledge about how the dark matter mass in the halos of galaxies formed, and how that dark matter impacts the formation of the galaxies.

    COSMOS-Webb will shed light on this process by allowing scientists to directly measure these dark matter halos through “weak lensing.”

    [caption id="attachment_41428" align="alignnone" width="632"] Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016.

    The gravity from any type of mass—whether it’s dark or luminous—can serve as a lens to “bend” the light we see from more distant galaxies. Weak lensing distorts the apparent shape of background galaxies, so when a halo is located in front of other galaxies, scientists can directly measure the mass of the halo’s dark matter.

    “For the first time, we’ll be able to measure the relationship between the dark matter mass and the luminous mass of galaxies back to the first 2 billion years of cosmic time,” said team member Anton Koekemoer, a research astronomer at the Space Telescope Science Institute in Baltimore, who helped design the program’s observing strategy and is in charge of constructing all the images from the program. “That’s a crucial epoch for us to try to understand how the galaxies’ mass was first put in place, and how that’s driven by the dark matter halos. And that can then feed indirectly into our understanding of galaxy formation.”

    Quickly Sharing Data with the Community

    COSMOS-Webb is a Treasury program, which by definition is designed to create datasets of lasting scientific value. Treasury Programs strive to solve multiple scientific problems with a single, coherent dataset. Data taken under a Treasury Program usually has no exclusive access period, enabling immediate analysis by other researchers.

    “As a Treasury Program, you are committing to quickly releasing your data and your data products to the community,” explained Kartaltepe. “We’re going to produce this community resource and make it publicly available so that the rest of the community can use it in their scientific analyses.”

    Koekemoer added, “A Treasury Program commits to making publicly available all these science products so that anyone in the community, even at very small institutions, can have the same, equal access to the data products and then just do the science.”

    COSMOS-Webb is a Cycle 1 General Observers program. General Observers programs were competitively selected using a dual-anonymous review system, the same system that is used to allocate time on Hubble.

    From Rochester Institute of Technology (US)

    James Webb Space Telescope program aims to map the earliest structures of the universe
    COSMOS-Webb is slated to be the largest program in JWST’s first year of operation.

    April 19, 2021
    Luke Auburn
    luke.auburn@rit.edu

    3
    RIT Assistant Professor Jeyhan Kartaltepe is the principal investigator of COSMOS-Webb, the largest General Observer program selected for James Webb Space Telescope’s first year. Credit: A. Sue Weisler.

    When the James Webb Space Telescope (JWST)—the long-awaited successor to the Hubble Space Telescope—becomes operational in 2022, one of its first orders of business will be mapping the earliest structures of the universe. A team of nearly 50 researchers led by scientists at Rochester Institute of Technology and University of Texas at Austin will attempt to do so through the COSMOS-Webb program, the largest General Observer program selected for JWST’s first year.

    Over the course of 208.6 observing hours, the COSMOS-Webb program will conduct an ambitious survey of half a million galaxies with multi-band, high-resolution near infrared imaging and an unprecedented 32,000 galaxies in mid infrared. The scientists involved said that because COSMOS-Webb is a treasury program, they will rapidly release data to the public so it can lead to countless other studies by other researchers.

    “The sheer scope of our program is so exciting,” said principal investigator Jeyhan Kartaltepe, an assistant professor in RIT’s School of Physics and Astronomy. “The first year of Webb observations will result in a lot of new discoveries that people will want explore more in-depth in future cycles. I think the public legacy of COSMOS-Webb will be that COSMOS will be the field where the community conducts this type of follow-up research.”

    Caitlin Casey, an assistant professor and principal investigator at UT Austin, said “COSMOS-Webb has the potential to be ground-breaking in ways we haven’t even dreamt yet. You don’t know what treasures are there to find until you use an incredible telescope like Webb to stare at the sky for a long time.”

    The survey will map 0.6 square degrees of the sky—about the area of three full moons—using JWST’s Near Infrared Camera (NIRCam) instrument while simultaneously mapping a smaller area of 0.2 square degrees with the Mid Infrared Instrument (MIRI). Through this approach, the scientists hope to achieve three main goals [above].

    “A key result from the original HST-COSMOS effort over a decade ago was showing that dark matter is the cosmic scaffolding upon which the structures in the universe we see today are formed,” said Rhodes. “COSMOS-Webb will make use of the JWST’s larger mirror to push that dark matter mapping farther in time and to higher resolution maps, allowing us to study how dark matter has influenced the evolution of individual galaxies from the early universe to now.”

    COSMOS-Webb is one of just 286 General Scientific Observer programs selected out of more than 1,000 proposals for the telescope’s first year of science, known as Cycle 1. These specific programs will provide the worldwide astronomical community with one of the first extensive opportunities to investigate scientific targets with Webb. NASA is currently targeting Oct. 31, 2021, for JWST’s launch.

    For more information about COSMOS-Webb, go to the Space Telescope Science Institute website.

    From University of Texas-Austin (US)

    20 April 2021
    Rebecca A Johnson

    Texas Astronomers Lead Major Projects in James Webb Space Telescope’s First Year

    4
    Caitlin Casey

    Astronomers at The University of Texas at Austin are set to lead some of the largest programs in the first year of NASA’s James Webb Space Telescope (JWST), including the largest project overall. Set to launch this Halloween, the telescope will become operational by mid-2022. Altogether, UT astronomers received about 500 hours of telescope time in JWST’s first year.

    COSMOS-Webb, a project to map the earliest structures of the universe, is the largest project JWST will undertake in 2022. UT’s Caitlin Casey, assistant professor of astronomy, leads an international team of nearly 50 researchers, along with co-leader Jeyhan Kartaltepe of the Rochester Institute of Technology.

    With more than 200 hours of observing time, COSMOS-Webb will conduct an ambitious survey of half a million galaxies. As a “treasury program,” the team will rapidly release their data to the public for use by other researchers.

    Casey explained that their project will “stare deeply over a large patch of sky, about three times the size of the Moon. Instead of just finding the most distant galaxies, we hope to find them and figure out where they live in the universe, whether it be an ancient cosmic metropolis or a distant cosmic outpost.”

    In probing the galaxies’ habitats, they are looking for bubbles showing where the first pockets of the early universe were reionized — that is, when light from the first stars and galaxies ripped apart hydrogen atoms that filled the cosmos, giving them an electric charge. This ended the cosmic dark ages, and began a new era where the universe was flooded with light, called the epoch of reionization. COSMOS-Webb hopes to map the scale of these reionization bubbles.

    “COSMOS-Webb has the potential to be ground-breaking in ways we haven’t even dreamt yet,” Casey said. “You don’t know what treasures are there to find until you use an incredible telescope like Webb to stare at the sky for a long time.”

    Another major first-year JWST project is led by UT associate professor Steven Finkelstein. The fourth-largest project the telescope will undertake in 2022, it’s called the Webb Deep Extragalactic Exploratory Public (WDEEP) Survey. Finkelstein co-leads a large team along with Casey Papovich of Texas A&M University and Nor Pirzkal of the Space Telescope Science Institute.

    In some ways, WDEEP is similar to COSMOS-Webb, Finkelstein said. Both are studying early galaxies, but at different early epochs in the history of the universe.

    “Together, the projects COSMOS-Webb and WDEEP are bracketing the epoch of reionization,” Finkelstein said. “So with WDEEP, we’re trying to push to the very beginning of reionization when the earliest galaxies really started to form stars, and begin to ionize the intergalactic medium. Whereas Professor Casey’s program is targeting the end of reionization, looking at the descendants of our galaxies and the bubbles they have created around them.”

    In terms of how the projects will be carried out, though, “WDEEP is almost the exact opposite,” Finkelstein said. “While COSMOS-Webb is going very wide to look for the brightest and most massive galaxies, WDEEP is going deep. We are going to pick one place in the sky and stare at it for over 100 hours, following in the footsteps of the original Hubble Deep Field,” he said.

    He explained that the goal of WDEEP is to push the frontier in terms of the most distant galaxies detected. The team expects to find 50 or more galaxies at a time less than 500 million years after the Big Bang, which is “a completely unexplored epoch” in the universe’s history, he said. And if they’re lucky, they might find a galaxy at just 270 million years after the Big Bang, or 2% of the universe’s present age of 13.8 billion years.

    The goal in finding these most-distant galaxies is to help understand the early universe. “There are a wide range of theoretical predictions for what the universe should look like at these times,” Finkelstein said. “Without observations, these predictions are completely unconstrained. Our goal is to try and pin down those models telling us what the earliest galaxies were like.”

    Other UT astronomers lead or co-lead JWST first-year projects on a variety of topics. These include faculty members Brendan Bowler, John Chisholm, Harriet Dinerstein, Neal Evans, and Caroline Morley; postdoctoral researchers Micaela Bagley, Will Best, and Justin Spilker; and graduate student Samuel Factor. The projects include studies of planet formation, the failed stars called brown dwarfs, the chemistry of pre-biotic molecules in newly forming stars, early stages of star formation, the dead stars called planetary nebulae, the formation of massive galaxies in the early universe, and more. Together, they will use about 100 hours of telescope time in the telescope’s first year.

    From California Institute of Technology (US)

    April 19, 2021
    COSMOS-Webb selected as JWST’s largest Cycle 1 program

    When the James Webb Space Telescope (JWST)—the long-awaited successor to the Hubble Space Telescope—becomes operational in 2022, one of its first orders of business will be mapping the earliest structures of the universe. A team of nearly 50 researchers led by scientists at Rochester Institute of Technology [above] and University of Texas at Austin [above] will attempt to do so through the COSMOS-Webb program, the largest General Observer program selected for JWST’s first year.

    Over the course of 208.6 observing hours, the COSMOS-Webb program will conduct an ambitious survey of half a million galaxies with multi-band, high-resolution near infrared imaging and an unprecedented 32,000 galaxies in mid infrared. The scientists involved said that because COSMOS-Webb is a treasury program, they will rapidly release data to the public so it can lead to countless other studies by other researchers.

    “The sheer scope of our program is so exciting,” said principal investigator Jeyhan Kartaltepe, an assistant professor at RIT. “The first year of Webb observations will result in a lot of new discoveries that people will want explore more in-depth in future cycles. I think the public legacy of COSMOS-Webb will be that COSMOS will be the field where the community conducts this type of follow-up research.”

    Caitlin Casey, an assistant professor and principal investigator at UT Austin, said “COSMOS-Webb has the potential to be ground-breaking in ways we haven’t even dreamt yet. You don’t know what treasures are there to find until you use an incredible telescope like Webb to stare at the sky for a long time.”

    The survey will map 0.6 square degrees of the sky—about the area of three full moons—using JWST’s Near Infrared Camera (NIRCam) [above] instrument while simultaneously mapping a smaller area of 0.2 square degrees with the Mid Infrared Instrument (MIRI) [above]. Through this approach, the scientists hope to achieve three main goals.

    The first goal focuses on the epoch of reionization [above], which took place from 400,000 to 1 billion years after the big bang. When the first stars and galaxies formed, they provided energy to re-ionize the early universe and it likely happened in little pockets, not all at once. COSMOS-Webb aims to map out the scale of these reionization bubbles.

    “At these early epochs, COSMOS-Webb will reveal thousands of galaxies, fainter, more distant and more numerous than those previously discovered with Hubble”, said Anton Koekemoer, a research astronomer in the Webb team at the Space Telescope Science Institute, who helped design the observing strategy for the program.

    A second goal is to use the MIRI instrument to look for fully evolved galaxies at high redshifts that seemingly matured soon after the universe formed. Hubble Space Telescope (HST) has found examples of these galaxies, which challenge existing models about how the universe formed, so the hope is to find more examples of these high redshift galaxies and study them in more detail to understand how they could have evolved so rapidly.

    The third primary objective makes use of a technique called weak lensing [above]. Because gravity is sensitive to all kinds of matter including that we cannot see, scientists can use the distortions of light around galaxies to estimate of the amount of dark matter. Jason Rhodes, a senior research scientist at NASA’s Jet Propulsion Laboratory, said COSMOS-Webb will provide important insight about how dark matter in galaxies has evolved with the stellar content of galaxies over the age of the universe.

    “A key result from the original HST-COSMOS effort over a decade ago was showing that dark matter is the cosmic scaffolding upon which the structures in the universe we see today are formed,” said Rhodes. “COSMOS-Webb will make use of the JWST’s larger mirror to push that dark matter mapping farther in time and to higher resolution maps, allowing us to study how dark matter has influenced the evolution of individual galaxies from the early universe to now.”

    COSMOS-Webb is one of just 286 General Scientific Observer programs selected out of more than 1,000 proposals for the telescope’s first year of science, known as Cycle 1. These specific programs will provide the worldwide astronomical community with one of the first extensive opportunities to investigate scientific targets with Webb. NASA is currently targeting Oct. 31, 2021, for JWST’s launch.

    The COSMOS-Webb team is made up of 49 astronomers worldwide, including 31 based at US-institutes, 18 at international institutes, and 13 students and postdocs. See the coordinated press release at several institutes, including RIT [above], UT Austin [above], University of California-Santa Cruz (US), University of Durham, University of Bologna [Alma mater studiorum – Università di Bologna](IT), MPG Institute for Astronomy [MPG Institut für Astronomie](DE), Kavli Institute for the Physics and Mathematics of the Universe (JP)-University of Tokyo[(東京大] (JP), and DAWN – University of Copenhagen [Københavns Universitet](DK).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for October 2021.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRspec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 8:35 pm on August 4, 2021 Permalink | Reply
    Tags: "Stars Are Exploding in Dusty Galaxies. We Just Can’t Always See Them", , , , Infrared Astronomy, , ,   

    From NASA JPL-Caltech (US) : “Stars Are Exploding in Dusty Galaxies. We Just Can’t Always See Them” 

    NASA JPL Banner

    From NASA JPL-Caltech (US)

    Aug 04, 2021
    News Media Contact

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    by Adam Hadhazy

    1
    Hidden Supernova Spotted by NASA Spitzer Infared Space Telescope
    The image shows galaxy Arp 148, captured by NASA’s Spitzer and Hubble telescopes. Specially processed Spitzer data is shown inside the white circle, revealing infrared light from a supernova hidden by dust.
    Credit: National Aeronautics Space Agency (US)/JPL-Caltech (US).

    Inside the white circle is specially-processed Spitzer data, which reveals infrared light from a supernova that is hidden by dust. Supernovae are massive stars that have exploded after running out of fuel. They radiate most brightly in visible light (the kind the human eye can detect), but these wavelengths are obscured by dust. Infrared light, however, can pass through dust.

    The analysis of Arp 148 was part of an effort to find hidden supernovae in 40 dust-choked galaxies that also emit high levels of infrared light. These galaxies are known as luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs, respectively). The dust in LIRGs and ULIRGs absorbs optical light from objects like supernovae but allows infrared light from these same objects to pass through unobstructed for telescopes like Spitzer to detect.

    NASA’s Jet Propulsion Laboratory (US), Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology (US), also in Pasadena. Caltech manages JPL for NASA.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (US) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc. (US), Washington, D.C.

    Exploding stars generate dramatic light shows. Infrared telescopes like Spitzer can see through the haze and to give a better idea of how often these explosions occur.

    You’d think that supernovae – the death throes of massive stars and among the brightest, most powerful explosions in the universe – would be hard to miss. Yet the number of these blasts observed in the distant parts of the universe falls way short of astrophysicists’ predictions.

    A new study [MNRAS] using data from NASA’s recently retired Spitzer Space Telescope reports the detection of five supernovae that, going undetected in optical light, had never been seen before. Spitzer saw the universe in infrared light, which pierces through dust clouds that block optical light – the kind of light our eyes see and that unobscured supernovae radiate most brightly.

    To search for hidden supernovae, the researchers looked at Spitzer observations of 40 dusty galaxies. (In space, dust refers to grain-like particles with a consistency similar to smoke.) Based on the number they found in these galaxies, the study confirms that supernovae do indeed occur as frequently as scientists expect them to. This expectation is based on scientists’ current understanding of how stars evolve. Studies like this are necessary to improve that understanding, by either reinforcing or challenging certain aspects of it.

    “These results with Spitzer show that the optical surveys we’ve long relied on for detecting supernovae miss up to half of the stellar explosions happening out there in the universe,” said Ori Fox, a scientist at the Space Telescope Science Institute in Baltimore, Maryland, and lead author of the new study, published in the Monthly Notices of the Royal Astronomical Society [above]. “It’s very good news that the number of supernovae we’re seeing with Spitzer is statistically consistent with theoretical predictions.”

    The “supernova discrepancy” – that is, the inconsistency between the number of predicted supernovae and the number observed by optical telescopes – is not an issue in the nearby universe. There, galaxies have slowed their pace of star formation and are generally less dusty. In the more distant reaches of the universe, though, galaxies appear younger, produce stars at higher rates, and tend to have higher amounts of dust. This dust absorbs and scatters optical and ultraviolet light, preventing it from reaching telescopes. So researchers have long reasoned that the missing supernovae must exist and are just unseen.

    “Because the local universe has calmed down a bit since its early years of star-making, we see the expected numbers of supernovae with typical optical searches,” said Fox. “The observed supernova-detection percentage goes down, however, as you get farther away and back to cosmic epochs where dustier galaxies dominated.”

    Detecting supernovae at these far distances can be challenging. To perform a search for supernovae shrouded within murkier galactic realms but at less extreme distances, Fox’s team selected a local set of 40 dust-choked galaxies, known as luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs, respectively). The dust in LIRGs and ULIRGs absorbs optical light from objects like supernovae but allows infrared light from these same objects to pass through unobstructed for telescopes like Spitzer to detect.

    The researchers’ hunch proved correct when the five never-before-seen supernovae came to (infrared) light. “It’s a testament to Spitzer’s discovery potential that the telescope was able to pick up the signal of hidden supernovae from these dusty galaxies,” said Fox.

    “It was especially fun for several of our undergraduate students to meaningfully contribute to this exciting research,” added study co-author Alex Filippenko, a professor of astronomy at the University of California- Berkeley (US). “They helped answer the question, ‘Where have all the supernovae gone?’”

    The types of supernovae detected by Spitzer are known as “core-collapse supernovae,” involving giant stars with at least eight times the mass of the Sun. As they grow old and their cores fill with iron, the big stars can no longer produce enough energy to withstand their own gravity, and their cores collapse, suddenly and catastrophically.

    The intense pressures and temperatures produced during the rapid cave-in forms new chemical elements via nuclear fusion. The collapsing stars ultimately rebound off their ultra-dense cores, blowing themselves to smithereens and scattering those elements throughout space. Supernovae produce “heavy” elements, such as most metals. Those elements are necessary for building up rocky planets, like Earth, as well as biological beings. Overall, supernova rates serve as an important check on models of star formation and the creation of heavy elements in the universe.

    “If you have a handle on how many stars are forming, then you can predict how many stars will explode,” said Fox. “Or, vice versa, if you have a handle on how many stars are exploding, you can predict how many stars are forming. Understanding that relationship is critical for many areas of study in astrophysics.”

    Next-generation telescopes, including NASA’s Nancy Grace Roman Space Telescope and the James Webb Space Telescope, will detect infrared light, like Spitzer.

    “Our study has shown that star formation models are more consistent with supernova rates than previously thought,” said Fox. “And by revealing these hidden supernovae, Spitzer has set the stage for new kinds of discoveries with the Webb and Roman space telescopes.”

    More About the Mission

    NASA’s Jet Propulsion Laboratory in Southern California conducted mission operations and managed the Spitzer Space Telescope mission for the agency’s Science Mission Directorate in Washington. Science operations were conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations were based at Lockheed Martin Space (US) in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at Caltech IPAC-Infrared Processing and Analysis Center (US). Caltech manages JPL for NASA.

    More information about Spitzer is available at:

    https://www.nasa.gov/mission_pages/spitzer/main

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) (US) ) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration (US). The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

     
  • richardmitnick 9:50 pm on July 12, 2021 Permalink | Reply
    Tags: , "Watching the Milky Way's supermassive black hole feed", Infrared Astronomy, ,   

    From Harvard-Smithsonian Center for Astrophysics (US) via phys.org : “Watching the Milky Way’s supermassive black hole feed” 

    From Harvard-Smithsonian Center for Astrophysics (US)

    via

    phys.org

    1
    A three-color image of the central regions of the Milky Way showing the location of Sagittarius A*, the galactic center’s supermassive blackhole; X-ray in blue, optical in yellow, and infrared in red. Astronomers have obtained simultaneous mulit-band observations of a bright flare from SgrA* and modeled the mult-band radiation to estimate properties of the accretion around the black hole. Credit:D. Wang X-ray/ NASA/CXC/UMass/ et al.; Optical: D.Wang et al./ NASA/ESA/STScI/.; IR: S.Stolovy NASA/JPL-Caltech/SSC/

    The supermassive black hole at the center of our Milky Way galaxy, Sagittarius A*, is by far the closest such object to us, about 27,000 light-years away. Although it is not nearly so active or luminous as other galactic nuclei with supermassive black holes, its relative proximity makes it appear much brighter to us than other similar sources and provides astronomers with a unique opportunity to probe what happens when gas clouds or other objects get close to the “edge” of a black hole.

    Sgr A* has been monitored at radio wavelengths since its discovery in the 1950’s; variability was first reported in the radio in 1984. Astronomers model that on average Sgr A* is accreting material at a few hundredths of an Earth-mass per year, a relatively very low rate. Subsequent infrared, submillimeter, and X-ray observations confirmed this variability but also discovered that the object often flares, with the brightness thereby increasing by as much as a factor of one hundred in X-rays. Most of the steady emission is thought to be produced by electrons spiraling at close to the speed of light (called relativistic motion) around magnetic fields in a small region only about an astronomical unit in radius around the source, but there is no agreement on the mechanism(s) powering the flares.

    CfA astronomers Giovanni Fazio, Mark Gurwell, Joe Hora, Howard Smith, and Steve Willner were members of a large consortium that in July 2019 obtained simultaneous near infrared observations with the IRAC camera on Spitzer, with the GRAVITY interferometer at the European Southern Observatory, and with NASA’s Chandra and NuStar X-ray observatories (scheduled simultaneous observations with the Submillimeter Array were prevented by the Mauna Kea closure). SgrA* serendipitously underwent a major flaring event during these observations, enabling theoreticians for the first time to model a flare in considerable detail.

    Relativistic electrons moving in magnetic fields emit photons by a process known as synchrotron radiation (the most conventional scenario) but there is also a second process possible in which photons (produced either by synchrotron emission or by other sources like dust emission) are scattered off the electrons and thereby acquire additional energy, becoming X-ray photons. Modeling which combination of effects was operative in the small region around SgrA* during the flaring event offers insights into the densities of the gas, the fields, and the origin of the flare’s intensity, timing, and shape. The scientists considered a variety of possibilities and concluded that the most probable scenario is the one in which the infrared flare was produced by the first process but with the X-ray flare produced by the second process. This conclusion has several implications for the activity around this supermassive black hole, including that the electron densities and magnetic fields are comparable in magnitude to those under average conditions but that sustained particle acceleration is required to maintain the observed flare. Although the models successfully match many aspects of the flare emission, the measurements are not able to constrain the detailed physics behind the particle acceleration; these are left to future research.

    Science paper:
    Astronomy & Astrophysics

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Harvard-Smithsonian Center for Astrophysics (US) combines the resources and research facilities of the Harvard College Observatory(US) and the Smithsonian Astrophysical Observatory(US) under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory(US) is a bureau of the Smithsonian Institution(US), founded in 1890. The Harvard College Observatory, founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University(US), and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

    Founded in 1973 and headquartered in Cambridge, Massachusetts, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope(CL) and the Chandra X-ray Observatory(US), one of NASA’s Great Observatories.

    Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in the world. Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics, the discovery of many exoplanets, and the first image of a black hole. The CfA also serves a major role in the global astrophysics research community: the CfA’s Astrophysics Data System(ADS)(US), for example, has been universally adopted as the world’s online database of astronomy and physics papers. Known for most of its history as the “Harvard-Smithsonian Center for Astrophysics”, the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. The CfA’s current Director (since 2004) is Charles R. Alcock, who succeeds Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982).

    The Center for Astrophysics | Harvard & Smithsonian is not formally an independent legal organization, but rather an institutional entity operated under a Memorandum of Understanding between Harvard University and the Smithsonian Institution. This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under the leadership of a single Director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts. The CfA’s history is therefore also that of the two fully independent organizations that comprise it. With a combined lifetime of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA’s founding.

    History of the Smithsonian Astrophysical Observatory (SAO)

    Samuel Pierpont Langley, the third Secretary of the Smithsonian, founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall) on March 1,1890. The Astrophysical Observatory’s initial, primary purpose was to “record the amount and character of the Sun’s heat”. Charles Greeley Abbot was named SAO’s first director, and the observatory operated solar telescopes to take daily measurements of the Sun’s intensity in different regions of the optical electromagnetic spectrum. In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant, as well as to serendipitously discover Solar variability. It is likely that SAO’s early history as a solar observatory was part of the inspiration behind the Smithsonian’s “sunburst” logo, designed in 1965 by Crimilda Pontes.

    In 1955, the scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts to affiliate with the Harvard College Observatory (HCO). Fred Lawrence Whipple, then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO’s move to Harvard’s campus also resulted in a rapid expansion of its research program. Following the launch of Sputnik (the world’s first human-made satellite) in 1957, SAO accepted a national challenge to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track.

    With the creation of National Aeronautics and Space Administration(US) the following year and throughout the space race, SAO led major efforts in the development of orbiting observatories and large ground-based telescopes, laboratory and theoretical astrophysics, as well as the application of computers to astrophysical problems.

    History of Harvard College Observatory (HCO)

    Partly in response to renewed public interest in astronomy following the 1835 return of Halley’s Comet, the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an “Astronomical Observer to the University”. For its first four years of operation, the observatory was situated at the Dana-Palmer House (where Bond also resided) near Harvard Yard, and consisted of little more than three small telescopes and an astronomical clock. In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that “…there is wanted a reflecting telescope equatorially mounted…”. This telescope, the 15-inch “Great Refractor”, opened seven years later (in 1847) at the top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA’s complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second Director of HCO), used it to discover Saturn’s 8th moon, Hyperion (which was also independently discovered by William Lassell).

    Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world’s major producer of stellar spectra and magnitudes, established an observing station in Peru, and applied mass-production methods to the analysis of data. It was during this time that HCO became host to a series of major discoveries in astronomical history, powered by the Observatory’s so-called “Computers” (women hired by Pickering as skilled workers to process astronomical data). These “Computers” included Williamina Fleming; Annie Jump Cannon; Henrietta Swan Leavitt; Florence Cushman; and Antonia Maury, all widely recognized today as major figures in scientific history. Henrietta Swan Leavitt, for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars, establishing the first major “standard candle” with which to measure the distance to galaxies. Now called “Leavitt’s Law”, the discovery is regarded as one of the most foundational and important in the history of astronomy; astronomers like Edwin Hubble, for example, would later use Leavitt’s Law to establish that the Universe is expanding, the primary piece of evidence for the Big Bang model.

    Upon Pickering’s retirement in 1921, the Directorship of HCO fell to Harlow Shapley (a major participant in the so-called “Great Debate” of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin, who became the first woman to earn a Ph.D. in astronomy from Radcliffe College (a short walk from the Observatory). Payne-Gapochkin’s 1925 thesis proposed that stars were composed primarily of hydrogen and helium, an idea thought ridiculous at the time. Between Shapley’s tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg, both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO.

    Joint history as the Center for Astrophysics (CfA)

    The collaborative foundation for what would ultimately give rise to the Center for Astrophysics began with SAO’s move to Cambridge in 1955. Fred Whipple, who was already chair of the Harvard Astronomy Department (housed within HCO since 1931), was named SAO’s new director at the start of this new era; an early test of the model for a unified Directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center.

    This joint relationship was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field, then affiliated with UC Berkeley(US), was appointed as its first Director. That same year, a new astronomical journal, the CfA Preprint Series was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. The founding of the CfA also coincided with the birth of X-ray astronomy as a new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi, regarded as the “father of X-ray astronomy”, founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope) in 1976, and ultimately lead the proposals and development of what would become the Chandra X-ray Observatory. Chandra, the second of NASA’s Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA’s Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy.

    Shortly after the launch of the Einstein Observatory, the CfA’s Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification. The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe), as well as the release of the Field Report, a highly influential Astronomy & Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field. He would be replaced in 1982 by Irwin Shapiro, who during his tenure as Director (1982 to 2004) oversaw the expansion of the CfA’s observing facilities around the world.

    CfA-led discoveries throughout this period include canonical work on Supernova 1987A, the “CfA2 Great Wall” (then the largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes, and the first convincing evidence for an extrasolar planet.

    The 1990s also saw the CfA unwittingly play a major role in the history of computer science and the internet: in 1990, SAO developed SAOImage, one of the world’s first X11-based applications made publicly available (its successor, DS9, remains the most widely used astronomical FITS image viewer worldwide). During this time, scientists at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world’s first online databases of research papers. By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today.

    The CfA Today

    Research at the CfA

    Charles Alcock, known for a number of major works related to massive compact halo objects, was named the third director of the CfA in 2004. Today Alcock overseas one of the largest and most productive astronomical institutes in the world, with more than 850 staff and an annual budget in excess of $100M. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 Ph.D. students, more than 100 postdoctoral researchers, and roughly 25 undergraduate majors in astronomy and astrophysics from Harvard College. SAO, meanwhile, hosts a long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there.

    The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory, the Submillimeter Array, MMT Observatory, the South Pole Telescope, VERITAS, and a number of other smaller ground-based telescopes. The CfA’s 2019-2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the Center.

    CFA Harvard Smithsonian Submillimeter Array on MaunaKea, Hawaii, USA, Altitude 4,205 m (13,796 ft).

    South Pole Telescope SPTPOL. The SPT collaboration is made up of over a dozen (mostly North American) institutions, including The University of Chicago (US); The University of California Berkeley (US); Case Western Reserve University (US); Harvard/Smithsonian Astrophysical Observatory (US); The University of Colorado, Boulder; McGill(CA) University, The University of Illinois, Urbana-Champaign;The University of California, Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology. The University of California, Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology. It is funded by the National Science Foundation(US).

    Along with the Chandra X-ray Observatory, the CfA plays a central role in a number of space-based observing facilities, including the recently launched Parker Solar Probe, Kepler Space Telescope, the Solar Dynamics Observatory (SDO), and HINODE. The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory, a NASA-Funded Large Mission Concept Study commissioned as part of the 2020 Decadal Survey on Astronomy and Astrophysics (“Astro2020”). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra.

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

    SAO is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole.

    The result is widely regarded as a triumph not only of observational radio astronomy, but of its intersection with theoretical astrophysics. Union of the observational and theoretical subfields of astrophysics has been a major focus of the CfA since its founding.

    In 2018, the CfA rebranded, changing its official name to the “Center for Astrophysics | Harvard & Smithsonian” in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. Today, the CfA receives roughly 70% of its funding from NASA, 22% from Smithsonian federal funds, and 4% from the National Science Foundation. The remaining 4% comes from contributors including the United States Department of Energy, the Annenberg Foundation, as well as other gifts and endowments.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: