Tagged: Inflation Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:21 pm on March 31, 2023 Permalink | Reply
    Tags: "The Big Bang at 75", , , , , Inflation, Nobel Prize in Physics for 2011 Expansion of the Universe, , , , ,   

    From “Penn Today” At The University of Pennsylvania : “The Big Bang at 75” 

    From “Penn Today”

    At

    U Penn bloc

    The University of Pennsylvania

    3.30.23
    Kristina García

    Penn theoretical physicist Vijay Balasubramanian discusses the 75th anniversary of the alpha-beta-gamma paper, what we know—and don’t know—about the universe and the ‘very big gaps’ left to discover.

    1
    A child stops by an image of the cosmic microwave background at Shanghai Astrology Museum in Shanghai, China on July 18, 2021. (Image: FeatureChina via AP Images)

    There was a time before time when the universe was tiny, dense, and hot. In this world, time didn’t even exist. Space didn’t exist. That’s what current theories about the Big Bang posit, says Vijay Balasubramanian, the Cathy and Marc Lasry Professor of Physics. But what does this mean? What did the beginning of the universe look like? “I don’t know, maybe there was a timeless, spaceless soup,” Balasubramanian says. When we try to describe the beginning of everything, “our words fail us,” he says.

    Yet, for thousands of years, humans have been trying to do just that. One attempt came 75 years ago from physicists George Gamow and Ralph Alpher. In a paper published on April 1, 1948, Alpher and Gamow imagined the universe starts in a hot, dense state that cools as it expands. After some time, they argued, there should have been a gas of neutrons, protons, electrons, and neutrinos reacting with each other and congealing into atomic nuclei as the universe aged and cooled. As the universe changed, so did the rates of decay and the ratios of protons to neutrons. Alpher and Gamow were able to mathematically calculate how this process might have occurred.

    Now known as the alpha-beta-gamma theory, the paper predicted the surprisingly large fraction of helium and hydrogen in the universe. (By weight, hydrogen comprises 74% of nuclear matter, helium 24%, and heavier elements less than 1%.)

    The findings of Gamow and Alpher hold up today, Balasubramanian says, part of an increasingly complex picture of matter, time and space. Penn Today spoke with Balasubramanian about the paper, the Big Bang, and the origin of the universe.

    When did we first start to think about the Big Bang theory as it is known today?

    There’s actually a question of whether it’s even possible to talk about the origin of the universe. But across cultures, humans seem to have an innate drive to try to discuss this sort of question. In India, there was this idea of an infinite cyclic universe that went in gigantic cycles from origin to destruction, origin to destruction, over long lengths of time. The Aztecs had a cosmology that involves gigantic cycles of creation and construction, too. In the Christian West, people had the idea that the horizon of all of time was smaller, a few thousand years, although the Bible doesn’t actually say anything specific about that.

    In the 19th century, the first scientific inkling of the age of the world was given by Charles Lyell, a geologist, who wrote about the stratification of rocks. Charles Lyell basically gave Darwin the gift of time. Realizing that the earth was actually much older than a few thousand years gave room for the Theory of Evolution and expanded the horizon in time. That’s a prerequisite for being able to even conceive of the origin of the universe.

    Then in 1914, Albert Einstein comes up with the modern theory of gravity [Theory of General Relativity]. This led scientists to try to understand whether you could use this theory to think about the cosmos as a whole. One of the striking things that comes out of that kind of reasoning is that you get forced into a picture where the universe has to be dynamic, basically because gravity is constantly trying to squeeze it together.

    To start with, if you look around the sky, it looks reasonably stable and static. It doesn’t look like it’s going anywhere, right? So, people initially tried various ways to construct cosmologies in which they can be kind of stable and static. To do that, you’ve got to poise the universe exactly between an expanding phase and a shrinking phase. You need balance these tendencies. For example, you can give the universal an initial outward push, like a Big Bang, but gravity will try to pull everything back together. How the push and pull compete depends on the amount of kind of energy distributed in the cosmos: regular matter like the stuff that makes stars, pure energy like light, dark matter which does not make stars, and so-called dark energy which can either push the fabric of spacetime apart or try to pull it together. So theoretical physicists tried to figure out whether the laws of gravity, along with these kinds of energy, could explain the apparently static structure of observed universe.

    And then a series of astronomical measurements, notably by Edwin Hubble, showed definitively that despite initial appearances, the universe on large scales is not stable and static.

    Rather, all the stars and galaxies, as observed now, seem to be spreading apart from each other, as if they are embedded in a space-time fabric that is stretching wider as time passes.

    ___________________________________________________________________
    Inflation

    In physical cosmology, cosmic inflation, cosmological inflation is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10^−36 seconds after the conjectured Big Bang singularity to some time between 10^−33 and 10^−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago).

    Inflation theory was developed in the late 1970s and early 80s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Alexei Starobinsky, Alan Guth, and Andrei Linde won the 2014 Kavli Prize “for pioneering the theory of cosmic inflation.” It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe. Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

    The detailed particle physics mechanism responsible for inflation is unknown. The basic inflationary paradigm is accepted by most physicists, as a number of inflation model predictions have been confirmed by observation; however, a substantial minority of scientists dissent from this position. The hypothetical field thought to be responsible for inflation is called the inflaton.

    In 2002 three of the original architects of the theory were recognized for their major contributions; physicists Alan Guth of M.I.T., Andrei Linde of Stanford, and Paul Steinhardt of Princeton shared the prestigious Dirac Prize “for development of the concept of inflation in cosmology”. In 2012 Guth and Linde were awarded the Breakthrough Prize in Fundamental Physics for their invention and development of inflationary cosmology.

    4
    Alan Guth, from M.I.T., who first proposed Cosmic Inflation.

    Alan Guth’s notes:
    Alan Guth’s original notes on inflation.
    ___________________________________________________________________

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. SchmidtThe High-z Supernova Search Team, The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess

    The High-z Supernova Search Team,The Johns Hopkins University and The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore, the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    _____________________________________________

    This was a revelation, because physicists realized that if the universe is expanding now, if you run the movie backward, it had to be smaller earlier. In fact, some 13 billion years ago all the matter and energy in the universe had to be crammed together at incredible densities that have never been seen on Earth. You can also conclude that the universe would have been a lot hotter in this compressed phase. This is just like what happens if you compress a bicycle pump; he air inside gets hotter because you are cramming more energy into a smaller space. And when things get that hot, the microscopic processes of nuclear physics and even quantum gravity play an important role because of the enormous energies involved.

    So, to summarize, the idea of the modern Big Bang comes about because General Relativity makes a prediction: Given the current expansion of the universe, if you run time backwards, you have to start from a very highly compressed phase. At some point, time begins. This didn’t have to be. It could have been very compressed forever, and time could have been infinite. But Einstein’s theory of gravity predicts a beginning for time from which the universe explodes out. That’s the Big Bang.

    What are the weaknesses of the Big Bang theory and our current conception of the origin of the universe?

    It involves an extrapolation of the things we know and can measure in the lab, along with rather uncertain measurements of the expansion rate of the universe. People like Hubble measured distant stars and galaxies and realized that they look as they’re moving away from us, as an expansion. You put that expansion together with the equations of general relativity. Physics can predict forward in time and can predict backward in time. The equations tell you, given the current state, what the future will look like. But they can also tell you about the past. You know, take your pick.

    If you assume Einstein’s theory of relativity and you run the movie backward, time begins some 13 or 14 billion years ago. The question is, should you believe such a wild prediction?

    While there are excellent reasons to believe the general theory of relativity—there’s lots of evidence about many things that it gets right—in the history of science, it’s been often the case that a well-tested theory, extrapolated to regimes very far from the region where it was tested, will need corrections of some kind.

    We’re extrapolating into regions that have been out of the reach of laboratory experiments to date, for which we do not have direct observational evidence. We should keep in mind that this theory may need corrections, and things like string theory attempt to correct it. Then there are unknown factors that the theory didn’t include, new forms of energy that could prevent the expansion or shrinking or could stabilize the universe.

    I’m laying out here the many uncertainties of the theory, but that’s partly because that’s where the opportunities are. If everything was already done, we wouldn’t have to think about it anymore.

    Physicists can imagine stuff that makes the world work. That’s what we do for a trade. We imagine stuff that would be necessary for the logical consistency of the world around us. The alpha-beta-gamma paper took Einstein’s theory for granted. They predicted the abundances of the primordial elements, the hydrogen-helium ratio, which turns out to be right. They said, ‘Okay, well, if the universe was very hot, it had to have cooled down over time. So if it cooled down, I’m going put all I know about nuclear physics in the lab to represent the expansion of the universe. As it cools, the primordial soup will freeze out into quarks and gluons and electrons, and those things will freeze out some more, and eventually, when it’s done freezing out, based on what I know about nuclear reaction rates, I predict the following ratio of hydrogen to helium.’ That’s what they did.

    The theory then proceeded to predict that you will see a glow in the distant sky as the Big Bang cooled down to a few degrees Kelvin. The discovery of that glow, the cosmic microwave background, in the 1960s, really nailed it.

    How do you predict this theory will evolve, or be adjusted, with time?

    The hydrogen-helium ratio and the cosmic microwave background are two primary reasons to support the Big Bang theory. Those are certainties that we are seeing now. But what does Hamlet say? ‘There are more things in Heaven and Earth, Horatio, than are dreamt of in your philosophy.’

    We keep discovering that our assumptions about the nature of the universe are incorrect or approximate.

    The laws of physics are full of laws that turn out not to be laws. They turn out to be approximations. So, Newton’s laws, which we still call Newton’s laws out of respect for Newton, are approximations to the more general laws of general relativity and quantum mechanics. There’s a progression in science where we devise rules and descriptions of nature that work extremely well in some regime, and then, as you push outside the regime, you have to be able to edit them. I try to remain aware that, while the default conclusion is there was a big bang, understood as a singularity in space and time, about 13, 14 billion years ago. There may be escape routes from that conclusion, if our understanding of the laws of nature or something in the data has not been fully correct.

    Questioning where the cosmos came from has long been part of human speculation, in philosophy and religion. Ancient peoples drew pictures in caves involving their cosmologies. There’s clearly a human need to talk about origins and causation of the universe. It is kind of amazing and remarkable that we live in a time when there’s a scientific approach to such questions, which we can use with any kind of confidence.

    We’re just little people sitting on this irrelevant little planet of a very medium-sized solar system on the edge of a no-account galaxy that is part of a local cluster. We’re sort of just tiny things, right? And yet, we’re claiming to be able to say something about the actual origin of everything. It’s amazing that we have a hope of doing that. But there’s pretty good evidence, that at least in the rough, that this picture is correct: There was a hot, dense space about 13 some billion years ago, and it’s expanded since then.

    The core description fits beautifully. The ballpark version seems correct. But the detailed version has gaps, so there is a lot left to do in this process of discovery to understand how the universe is organized and what is in it, Today the most important questions involve dark matter, a form of matter that does not form stars, and dark energy, a form of energy that appears to be forcing the universe apart at an ever faster rate. Together, these substances appear to constitute about 96% of the energy in the universe and have huge consequences for the large-scale organization of the cosmos, its past history, and its future. The race is on to figure out what dark matter and dark energy are.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at The University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 4:47 pm on February 21, 2023 Permalink | Reply
    Tags: "Cosmologists say black holes are accelerating the expansion of the universe", , , , , , , Inflation,   

    From “Discover Magazine” : “Cosmologists say black holes are accelerating the expansion of the universe” 

    DiscoverMag

    From “Discover Magazine”

    2.21.23

    Our universe began with a puzzle. For 100 million years after the Big Bang, it expanded. Then something strange happened — this expansion suddenly accelerated and has continued to accelerate ever since.
    ___________________________________________________________________
    Inflation

    In physical cosmology, cosmic inflation, cosmological inflation is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10^−36 seconds after the conjectured Big Bang singularity to some time between 10^−33 and 10^−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago).

    Inflation theory was developed in the late 1970s and early 80s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Alexei Starobinsky, Alan Guth, and Andrei Linde won the 2014 Kavli Prize “for pioneering the theory of cosmic inflation.” It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe. Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

    The detailed particle physics mechanism responsible for inflation is unknown. The basic inflationary paradigm is accepted by most physicists, as a number of inflation model predictions have been confirmed by observation; however, a substantial minority of scientists dissent from this position. The hypothetical field thought to be responsible for inflation is called the inflaton.

    In 2002 three of the original architects of the theory were recognized for their major contributions; physicists Alan Guth of M.I.T., Andrei Linde of Stanford, and Paul Steinhardt of Princeton shared the prestigious Dirac Prize “for development of the concept of inflation in cosmology”. In 2012 Guth and Linde were awarded the Breakthrough Prize in Fundamental Physics for their invention and development of inflationary cosmology.

    4
    Alan Guth, from M.I.T., who first proposed Cosmic Inflation.

    Alan Guth’s notes:
    Alan Guth’s original notes on inflation.
    ___________________________________________________________________

    Today cosmologists think some kind of pressure must have forced this acceleration, all powered by huge amounts of energy from an unknown source. Cosmologists call it dark energy.
    ___________________________________________________________________
    The Dark Energy Survey

    Dark Energy Camera [DECam] built at The DOE’s Fermi National Accelerator Laboratory.

    NOIRLab National Optical Astronomy Observatory Cerro Tololo Inter-American Observatory (CL) Victor M Blanco 4m Telescope which houses the Dark-Energy-Camera – DECam at Cerro Tololo, Chile at an altitude of 7200 feet.

    NOIRLabNSF NOIRLab NOAO Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

    The Dark Energy Survey is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. The Dark Energy Survey began searching the Southern skies on August 31, 2013.

    According to Albert Einstein’s Theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up.

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. Schmidt
    The High-z Supernova Search Team,
    The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess
    The High-z Supernova Search Team,The Johns Hopkins University and
    The Space Telescope Science Institute, Baltimore, MD.
    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago.

    However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    ___________________________________________________________________
    To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called Dark Energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or Albert Einstein’s Theory of General Relativity must be replaced by a new theory of gravity on cosmic scales.

    The Dark Energy Survey is designed to probe the origin of the accelerating universe and help uncover the nature of Dark Energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the Dark Energy Survey collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.
    ___________________________________________________________________

    But why this accelerating expansion occurred, and why it happened at that time, is one of the great unsolved mysteries in science.

    Now Duncan Farrah and the University of Hawaii in Honolulu and colleagues think they know the answer. They say the acceleration is the result of a previously unknown interaction between black holes and spacetime. When spacetime expands, they say, this interaction makes black holes more massive and this extra mass accelerates the expansion of the universe, creating the accelerated expansion we see today.

    Spacetime Theories

    First some background. The new idea has its origins in the work of theoretical physicists who have recently shown that black holes cannot be independent of the spacetime in which they sit. Instead, spacetime and black holes must be coupled in such a way that a change in the properties of one immediately influences the properties of the other.

    So how might this manifest itself? One possibility is that any stretching of spacetime as it expands makes black holes more massive. An analogous effect is the way the same stretching causes light from the early universe to become red-shifted as it travels through space and time to be observed today.

    Farrah and Co reasoned that if this coupling does occur, then black holes in the early universe would be less massive than those in the more recent past. So they looked for evidence by studying supermassive black holes at the center of galaxies.

    It turns out that supermassive black holes in the closer, more recent universe are up to 20 times more massive than those in the more distant, early universe (relative to the mass of the stars around them). “We find evidence for cosmologically coupled mass growth among these black holes,” they say.

    This growth cannot be explained by the black holes swallowing nearby stars — there aren’t enough of them. Nor cannot it be explained by the merger of supermassive black holes as galaxies collide, since this would not change the mass ratio of nearby stars.

    Instead, Farrah and Co say this is evidence that black hole mass must be coupled to spacetime and must increase as the universe expands. Indeed, the change in mass over time is consistent with this explanation.

    But this increase in mass itself exerts a pressure on spacetime. Farrah and Co say this the pressure, or dark energy, causes the expansion of the universe to accelerate. Indeed, their calculations suggest this pressure is the order of magnitude necessary to explain the observed expansion rate.

    It also explains why the accelerated expansion began only after the universe was 100 million years old, a time that cosmologists refer to by its redshift, denoted z. In this case z ∼ 0.7.

    The answer is because black holes form when stars die and so can only have begun to influence the expansion after the first stars had formed. That was 100 million years after the big bang.

    “We thus propose that stellar remnant black holes are the astrophysical origin of dark energy, explaining the onset of accelerating expansion at z ∼ 0.7” say the team.

    Dark Origins

    The same idea could explain another of cosmology’s great mysteries— why the structure of the universe that we can see seems to be influenced by the gravitational pull of stuff we cannot see, so-called dark matter.

    __________________________________
    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., and Vera Rubin a Woman in STEM, denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky.

    Coma cluster via NASA/ESA Hubble, the original example of Dark Matter discovered during observations by Fritz Zwicky and confirmed 30 years later by Vera Rubin.

    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.

    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.

    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).

    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970.

    Vera Rubin measuring spectra, worked on Dark Matter(Emilio Segre Visual Archives AIP SPL).

    Dark Matter Research

    Super Cryogenic Dark Matter Search from DOE’s SLAC National Accelerator Laboratory at Stanford University at SNOLAB (Vale Inco Mine, Sudbury, Canada).

    LBNL LZ Dark Matter Experiment xenon detector at Sanford Underground Research Facility Credit: Matt Kapust.


    DAMA at Gran Sasso uses sodium iodide housed in copper to hunt for dark matter LNGS-INFN.

    Yale HAYSTAC axion dark matter experiment at Yale’s Wright Lab.

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB (CA) deep in Sudbury’s Creighton Mine.

    The LBNL LZ Dark Matter Experiment Dark Matter project at SURF, Lead, SD.

    DAMA-LIBRA Dark Matter experiment at the Italian National Institute for Nuclear Physics’ (INFN’s) Gran Sasso National Laboratories (LNGS) located in the Abruzzo region of central Italy.

    DARWIN Dark Matter experiment. A design study for a next-generation, multi-ton dark matter detector in Europe at The University of Zurich [Universität Zürich](CH).

    PandaX II Dark Matter experiment at Jin-ping Underground Laboratory (CJPL) in Sichuan, China.

    Inside the Axion Dark Matter eXperiment U Washington. Credit: Mark Stone U. of Washington. Axion Dark Matter Experiment.

    3
    The University of Western Australia ORGAN Experiment’s main detector. A small copper cylinder called a “resonant cavity” traps photons generated during dark matter conversion. The cylinder is bolted to a “dilution refrigerator” which cools the experiment to very low temperatures.
    __________________________________

    One hypothesized explanation for this is that dark matter takes the form of massive compact halo objects, or MACHOs, that float through interstellar space but do not emit much radiation and so are hard to observe.

    Farrah and Co’s theory applies to black holes at every scale, from a those few times the mass of our sun to those that are many millions of times bigger. They point out that the smallest black holes form a population that is consistent with properties MACHOs.

    “If these BHs are distributed in galactic halos, they will form a population of Massive Compact Halo Objects,” say Farrah and co. In other words, their theory also explains the origin of dark matter.

    The team go on to make several predictions that could make or break their theory. For example, they say the effect of this black hole-spacetime coupling should have an observable influence on the cosmic microwave background [CMB], the echo of the big bang that astronomers have been observing with increasing precision for decades.

    Farrah and co also predict how the coupling effect should influence the properties of the mysterious gamma ray bursts that astronomers observe from various parts of the universe.

    And they say that the coupling between black holes and spacetime should influence the rate at which small black holes merge. “This can lead to significant increases in merger rate,” they say. The mergers of small black holes have recently become observable thanks to the detection of gravitational waves.

    These predictions should be readily testable in the near future. If Farrah and co are correct, then observational conformation of their idea should begin trickling in over the next few months and years.

    There will also be inevitable disputes. But make no mistake—an explanation for the origin of dark energy and dark matter will be a major breakthrough in astronomy and one that solves one of the outstanding mysteries of our time.

    The Astrophysical Journal Letters

    Figure 1.
    3
    (Top) Posterior distributions of cosmological coupling strength k, inferred by comparing SMBHs in local elliptical
    galaxies to those in five samples of elliptical galaxies at z > 0.7. (Bottom) Combining these posterior samples with equal weighting gives a distribution with k = 3.11+1.19−1.33 at 90% confidence. If fit to a Gaussian, the fit has a mean of k = 3.09 with a standard deviation of 0.76 (shading). Vertical lines indicate: k = 0 coupling, as expected for traditional BHs like Kerr and the decoupled solution by Nolan (1993); and k = 3 coupling, as predicted for vacuum energy interior BHs. The measurement disfavors zero coupling at 99.98% confidence and is consistent with BHs possessing vacuum energy interiors, as first suggested by Gliner (1966).

    Figure 2.
    2
    Cosmic star formation rate densities (SFRDs) capable of producing the necessary k = 3 BH density to give
    ΩΛ = 0.68 (green, solid). The details of the model are given in Appendix A. The upper bound of the viable region adopts
    a Kroupa (2002) IMF at all redshifts with the least amount of remnant accretion required to produce ΩΛ with a decreasing
    power-law SFRD model (red, solid). The lower bound adopts the top-heavy IMF of Harikane et al. (2022a) at z > 7 (blue,
    solid). Two middle lines show the impact of a top-heavy IMF at z > 7, but no remnant accretion (green, solid); and higher
    accretion, but with a Kroupa IMF (orange, solid). Existing measurements of the SFRD via IR (Rowan-Robinson et al. 2018,
    red, squares), γ-ray bursts (Kistler et al. 2009, orange, stars), FIR (Algera et al. 2023, brown, xs), and rest-frame UV via JWST (Donnan et al. 2022; Harikane et al. 2022a, purple, dots), (Bouwens et al. 2022, blue, dots) are over-plotted. The UV points can vary ∼ −1 dex depending upon IMF assumptions and UV luminosity integration bounds. Consistency occurs with consumption of < 3% of the baryon fraction Ωb after cosmic dawn. The results assume stellar first light at z? = 25 (Harikane et al. 2022b, Fig 25) but are typical of the scenario for 15 < z? < 35. Also indicated are the redshifts probed by 21cm experiments.

    Fig 3.
    3
    (Vertical bars) Fraction of z = 0 halo density contributed by k = 3 BHs, as produced by the indicated SFRDs in
    Figure 2. Models are ordered by increasing SFRD power-law slope, with colors set to agree with the model lines in Figure 2. Also displayed (grey, shaded) are current constraints on MACHOs from microlensing (Blaineau et al. 2022), wide halo binary disruption (Tyler et al. 2022; Monroy-Rodr ́ıguez & Allen 2014), and ultra-faint dwarf (UFD) galaxy disruption (Brandt 2016). Noting the broken vertical axis, the microlensing and halo binary constraints are easily satisfied. Dwarf galaxy constraints may discriminate candidate SFRD and IMF combinations. As shown, UFD constraints are overlyconservative because they do not account for the decrease in comoving BH mass density at earlier times, as will be present in the k > 0 coupled scenario. The effects of accretion at z > 7, as well as adopting a top-heavy IMF (Appendix A), are visible as decreased fraction in the IMBH range. (Horizontal bars) Fraction of present-day ΩΛ contributed by each mass bin. Mass bins that contribute < 5% of ΩΛ are unlabeled for clarity. Color gradients indicate mass binning and are common to both vertical and horizontal bars. Contributionsless than 1%, including negligible contributions omitted in the vertical bars, are also shown in log scaling. Here, contributions are ordered by density fraction.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 7:37 pm on February 13, 2020 Permalink | Reply
    Tags: , , , , CMBR, , Inflation   

    From Harvard-Smithsonian Center for Astrophysics: “The Cosmic Confusion of the Microwave Background” 

    Harvard Smithsonian Center for Astrophysics


    From Harvard-Smithsonian Center for Astrophysics

    February 7, 2020

    Roughly 380,000 years after the big bang, about 13.7 billion years ago, matter (mostly hydrogen) cooled enough for neutral atoms to form, and light was able to traverse space freely. That light, the cosmic microwave background radiation (CMBR), comes to us from every direction in the sky, uniform except for faint ripples and bumps at brightness levels of only a few part in one hundred thousand, the seeds of future structures like galaxies.

    Cosmic microwave background radiation. Stephen Hawking Center for Theoretical Cosmology U Cambridge

    Astronomers have conjectured that these ripples also contain traces of an initial burst of expansion — the so-called inflation – which swelled the new universe by thirty-three orders of magnitude in a mere ten-to-the-power-minus-thirty-three seconds.

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:

    Alan Guth’s original notes on inflation

    Clues about the inflation should be faintly present in the way the cosmic ripples are curled, an effect that is expected to be perhaps one hundred times fainter than the ripples themselves. CfA astronomers and their colleagues, working at the South Pole, have been working to find evidence for such curling, the “B-mode polarization.”

    Traces of this tiny effect are not only difficult to measure, they may be obscured by unrelated phenomena that can confuse or even mask it. CfA astronomer Tony Stark is a member of the large South Pole Telescope (SPT) consortium, a collaboration that has been studying galaxies and galaxy clusters in the distant universe at microwave wavelengths.

    South Pole Telescope SPTPOL. The SPT collaboration is made up of over a dozen (mostly North American) institutions, including the University of Chicago, the University of California, Berkeley, Case Western Reserve University, Harvard/Smithsonian Astrophysical Observatory, the University of Colorado Boulder, McGill University, The University of Illinois at Urbana-Champaign, University of California, Davis, Ludwig Maximilian University of Munich, Argonne National Laboratory, and the National Institute for Standards and Technology. It is funded by the National Science Foundation.

    Individual cosmic sources are in general dominated either by active supermassive black hole nuclei and emit radiation from the charged particle jets ejected from the regions around them, or by star formation whose radiation comes from warm dust. The emission is also probably polarized and could complicate the positive identification of CMBR B-mode radiation signals. The SPT team used a new analysis method to study the combined polarization strength of all the millimeter emission sources they find in a 500 square degree field in the sky, about four thousand objects. They conclude – good news for CMBR researchers – that the extragalactic foreground effects should be smaller than any expected B-mode signals, at least over a wide range of spatial scales.

    Science paper
    Fractional Polarization of Extragalactic Sources in the 500 deg2 SPTpol Survey,” N. Gupta et al
    MNRAS

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

     
  • richardmitnick 1:27 pm on August 2, 2019 Permalink | Reply
    Tags: "We Have Already Entered The Sixth And Final Era Of Our Universe", , , , , , , Inflation   

    From Ethan Siegel: “We Have Already Entered The Sixth And Final Era Of Our Universe” 

    From Ethan Siegel
    Aug 2, 2019

    Timeline of the Inflationary Universe WMAP

    From the inflationary state that preceded the Big Bang to our cold, lonely, dark energy-dominated fate, the Universe goes through six different eras. We’re living in the last one already.

    The Universe is not the same today as it was yesterday. With each moment that goes by, a number of subtle but important changes occur, even if many of them are imperceptible on measurable, human timescales. The Universe is expanding, which means that the distances between the largest cosmic structures are increasing with time.

    A second ago, the Universe was slightly smaller; a second from now, the Universe will be slightly larger. But those subtle changes both build up over large, cosmic timescales, and affect more than just distances. As the Universe expands, the relative importance of radiation, matter, neutrinos, and dark energy all change. The temperature of the Universe changes. And what you’d see in the sky would change dramatically as well. All told, there are six different eras we can break the Universe into, and we’re already in the final one.

    2
    How matter (top), radiation (middle), and a cosmological constant (bottom) all evolve with time in an expanding Universe. As the Universe expands, the matter density dilutes, but the radiation also becomes cooler as its wavelengths get stretched to longer, less energetic states. Dark energy’s density, on the other hand, will truly remain constant if it behaves as is currently thought: as a form of energy intrinsic to space itself. (E. SIEGEL / BEYOND THE GALAXY)

    The reason for this can be understood from the graph above. Everything that exists in our Universe has a certain amount of energy in it: matter, radiation, dark energy, etc. As the Universe expands, the volume that these forms of energy occupy changes, and each one will have its energy density evolve differently. In particular, if we define the observable horizon by the variable a, then:

    matter will have its energy density evolve as 1/a³, since (for matter) density is just mass over volume, and mass can easily be converted to energy via E = mc²,
    radiation will have its energy density evolve as 1/a⁴, since (for radiation) the number density is the number of particles divided by volume, and the energy of each individual photon stretches as the Universe expands, adding an additional factor of 1/a relative to matter,
    and dark energy is a property of space itself, so its energy density remains constant (1/a⁰), irrespective of the Universe’s expansion or volume.

    3
    A visual history of the expanding Universe includes the hot, dense state known as the Big Bang and the growth and formation of structure subsequently. The full suite of data, including the observations of the light elements and the cosmic microwave background, leaves only the Big Bang as a valid explanation for all we see. As the Universe expands, it also cools, enabling ions, neutral atoms, and eventually molecules, gas clouds, stars, and finally galaxies to form. (NASA / CXC / M. WEISS)

    A Universe that has been around longer, therefore, will have expanded more. It will be cooler in the future and was hotter in the past; it was gravitationally more uniform in the past and is clumpier now; it was smaller in the past and will be much, much larger in the future.

    By applying the laws of physics to the Universe, and comparing the possible solutions with the observations and measurements we’ve obtained, we can determine both where we came from and where we’re headed. We can extrapolate our past history all the way back to the beginning of the hot Big Bang and even before, to a period of cosmic inflation. We can extrapolate our current Universe into the far distant future as well, and foresee the ultimate fate that awaits everything that exists.

    4
    Our entire cosmic history is theoretically well-understood, but only because we understand the theory of gravitation that underlies it, and because we know the Universe’s present expansion rate and energy composition. Light will always continue to propagate through this expanding Universe, and we will continue to receive that light arbitrarily far into the future, but it will be limited in time as far as what reaches us. We will need to probe to fainter brightnesses and longer wavelengths to continue to see the objects presently visible, but those are technological, not physical, limitations. (NICOLE RAGER FULLER / NATIONAL SCIENCE FOUNDATION)

    When we draw the dividing lines based on how the Universe behaves, we find that there are six different eras that will come to pass.

    Inflationary era: which preceded and set up the hot Big Bang.
    Primordial Soup era: from the start of the hot Big Bang until the final transformative nuclear & particle interactions occur in the early Universe.
    Plasma era: from the end of non-scattering nuclear and particle interactions until the Universe cools enough to stably form neutral matter.
    Dark Ages era: from the formation of neutral matter until the first stars and galaxies reionize the intergalactic medium of the Universe completely.
    Stellar era: from the end of reionization until the gravity-driven formation and growth of large-scale structure ceases, when the dark energy density dominates over the matter density.
    Dark Energy era: the final stage of our Universe, where the expansion accelerates and disconnected objects speed irrevocably and irreversibly away from one another.

    We already entered this final era billions of years ago. Most of the important events that will define our Universe’s history have already occurred.

    5
    Fluctuations in spacetime itself at the quantum scale get stretched across the Universe during inflation, giving rise to imperfections in both density and gravitational waves. Whether inflation arose from an eventual singularity or not is unknown, but the signatures of whether it occurred are accessible in our observable Universe. (E. SIEGEL, WITH IMAGES DERIVED FROM ESA/PLANCK AND THE DOE/NASA/ NSF INTERAGENCY TASK FORCE ON CMB RESEARCH)

    1.) Inflationary era. Prior to the hot Big Bang, the Universe wasn’t filled with matter, antimatter, dark matter or radiation. It wasn’t filled with particles of any type. Instead, it was filled with a form of energy inherent to space itself: a form of energy that caused the Universe to expand both extremely rapidly and relentlessly, in an exponential fashion.

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:

    Alan Guth’s original notes on inflation

    It stretched the Universe, from whatever geometry it once had, into a state indistinguishable from spatially flat.
    It expanded a small, causally connected patch of the Universe to one much larger than our presently visible Universe: larger than the current causal horizon.
    It took any particles that may have been present and expanded the Universe so rapidly that none of them are left inside a region the size of our visible Universe.
    And the quantum fluctuations that occurred during inflation created the seeds of structure that gave rise to our vast cosmic web today.

    And then, abruptly, some 13.8 billion years ago, inflation ended. All of that energy, once inherent to space itself, got converted into particles, antiparticles, and radiation. With this transition, the inflationary era ended, and the hot Big Bang began.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    6
    At the high temperatures achieved in the very young Universe, not only can particles and photons be spontaneously created, given enough energy, but also antiparticles and unstable particles as well, resulting in a primordial particle-and-antiparticle soup. Yet even with these conditions, only a few specific states, or particles, can emerge. (BROOKHAVEN NATIONAL LABORATORY)

    2.) Primordial Soup era. Once the expanding Universe is filled with matter, antimatter and radiation, it’s going to cool. Whenever particles collide, they’ll produce whatever particle-antiparticle pairs are allowed by the laws of physics. The primary restriction comes only from the energies of the collisions involved, as the production is governed by E = mc².

    As the Universe cools, the energy drops, and it becomes harder and harder to create more massive particle-antiparticle pairs, but annihilations and other particle reactions continue unabated. 1-to-3 seconds after the Big Bang, the antimatter is all gone, leaving only matter behind. 3-to-4 minutes after the Big Bang, stable deuterium can form, and nucleosynthesis of the light elements occurs. And after some radioactive decays and a few final nuclear reactions, all we have left is a hot (but cooling) ionized plasma consisting of photons, neutrinos, atomic nuclei and electrons.

    7
    At early times (left), photons scatter off of electrons and are high-enough in energy to knock any atoms back into an ionized state. Once the Universe cools enough, and is devoid of such high-energy photons (right), they cannot interact with the neutral atoms, and instead simply free-stream, since they have the wrong wavelength to excite these atoms to a higher energy level. (E. SIEGEL / BEYOND THE GALAXY)

    3.) Plasma era. Once those light nuclei form, they’re the only positively (electrically) charged objects in the Universe, and they’re everywhere. Of course, they’re balanced by an equal amount of negative charge in the form of electrons. Nuclei and electrons form atoms, and so it might seem only natural that these two species of particle would find one another immediately, forming atoms and paving the way for stars.

    Unfortunately for them, they’re vastly outnumbered — by more than a billion to one — by photons. Every time an electron and a nucleus bind together, a high-enough energy photon comes along and blasts them apart. It isn’t until the Universe cools dramatically, from billions of degrees to just thousands of degrees, that neutral atoms can finally form. (And even then, it’s only possible because of a special atomic transition.)

    At the beginning of the Plasma era, the Universe’s energy content is dominated by radiation. By the end, it’s dominated by normal and dark matter.

    Fritz Zwicky discovered Dark Matter when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com

    Coma cluster via NASA/ESA Hubble

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL)


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu

    This third phase takes us to 380,000 years after the Big Bang.

    9
    Schematic diagram of the Universe’s history, highlighting reionization. Before stars or galaxies formed, the Universe was full of light-blocking, neutral atoms. While most of the Universe doesn’t become reionized until 550 million years afterwards, with some regions achieving full reionization earlier and others later. The first major waves of reionization begin happening at around 250 million years of age, while a few fortunate stars may form just 50-to-100 million years after the Big Bang. With the right tools, like the James Webb Space Telescope, we may begin to reveal the earliest galaxies.(S. G. DJORGOVSKI ET AL., CALTECH DIGITAL MEDIA CENTER)

    4.) Dark Ages era. Filled with neutral atoms, at last, gravitation can begin the process of forming structure in the Universe. But with all these neutral atoms around, what we presently know as visible light would be invisible all throughout the sky.

    Why’s that? Because neutral atoms, particularly in the form of cosmic dust, are outstanding at blocking visible light.

    In order to end these dark ages, the intergalactic medium needs to be reionized. That requires enormous amounts of star-formation and tremendous numbers of ultraviolet photons, and that requires time, gravitation, and the start of the cosmic web. The first major regions of reionization take place 200–250 million years after the Big Bang, but reionization doesn’t complete, on average, until the Universe is 550 million years old. At this point, the star-formation rate is still increasing, and the first massive galaxy clusters are just beginning to form.

    10
    The galaxy cluster Abell 370, shown here, was one of the six massive galaxy clusters imaged in the Hubble Frontier Fields program. Since other great observatories were also used to image this region of sky, thousands of ultra-distant galaxies were revealed. By observing them again with a new scientific goal, Hubble’s BUFFALO (Beyond Ultra-deep Frontier Fields And Legacy Observations) program will obtain distances to these galaxies, enabling us to better understand how galaxies formed, evolved, and grew up in our Universe. When combined with intracluster light measurements, we could gain an even greater understanding, via multiple lines of evidence of the same structure, of the dark matter inside. (NASA, ESA, A. KOEKEMOER (STSCI), M. JAUZAC (DURHAM UNIVERSITY), C. STEINHARDT (NIELS BOHR INSTITUTE), AND THE BUFFALO TEAM)

    5.) Stellar era. Once the dark ages are over, the Universe is now transparent to starlight. The great recesses of the cosmos are now accessible, with stars, star clusters, galaxies, galaxy clusters, and the great, growing cosmic web all waiting to be discovered. The Universe is dominated, energy-wise, by dark matter and normal matter, and the gravitationally bound structures continue to grow larger and larger.

    The star-formation rate rises and rises, peaking about 3 billion years after the Big Bang. At this point, new galaxies continue to form, existing galaxies continue to grow and merge, and galaxy clusters attract more and more matter into them. But the amount of free gas within galaxies begins to drop, as the enormous amounts of star-formation have used up a large amount of it. Slowly but steadily, the star-formation rate drops.

    As time goes forward, the stellar death rate will outpace the birth rate, a fact made worse by the following surprise: as the matter density drops with the expanding Universe, a new form of energy — dark energy — begins to appear and dominate. 7.8 billion years after the Big Bang, distant galaxies stop slowing down in their recession from one another, and begin speeding up again. The accelerating Universe is upon us. A little bit later, 9.2 billion years after the Big Bang, dark energy becomes the dominant component of energy in the Universe. At this point, we enter the final era.

    10
    The different possible fates of the Universe, with our actual, accelerating fate shown at the right. After enough time goes by, the acceleration will leave every bound galactic or supergalactic structure completely isolated in the Universe, as all the other structures accelerate irrevocably away. We can only look to the past to infer dark energy’s presence and properties, which require at least one constant, but its implications are larger for the future.(NASA & ESA)

    6.) Dark Energy age.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Timeline of the Inflationary Universe WMAP

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.

    Once dark energy takes over, something bizarre happens: the large-scale structure in the Universe ceases to grow. The objects that were gravitationally bound to one another before dark energy’s takeover will remain bound, but those that were not yet bound by the onset of the dark energy age will never become bound. Instead, they will simply accelerate away from one another, leading lonely existences in the great expanse of nothingness.

    The individual bound structures, like galaxies and groups/clusters of galaxies, will eventually merge to form one giant elliptical galaxy. The existing stars will die; new star formation will slow down to a trickle and then stop; gravitational interactions will eject most of the stars into the intergalactic abyss. Planets will spiral into their parent stars or stellar remnants, owing to decay by gravitational radiation. Even black holes, with extraordinarily long lifetimes, will eventually decay from Hawking radiation.

    In the end, only black dwarf stars and isolated masses too small to ignite nuclear fusion will remain, sparsely populated and disconnected from one another in this empty, ever-expanding cosmos. These final-state corpses will exist even googols of years onward, continuing to persist as dark energy remains the dominant factor in our Universe.

    This last era, of dark energy domination, has already begun. Dark energy became important for the Universe’s expansion 6 billion years ago, and began dominating the Universe’s energy content around the time our Sun and Solar System were being born. The Universe may have six unique stages, but for the entirety of Earth’s history, we’ve already been in the final one. Take a good look at the Universe around us. It will never be this rich — or this easy to access — ever again.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 11:18 am on May 7, 2019 Permalink | Reply
    Tags: "A universe is born", , , , , , , , , Inflation, , , , The Planck epoch   

    From Symmetry: “A universe is born” 

    Symmetry Mag
    From Symmetry

    05/07/19
    Diana Kwon

    Take a (brief) journey through the early history of our cosmos.

    Timeline of the Inflationary Universe WMAP

    The universe was a busy place during the first three minutes. The cosmos we see today expanded from a tiny speck to much closer to its current massive size; the elementary particles appeared; and protons and neutrons combined into the first nuclei, filling the universe with the precursors of elements.

    By developing clever theories and conducting experiments with particle colliders, telescopes and satellites, physicists have been able to wind the film of the universe back billions of years—and glimpse the details of the very first moments in the history of our cosmic home.

    Take an abridged tour through this history:

    The Planck epoch
    Time: < 10^-43 seconds

    The Planck Epoch https:// http://www.slideshare.net ericgolob the-big-bang-10535251

    Welcome to the Planck epoch, named after the smallest scale of measurements possible in particle physics today. This is currently the closet scientists can get to the beginning of time.

    Theoretical physicists don’t know much about the earliest moments of the universe. After the Big Bang theory gained popularity, scientists thought that in the first moments, the cosmos was at its hottest and densest and that all four fundamental forces—electromagnetic, weak, strong and gravitational—were combined into a single, unified force. But the current leading theoretical framework for our universe’s beginning doesn’t necessarily require these conditions.

    The universe expands
    Time: From 10^-43 seconds to about 10^-36 seconds

    In this stage, which began either at Planck time or shortly after it, scientists think the universe underwent superfast, exponential expansion in a process known as inflation.

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:
    5

    Physicists first proposed the theory of inflation in the 1980s to address the shortcomings of the Big Bang theory, which, despite its popularity, could not explain why the universe was so flat and uniform, and why its different parts began expanding simultaneously.

    During inflation, quantum fluctuations could have stretched out to produce a pattern that later determined the locations of galaxies. It might have been only after this period of inflation the universe became a hot, dense fireball as described in the Big Bang theory.

    The elementary particles are born
    Time: ~10^-36 seconds

    When the universe was still very hot, the cosmos was like a gigantic accelerator, much more powerful than the Large Hadron Collider, running at extremely high energies. In it, the elementary particles we know today were born.

    Scientists think that first came exotic particles, followed by more familiar ones, such as electrons, neutrinos and quarks. It could be that dark matter particles came about during this time.

    3
    Quarks APS/Alan Stonebraker

    The quarks soon combined, forming the familiar protons and neutrons, which are collectively known as baryons. Neutrinos were able to escape this plasma of charged particles and began traveling freely through space, while photons continued to be trapped by the plasma.

    Standard Model of Particle Physics

    The first nuclei emerge
    Time: ~1 second to 3 minutes

    Scientists think that when the universe cooled enough for violent collisions to subside, protons and neutrons clumped together into nuclei of the light elements—hydrogen, helium and lithium—in a process known as Big Bang nucleosynthesis.

    Protons are more stable than neutrons, due to their lower mass. In fact, a free neutron decays with a 15-minute half-life, while protons may not decay at all, as far as we know.

    So as the particles combined, many protons remained unpaired. As a result, hydrogen—protons that never found a partner—make up around 74% of the mass of “normal” matter in our cosmos. The second most abundant element is helium, which makes up approximately 24%, followed by trace amounts of deuterium, lithium, and helium-3 (helium with a three-baryon core).

    Periodic table Sept 2017. Wikipedia

    Scientists have been able to accurately measure the density of baryons in our universe. Most of those measurements line up with theorists’ estimations of what the quantities ought to be, but there is one lingering issue: Lithium calculations are off by a factor of three. It could be that the measurements are off, but it could also be that something we don’t yet know about happened during this time period to change the abundance of lithium.

    The cosmic microwave background becomes visible
    Time: 380,000 years

    Hundreds of thousands of years after inflation, the particle soup had cooled enough for electrons to bind to nuclei to form electrically neutral atoms. Through this process, which is also known as recombination, photons became free to traverse the universe, creating the cosmic microwave background.

    CMB per ESA/Planck


    ESA/Planck 2009 to 2013

    Today, the CMB is one of the most valuable tools for cosmologists, who probe its depths in search of answers for many of the universe’s lingering secrets, including the nature of inflation and the cause of matter-antimatter asymmetry.

    Shortly after the CMB became detectable, neutral hydrogen particles formed into a gas that filled the universe. Without any objects emitting high-energy photons, the cosmos was plunged into the dark ages for millions of years.

    Dark Energy Camera Enables Astronomers a Glimpse at the Cosmic Dawn. CREDIT National Astronomical Observatory of Japan

    The earliest stars shine
    Time: ~100 million years

    The dark ages ended with the formation of the first stars and the occurrence of reionization, a process through which highly energetic photons stripped electrons off neutral hydrogen atoms.

    Reionization era and first stars, Caltech

    Scientists think that the vast majority of the ionizing photons emerged from the earliest stars. But other processes, such as collisions between dark matter particles, may have also played a role.

    At this time, matter began to form the first galaxies. Our own galaxy, the Milky Way, contains stars that were born when the universe was only several hundred million years old.

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Our sun is born
    Time: 9.2 billion years

    3
    NASA

    The sun is one of a few hundred billion stars in the Milky Way. Scientists think it formed from a giant cloud of gas that consisted mostly hydrogen and helium.

    Today
    Time: 13.8 billion years

    Today, our cosmos sits at a cool 2.7 Kelvin (minus 270.42 degrees Celsius). The universe is expanding at an increasing rate, in a manner similar to (but many orders of magnitude slower than) inflation.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    Physicists think that dark energy—a mysterious repulsive force that currently accounts for about 70% of the energy in our universe—is most likely driving that accelerated expansion.

    Dark energy depiction. Image: Volker Springle/Max Planck Institute for Astrophysics/SP)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 12:10 pm on April 23, 2019 Permalink | Reply
    Tags: "Falsifiability and physics", , , , , , , Inflation, Karl Popper (1902-1994) "The Logic of Scientific Discovery", , ,   

    From Symmetry: “Falsifiability and physics” 

    Symmetry Mag
    From Symmetry

    04/23/19
    Matthew R. Francis

    1
    Illustration by Sandbox Studio, Chicago with Corinne Mucha

    Can a theory that isn’t completely testable still be useful to physics?

    What determines if an idea is legitimately scientific or not? This question has been debated by philosophers and historians of science, working scientists, and lawyers in courts of law. That’s because it’s not merely an abstract notion: What makes something scientific or not determines if it should be taught in classrooms or supported by government grant money.

    The answer is relatively straightforward in many cases: Despite conspiracy theories to the contrary, the Earth is not flat. Literally all evidence is in favor of a round and rotating Earth, so statements based on a flat-Earth hypothesis are not scientific.

    In other cases, though, people actively debate where and how the demarcation line should be drawn. One such criterion was proposed by philosopher of science Karl Popper (1902-1994), who argued that scientific ideas must be subject to “falsification.”

    Popper wrote in his classic book The Logic of Scientific Discovery that a theory that cannot be proven false—that is, a theory flexible enough to encompass every possible experimental outcome—is scientifically useless. He wrote that a scientific idea must contain the key to its own downfall: It must make predictions that can be tested and, if those predictions are proven false, the theory must be jettisoned.

    When writing this, Popper was less concerned with physics than he was with theories like Freudian psychology and Stalinist history. These, he argued, were not falsifiable because they were vague or flexible enough to incorporate all the available evidence and therefore immune to testing.

    But where does this falsifiability requirement leave certain areas of theoretical physics? String theory, for example, involves physics on extremely small length scales unreachable by any foreseeable experiment.

    String Theory depiction. Cross section of the quintic Calabi–Yau manifold Calabi yau.jpg. Jbourjai (using Mathematica output)

    Cosmic inflation, a theory that explains much about the properties of the observable universe, may itself be untestable through direct observations.

    Some critics believe these theories are unfalsifiable and, for that reason, are of dubious scientific value.

    At the same time, many physicists align with philosophers of science who identified flaws in Popper’s model, saying falsification is most useful in identifying blatant pseudoscience (the flat-Earth hypothesis, again) but relatively unimportant for judging theories growing out of established paradigms in science.

    “I think we should be worried about being arrogant,” says Chanda Prescod-Weinstein of the University of New Hampshire. “Falsifiability is important, but so is remembering that nature does what it wants.”

    Prescod-Weinstein is both a particle cosmologist and researcher in science, technology, and society studies, interested in analyzing the priorities scientists have as a group. “Any particular generation deciding that they’ve worked out all that can be worked out seems like the height of arrogance to me,” she says.

    Tracy Slatyer of MIT agrees, and argues that stringently worrying about falsification can prevent new ideas from germinating, stifling creativity. “In theoretical physics, the vast majority of all the ideas you ever work on are going to be wrong,” she says. “They may be interesting ideas, they may be beautiful ideas, they may be gorgeous structures that are simply not realized in our universe.”

    Particles and practical philosophy

    Take, for example, supersymmetry. SUSY is an extension of the Standard Model in which each known particle is paired with a supersymmetric partner.

    Standard Model of Supersymmetry via DESY

    The theory is a natural outgrowth of a mathematical symmetry of spacetime, in ways similar to the Standard Model itself. It’s well established within particle physics, even though supersymmetric particles, if they exist, may be out of scientists’ experimental reach.

    SUSY could potentially resolve some major mysteries in modern physics. For one, all of those supersymmetric particles could be the reason the mass of the Higgs boson is smaller than quantum mechanics says it should be.

    CERN CMS Higgs Event


    CERN ATLAS Higgs Event

    “Quantum mechanics says that [the Higgs boson] mass should blow up to the largest mass scale possible,” says Howard Baer of the University of Oklahoma. That’s because masses in quantum theory are the result of contributions from many different particles involved in interactions—and the Higgs field, which gives other particles mass, racks up a lot of these interactions. But the Higgs mass isn’t huge, which requires an explanation.

    “Something else would have to be tuned to a huge negative [value] in order to cancel [the huge positive value of those interactions] and give you the observed value,” Baer says. That level of coincidence, known as a “fine-tuning problem,” makes physicists itchy. “It’s like trying to play the lottery. It’s possible you might win, but really you’re almost certain to lose.”

    If SUSY particles turn up in a certain mass range, their contributions to the Higgs mass “naturally” solve this problem, which has been an argument in favor of the theory of supersymmetry. So far, the Large Hadron Collider has not turned up any SUSY particles in the range of “naturalness.”

    LHC

    CERN map


    CERN LHC Tunnel

    CERN LHC particles

    However, the broad framework of supersymmetry can accommodate even more massive SUSY particles, which may or may not be detectable using the LHC. In fact, if naturalness is abandoned, SUSY doesn’t provide an obvious mass scale at all, meaning SUSY particles might be out of range for discovery with any earthly particle collider. That point has made some critics queasy: If there’s no obvious mass scale at which colliders can hunt for SUSY, is the theory falsifiable?

    A related problem confronts dark matter researchers: Despite strong indirect evidence for a large amount of mass invisible to all forms of light, particle experiments have yet to find any dark matter particles. It could be that dark matter particles are just impossible to directly detect. A small but vocal group of researchers has argued that we need to consider alternative theories of gravity instead.

    Fritz Zwicky, the Father of Dark Matter research.No image credit after long search

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)

    U Washington ADMX Axion Dark Matter Experiment

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB deep in Sudbury’s Creighton Mine

    Dark Side-50 Dark Matter Experiment at Gran Sasso

    Slatyer, whose research involves looking for dark matter, considers the criticism partly as a problem of language. “When you say ‘dark matter,’ [you need] to distinguish dark matter from specific scenarios for what dark matter could be,” she says. “The community has not always done that well.”

    In other words, specific models for dark matter can stand or fall, but the dark matter paradigm as a whole has withstood all tests so far. But as Slatyer points out, no alternative theory of gravity can explain all the phenomena that a simple dark matter model can, from the behavior of galaxies to the structure of the cosmic microwave background.

    Prescod-Weinstein argues that we’re a long way from ruling out all dark matter possibilities. “How will we prove that the dark matter, if it exists, definitively doesn’t interact with the Standard Model?” she says. “Astrophysics is always a bit of a detective game. Without laboratory [detection of] dark matter, it’s hard to make definitive statements about its properties. But we can construct likely narratives based on what we know about its behavior.”

    Similarly, Baer thinks that we haven’t exhausted all the SUSY possibilities yet. “People say, ‘you’ve been promising supersymmetry for 20 or 30 years,’ but it was based on overly optimistic naturalness calculations,” he says. “I think if one evaluates the naturalness properly, then you find that supersymmetry is still even now very natural. But you’re going to need either an energy upgrade of LHC or an ILC [International Linear Collider] in order to discover it.”

    ILC schematic, being planned for the Kitakami highland, in the Iwate prefecture of northern Japan

    Beyond falsifiability of dark matter or SUSY, physicists are motivated by more mundane concerns. “Even if these individual scenarios are in principle falsifiable, how much money would [it] take and how much time would it take?” Slatyer says. In other words, rather than try to demonstrate or rule out SUSY as a whole, physicists focus on particle experiments that can be performed within a certain number of budgetary cycles. It’s not romantic, but it’s true nevertheless.

    2
    Illustration by Sandbox Studio, Chicago with Corinne Mucha

    Is it science? Who decides?

    Historically, sometimes theories that seem untestable turn out to just need more time. For example, 19th century physicist Ludwig Boltzmann and colleagues showed they could explain many results in thermal physics and chemistry if everything were made up of “atoms”—what we call particles, atoms, and molecules today—governed by Newtonian physics.

    Since atoms were out of reach of experiments of the day, prominent philosophers of science argued that the atomic hypothesis was untestable in principle, and therefore unscientific.

    However, the atomists eventually won the day: J. J. Thompson demonstrated the existence of electrons, while Albert Einstein showed that water molecules could make grains of pollen dance on a pond’s surface.

    Atoms provide a case study for how falsifiability proved to be the wrong criterion. Many other cases are trickier.

    For instance, Einstein’s theory of general relativity is one of the best-tested theories in all of science. At the same time, it allows for physically unrealistic “universes,” such as a “rotating” cosmos where movement back and forth in time is possible, which are contradicted by all observations of the reality we inhabit.

    General relativity also makes predictions about things that are untestable by definition, like how particles move inside the event horizon of a black hole: No information about these trajectories can be determined by experiment.

    The first image of a black hole, Messier 87 Credit Event Horizon Telescope Collaboration, via NSF 4.10.19

    Yet no knowledgeable physicist or philosopher of science would argue that general relativity is unscientific. The success of the theory is due to enough of its predictions being testable.

    Eddington/Einstein exibition of gravitational lensing solar eclipse of 29 May 1919

    Another type of theory may be mostly untestable, but have important consequences. One such theory is cosmic inflation, which (among other things) explains why we don’t see isolated magnetic monopoles and why the universe is a nearly uniform temperature everywhere we look.

    The key property of inflation—the extremely rapid expansion of spacetime during a tiny split second after the Big Bang—cannot be tested directly. Cosmologists look for indirect evidence for inflation, but in the end it may be difficult or impossible to distinguish between different inflationary models, simply because scientists can’t get the data. Does that mean it isn’t scientific?

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:
    5

    “A lot of people have personal feelings about inflation and the aesthetics of physical theories,” Prescod-Weinstein says. She’s willing to entertain alternative ideas which have testable consequences, but inflation works well enough for now to keep it around. “It’s also the case that the majority of the cosmology community continues to take inflation seriously as a model, so I have to shrug a little when someone says it’s not science.”

    On that note, Caltech cosmologist Sean M. Carroll argues that many very useful theories have both falsifiable and unfalsifiable predictions. Some aspects may be testable in principle, but not by any experiment or observation we can perform with existing technology. Many particle physics models fall into that category, but that doesn’t stop physicists from finding them useful. SUSY as a concept may not be falsifiable, but many specific models within the broad framework certainly are. All the evidence we have for the existence of dark matter is indirect, which won’t go away even if laboratory experiments never find dark matter particles. Physicists accept the concept of dark matter because it works.

    Slatyer is a practical dark matter hunter. “The questions I’m most interested asking are not even just questions that are in principle falsifiable, but questions that in principle can be tested by data on the timescale of less than my lifetime,” she says. “But it’s not only problems that can be tested by data on a timescale of ‘less than Tracy’s lifetime’ are good scientific questions!”

    Prescod-Weinstein agrees, and argues for keeping an open mind. “There’s a lot we don’t know about the universe, including what’s knowable about it. We are a curious species, and I think we should remain curious.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 10:40 am on February 23, 2019 Permalink | Reply
    Tags: "Supernovas show the universe expands at the same rate in all directions", , , , , Inflation,   

    From Science News: “Supernovas show the universe expands at the same rate in all directions” 

    From Science News

    February 22, 2019
    Emily Conover

    An analysis of exploding stars reveals the universe’s symmetry.

    1
    STRETCH OUT The universe is expanding at the same rate no matter what direction you look, a new study of supernovas finds. Credit: sripfoto/Shutterstock

    Standard Candles to measure age and distance of the universe NASA

    The cosmos doesn’t care whether you’re looking up or down, left or right: In all directions, the universe is expanding at the same clip. When compared across large swaths of the sky, expansion rates agree to better than 1 percent, researchers report in a paper in press in Physical Review Letters.

    Observations of exploding stars, or supernovas, indicate that the universe is not only expanding, but that expansion is accelerating over time (SN Online: 1/16/18).

    2
    In August of 2011, researchers discovered SN 2011fe, a type 1a supernova 21 million light-years away in galaxy M101 (images show the galaxy before and after the supernova, with the supernova circled at right). Studies using type 1a supernovas as “standard candles” to measure how fast the universe expands (the Hubble constant) produce a result in conflict with other data used to infer the cosmic growth rate. Credit: NASA, Swift, Peter Brown, Univ. of Utah

    NASA Neil Gehrels Swift Observatory

    To check if that expansion proceeds apace in different parts of the sky, the scientists studied more than 1,000 exploding stars called type 1a supernovas, which detonate with a known brightness. By measuring how much the supernovas’ light is stretched as space expands, researchers can estimate how fast the universe spreads out, and see if the data differ from what would be expected for a uniform expansion.

    Even in a perfectly evenly expanding universe, there’s bound to be a bit of noise — a sort of random jitter — in the data. Previous analyses have relied on computer simulations to estimate the expected noise. But “it’s a real pain to get simulations to have all the right bells and whistles” necessary for fully reliable results, says theoretical cosmologist Dragan Huterer of the University of Michigan in Ann Arbor. So Huterer and colleagues instead used a scrambled version of the supernova data to gauge how much noise to expect, a technique Huterer says is more reliable.

    The results confirm cosmologists’ understanding of the universe. According to the theory of inflation, the universe expanded extremely rapidly just after the Big Bang (SN: 7/28/12, p.20).

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:
    5

    That expansion is thought to have proceeded equally in all directions, setting up the universe’s uniform spreading today.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 9:44 pm on December 3, 2014 Permalink | Reply
    Tags: , , , , , , , Inflation,   

    From Ethan Siegel: “The Moment of Truth for BICEP2” 

    Starts with a bang
    Starts with a Bang

    Dec 2, 2014
    Ethan Siegel

    “The paradigm of physics — with its interplay of data, theory and prediction — is the most powerful in science.” -Geoffrey West

    Earlier this year, the BICEP2 experiment shook up the world of cosmology, announcing that they had detected gravitational waves originating from before the Big Bang! Not only did they announce this, but they announced that they had done so with a signal in excess of 5σ, which is regarded as the gold standard for a detection in physics.

    BICEP 2
    BICEP 2 interior
    BICEP2 (With South Pole Telescope

    1
    Image credit: BICEP2 Collaboration — P. A. R. Ade et al, 2014 (R).

    But this may all turn out — despite the hoopla — to be absolutely nothing. Or, as it were, nothing more than a phantasm, as the observed signal may have originated from a source as mundane as our own galaxy, and have nothing to do with anything from billions of years ago!

    How did we get into this mess, and how do we get out of it? The answer to both questions is “science,” and it’s a great illustration of how the process and the body of knowledge actually evolves. Put your preconceptions of how it ought to work aside, and let’s dive in!

    2
    Image credit: ESA and the Planck Collaboration.

    This is a snapshot of the cosmic microwave background (CMB), the leftover glow from the Big Bang, as viewed by the Planck satellite. Planck has the best resolution of any all-sky map of the CMB, getting down to resolutions smaller than one tenth of a degree. The temperature fluctuations are minuscule: on the order of just a few tens of microKelvin, less than 0.01% of the actual CMB temperature.

    3
    Image credit: Wikimedia Commons user SuperManu.

    But buried in this signal is another, even more subtle one: the signal of photon polarization.

    4
    Image credit:the BICEP2 collaboration, via http://www.cfa.harvard.edu/news/2014-05.

    Basically, when photons pass through electrically charged particles in certain configurations, their polarizations — or how their electric and magnetic fields are oriented — are affected. If we look at how the two types of polarization, the E-modes and B-modes, are affected on a variety of angular scales, we ought to be able to reconstruct what caused these signals.

    2
    7
    Images credit: Amanda Yoho [Upper]; http://b-pol.org/ [Lower], of an E-mode polarization pattern at left and a B-mode pattern at right.

    A portion of this signal, in addition to charged particles, could also originate from gravitational waves created in the early Universe. There are two main classes of models of inflation that give us a Universe consistent with what we observe in all ways: new inflation, which was actually the second model (and first viable model) ever proposed, and chaotic inflation, which was the third model (and second viable one).

    9
    o
    Images credit: two inflation potentials, with chaotic inflation [Upper] and new inflation [Lower] shown. Chaotic inflation generates very large gravitational waves, while new inflation generates tiny ones. Generated by me, using google graph.

    These two models of inflation make vastly different predictions for gravitational radiation: new inflation predicts gravitational waves (and primordial B-modes) that are extraordinarily tiny, and well beyond the reach of any current or even planned experiment or observatory, while chaotic inflation predicts huge B-modes, some of the largest ones allowable. These signatures have a characteristic frequency spectrum and affect all wavelengths of light identically, so it should be an easy signal to find if our equipment is sensitive to it.

    And that’s where BICEP2 comes in.

    y
    Image credit: Sky and Telescope / Gregg Dinderman, via http://www.skyandtelescope.com/news/First-Direct-Evidence-of-Big-Bang-Inflation-250681381.html.

    Rather than measuring the whole sky, BICEP2 measured just a tiny fraction of the sky — about three fingers held together at arm’s length worth — but were able to tease out both the E-mode and B-mode polarization signals. And based on their analysis of the B-modes, which was very careful and very good, mind you, they claimed the greater-than-5σ detection.

    What this means is that they had enough data so that the odds that what they were seeing was a “fluke” of having observed just a serendipitous patch of sky was tiny, or a one in 1.7 million chance. Flukes happen all the time at the one-in-100 level or the one-in-1,000, but one-in-1.7 million flukes… well, let’s just say you don’t win the lotto jackpot very often.

    But there’s another type of error that they didn’t report. Not a statistical error, which is the kind you can improve on by taking more data, but a systematic error, which could be an effect that causes what you think is your signal, but is actually due to some other source! This type of error normally goes undetected because if you knew about it you’d account for it!

    This is exactly what happened a couple of years ago, if you remember the “faster-than-light-neutrino” business. An experiment at CERN had reported the early arrival by just a few nanoseconds of thousands upon thousands of neutrinos, meaning that they would have exceeded the speed of light by something like 0.003%, a small but meaningful amount. As it turned out, the neutrinos weren’t arriving early; there was a loose cable that accounted for the error!

    f
    Image credit: ESA / Planck Collaboration, via http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1101_planck/news1101_planck-en-print.html.

    Well, one of the things the BICEP2 team didn’t measure was the galactic foreground emission. Polarized light — including light that contains these B-modes — gets emitted by the Milky Way galaxy, and that can contaminate your signal. The BICEP2 team used a very clever trick to try and eliminate this, by interpolating unreleased Planck data about galactic foregrounds, but when the Planck team actually released their data, the foregrounds were significantly different from what BICEP2 had anticipated. And with the new Planck data, the announcement of a “discovery” needed to be walked back; the evidence was now something like a one-in-200 chance of being a fluke.

    l
    Image credit: John Kovac, viahttp://cosmo2014.uchicago.edu/depot/invited-talk-kovac-john.pdf.

    In other words, although gravitational waves could have caused this signal, so could other, far more mundane sources, including just our boring old galaxy!

    Sometime later this month, the Planck team will release their all-sky polarization results, and either at that moment or shortly thereafter, we’ll find out whether there really are gravitational waves from inflation that can be detected with our current generation of telescopes, satellites and observatories. We’ll find out whether chaotic inflation is right, or whether we need to keep searching for the gravitational wave signal from before the Big Bang. We already have the density fluctuation signal, so we can be confident that inflation happened. It’s just a question of which type.

    n
    Image credit: Bock et al. (2006, astro-ph/0604101); modifications by me.

    Stay curious, stay hungry for more knowledge, but always demand that your scientific claims be independently verified, that your possible systematic errors be checked, and that you have overwhelming evidence before believing the extraordinary claims. It’s easy to make a bold statement; it’s hard to start a bona fide scientific revolution!

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible.

     
  • richardmitnick 2:00 pm on November 20, 2014 Permalink | Reply
    Tags: , , Inflation, ,   

    From phys.org: “Gravity may have saved the universe after the Big Bang, say researchers” 

    physdotorg
    phys.org

    Nov 18, 2014
    No Writer Credit

    New research by a team of European physicists could explain why the universe did not collapse immediately after the Big Bang.

    Studies of the Higgs particle – discovered at CERN in 2012 and responsible for giving mass to all particles – have suggested that the production of Higgs particles during the accelerating expansion of the very early universe (inflation) should have led to instability and collapse.

    in
    Time Line of the Universe. Credit: NASA/WMAP Science Team

    Scientists have been trying to find out why this didn’t happen, leading to theories that there must be some new physics that will help explain the origins of the universe that has not yet been discovered. Physicists from Imperial College London, and the Universities of Copenhagen and Helsinki, however, believe there is a simpler explanation.

    In a new study in Physical Review Letters, the team describe how the spacetime curvature – in effect, gravity – provided the stability needed for the universe to survive expansion in that early period. The team investigated the interaction between the Higgs particles and gravity, taking into account how it would vary with energy.

    They show that even a small interaction would have been enough to stabilise the universe against decay.

    “The Standard Model of particle physics, which scientists use to explain elementary particles and their interactions, has so far not provided an answer to why the universe did not collapse following the Big Bang,” explains Professor Arttu Rajantie, from the Department of Physics at Imperial College London.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “Our research investigates the last unknown parameter in the Standard Model – the interaction between the Higgs particle and gravity. This parameter cannot be measured in particle accelerator experiments, but it has a big effect on the Higgs instability during inflation. Even a relatively small value is enough to explain the survival of the universe without any new physics!”

    The team plan to continue their research using cosmological observations to look at this interaction in more detail and explain what effect it would have had on the development of the early universe. In particular, they will use data from current and future European Space Agency missions measuring cosmic microwave background radiation and gravitational waves.

    “Our aim is to measure the interaction between gravity and the Higgs field using cosmological data,” says Professor Rajantie. “If we are able to do that, we will have supplied the last unknown number in the Standard Model of particle physics and be closer to answering fundamental questions about how we are all here.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:44 pm on November 10, 2014 Permalink | Reply
    Tags: , , Inflation, , ,   

    From Quanta: “Multiverse Collisions May Dot the Sky” 

    Quanta Magazine
    Quanta Magazine

    November 10, 2014
    Jennifer Ouellette

    Like many of her colleagues, Hiranya Peiris, a cosmologist at University College London, once largely dismissed the notion that our universe might be only one of many in a vast multiverse. It was scientifically intriguing, she thought, but also fundamentally untestable. She preferred to focus her research on more concrete questions, like how galaxies evolve.

    Then one summer at the Aspen Center for Physics, Peiris found herself chatting with the Perimeter Institute’s Matt Johnson, who mentioned his interest in developing tools to study the idea. He suggested that they collaborate.

    At first, Peiris was skeptical. “I think as an observer that any theory, however interesting and elegant, is seriously lacking if it doesn’t have testable consequences,” she said. But Johnson convinced her that there might be a way to test the concept. If the universe that we inhabit had long ago collided with another universe, the crash would have left an imprint on the cosmic microwave background (CMB), the faint afterglow from the Big Bang. And if physicists could detect such a signature, it would provide a window into the multiverse.

    Cosmic Background Radiation Planck
    Cosmic Microwave Background per ESA/Planck

    Erick Weinberg, a physicist at Columbia University, explains this multiverse by comparing it to a boiling cauldron, with the bubbles representing individual universes — isolated pockets of space-time. As the pot boils, the bubbles expand and sometimes collide. A similar process may have occurred in the first moments of the cosmos.

    In the years since their initial meeting, Peiris and Johnson have studied how a collision with another universe in the earliest moments of time would have sent something similar to a shock wave across our universe. They think they may be able to find evidence of such a collision in data from the Planck space telescope, which maps the CMB.

    The project might not work, Peiris concedes. It requires not only that we live in a multiverse but also that our universe collided with another in our primal cosmic history. But if physicists succeed, they will have the first improbable evidence of a cosmos beyond our own.

    When Bubbles Collide

    Multiverse theories were once relegated to science fiction or crackpot territory. “It sounds like you’ve gone to crazy land,” said Johnson, who holds joint appointments at the Perimeter Institute of Theoretical Physics and York University. But scientists have come up with many versions of what a multiverse might be, some less crazy than others.

    The multiverse that Peiris and her colleagues are interested in is not the controversial “many worlds” hypothesis that was first proposed in the 1950s and holds that every quantum event spawns a separate universe. Nor is this concept of a multiverse related to the popular science-fiction trope of parallel worlds, new universes that pinch off from our space-time and become separate realms. Rather, this version arises as a consequence of inflation, a widely accepted theory of the universe’s first moments.

    Inflation holds that our universe experienced a sudden burst of rapid expansion an instant after the Big Bang, blowing up from a infinitesimally small speck to one spanning a quarter of a billion light-years in mere fractions of a second.

    Yet inflation, once started, tends to never completely stop. According to the theory, once the universe starts expanding, it will end in some places, creating regions like the universe we see all around us today. But elsewhere inflation will simply keep on going eternally into the future.

    This feature has led cosmologists to contemplate a scenario called eternal inflation. In this picture, individual regions of space stop inflating and become “bubble universes” like the one in which we live. But on larger scales, exponential expansion continues forever, and new bubble universes are continually being created. Each bubble is deemed a universe in its own right, despite being part of the same space-time, because an observer could not travel from one bubble to the next without moving faster than the speed of light. And each bubble may have its own distinct laws of physics. “If you buy eternal inflation, it predicts a multiverse,” Peiris said.

    In 2012, Peiris and Johnson teamed up with Anthony Aguirre and Max Wainwright — both physicists at the University of California, Santa Cruz — to build a simulated multiverse with only two bubbles. They studied what happened after the bubbles collided to determine what an observer would see. The team concluded that a collision of two bubble universes would appear to us as a disk on the CMB with a distinctive temperature profile.

    bubble
    Olena Shmahalo/Quanta Magazine; source: S. M. Freeney et. al., Physical Review Letters

    An ancient collision with a bubble universe would have altered the temperature of the cosmic microwave background (left), creating a faint disk in the sky (right) that could potentially be observed.

    To guard against human error — we tend to see the patterns we want to see — they devised a set of algorithms to automatically search for these disks in data from the Wilkinson Microwave Anisotropy Probe (WMAP), a space-based observatory. The program identified four potential regions with temperature fluctuations consistent with what could be a signature of a bubble collision. When data from the Planck satellite becomes available later this year, researchers should be able to improve on that earlier analysis.

    WMAP
    WMAP

    ESA Planck
    ESA/Planck

    Yet detecting convincing signatures of the multiverse is tricky. Simply knowing what an encounter might look like requires a thorough understanding of the dynamics of bubble collisions — something quite difficult to model on a computer, given the complexity of such interactions.

    When tackling a new problem, physicists typically find a good model that they already understand and adapt it by making minor tweaks they call “perturbations.” For instance, to model the trajectory of a satellite in space, a physicist might use the classical laws of motion outlined by Isaac Newton in the 17th century and then make small refinements by calculating the effects of other factors that might influence its motion, such as pressure from the solar wind. For simple systems, there should be only small discrepancies from the unperturbed model. Try to calculate the airflow patterns of a complex system like a tornado, however, and those approximations break down. Perturbations introduce sudden, very large changes to the original system instead of smaller, predictable refinements.

    Modeling bubble collisions during the inflationary period of the early universe is akin to modeling a tornado. By its very nature, inflation stretches out space-time at an exponential rate — precisely the kind of large jumps in values that make calculating the dynamics so challenging.

    “Imagine you start with a grid, but within an instant, the grid has expanded to a massive size,” Peiris said. With her collaborators, she has used techniques like adaptive mesh refinement — an iterative process of winnowing out the most relevant details in such a grid at increasingly finer scales — in her simulations of inflation to deal with the complexity. Eugene Lim, a physicist at King’s College London, has found that an unusual type of traveling wave might help simplify matters even further.

    Waves of Translation

    In August 1834, a Scottish engineer named John Scott Russell was conducting experiments along Union Canal with an eye toward improving the efficiency of the canal boats. One boat being drawn by a team of horses stopped suddenly, and Russell noted a solitary wave in the water that kept rolling forward at a constant speed without losing its shape. The behavior was unlike typical waves, which tend to flatten out or rise to a peak and topple quickly. Intrigued, Russell tracked the wave on horseback for a couple of miles before it finally dissipated in the channel waters. This was the first recorded observation of a soliton.

    Russell was so intrigued by the indomitable wave that he built a 30-foot wave tank in his garden to further study the phenomenon, noting key characteristics of what he called “the wave of translation.” Such a wave could maintain size, shape and speed over longer distances than usual. The speed depended on the wave’s size, and the width depended on the depth of the water. And if a large solitary wave overtook a smaller one, the larger, faster wave would just pass right through.

    Russell’s observations were largely dismissed by his peers because his findings seemed to contradict what was known about water wave physics at the time. It wasn’t until the mid-1960s that such waves were dubbed solitons and physicists realized their usefulness in modeling problems in diverse areas such as fiber optics, biological proteins and DNA. Solitons also turn up in certain configurations of quantum field theory. Poke a quantum field and you will create an oscillation that usually dissipates outward, but configure things in just the right way and that oscillation will maintain its shape — just like Russell’s wave of translation.

    Because solitons are so stable, Lim believes they could work as a simplified toy model for the dynamics of bubble collisions in the multiverse, providing physicists with better predictions of what kinds of signatures might show up in the CMB. If his hunch is right, the expanding walls of our bubble universe are much like solitons.

    However, while it is a relatively straightforward matter to model a solitary standing wave, the dynamics become vastly more complicated and difficult to calculate when solitons collide and interact, forcing physicists to rely on computer simulations instead. In the past, researchers have used a particular class of soliton with an exact mathematical solution and tweaked that model to suit their purposes. But this approach only works if the target system under study is already quite similar to the toy model; otherwise the changes are too large to calculate.

    To get around that hurdle, Lim devised a neat trick based on a quirky feature of soliton collisions. When imagining two objects colliding, we naturally assume that the faster they are moving, the greater the impact and the more complicated the dynamics. Two cars ramming each other at high speeds, for instance, will produce scattered debris, heat, noise and other effects. The same is true for colliding solitons — at least initially. Collide two solitons very slowly, and there will be very little interaction, according to Lim. As the speed increases, the solitons interact more strongly.

    But Lim found that as the speed continues to increase, the pattern eventually reverses: The soliton interaction begins to decrease. By the time they are traveling at the speed of light, there is no interaction at all. “They just fly right past each other,” Lim said. “The faster you collide two solitons, the simpler they become.” The lack of interactions makes it easier to model the dynamics of colliding solitons, as well as colliding bubble universes with solitons as their “edges,” since the systems are roughly similar.

    According to Johnson, Lim has uncovered a very simple rule that can be applied broadly: Multiverse interactions are weak during high-speed collisions, making it easier to simulate the dynamics of those encounters. One can simply create a new model of the multiverse, use solitons as a tool to map the new model’s expected signatures onto cosmic microwave data, and rule out any theories that don’t match what researchers see. This process would help physicists identify the most viable models for the multiverse, which — while still speculative — would be consistent both with the latest observational data and with inflationary theory.

    The Multiverse’s Case for String Theory

    One reason that more physicists are taking the idea of the multiverse seriously is that certain such models could help resolve a significant challenge in string theory. One of the goals of string theory has been to unify quantum mechanics and general relativity, two separate “rule books” in physics that govern very different size scales, into a single, simple solution.

    But around 10 years ago, “the dream of string theory kind of exploded,” Johnson said — and not in a good way. Researchers began to realize that string theory doesn’t provide a unique solution. Instead, it “gives you the theory of a vast number of worlds,” Weinberg said. A common estimate — one that Weinberg thinks is conservative — is 10500 possibilities. This panoply of worlds implies that string theory can predict every possible outcome.

    The multiverse would provide a possible means of incorporating all the different worlds predicted by string theory. Each version could be realized in its own bubble universe. “Everything depends on which part of the universe you live in,” Lim said.

    Peiris acknowledges that this argument has its critics. “It can predict anything, and therefore it’s not valid,” Peiris said of the reasoning typically used to dismiss the notion of a multiverse as a tautology, rather than a true scientific theory. “But I think that’s the wrong way to think about it.” The theory of evolution, Peiris argues, also resembles a tautology in certain respects — “an organism exists because it survived” — yet it holds tremendous explanatory power. It is a simple model that requires little initial input to produce the vast diversity of species we see today.

    A multiverse model tied to eternal inflation could have the same kind of explanatory power. In this case, the bubble universes function much like speciation. Those universes that happen to have the right laws of physics will eventually “succeed” — that is, they will become home to conscious observers like ourselves. If our universe is one of many in a much larger multiverse, our existence seems less unlikely.

    Uncertain Signals

    Ultimately, however, Peiris’ initial objection still stands: Without some means of gathering experimental evidence, the multiverse hypothesis will be untestable by definition. As such, it will lurk on the fringes of respectable physics — hence the strong interest in detecting bubble collision signatures in the CMB.

    Of course, “just because these bubble collisions can leave a signature doesn’t mean they do leave a signature,” Peiris emphasized. “We need nature to be kind to us.” An observable signal could be a rare find, given how quickly space expanded during inflation. The collisions may not have been rare, but subsequent inflation “tends to dilute away the effects of the collision just like it dilutes away all other prior ‘structure’ in the early universe, leaving you with a small chance of seeing a signal in the CMB sky,” Peiris said.

    “My own feeling is you need to adjust the numbers rather finely to get it to work,” Weinberg said. The rate of formation of the bubble universes is key. If they had formed slowly, collisions would not have been possible because space would have expanded and driven the bubbles apart long before any collision could take place. Alternatively, if the bubbles had formed too quickly, they would have merged before space could expand sufficiently to form disconnected pockets. Somewhere in between is the Goldilocks rate, the “just right” rate at which the bubbles would have had to form for a collision to be possible.

    Researchers also worry about finding a false positive. Even if such a collision did happen and evidence was imprinted on the CMB, spotting the telltale pattern would not necessarily constitute evidence of a multiverse. “You can get an effect and say it will be consistent with the calculated predictions for these [bubble] collisions,” Weinberg said. “But it might well be consistent with lots of other things.” For instance, a distorted CMB might be evidence of theoretical entities called cosmic strings. These are like the cracks that form in the ice when a lake freezes over, except here the ice is the fabric of space-time. Magnetic monopoles are another hypothetical defect that could affect the CMB, as could knots or twists in space-time called textures.

    Weinberg isn’t sure it would even be possible to tell the difference between these different possibilities, especially because many models of eternal inflation exist. Without knowing the precise details of the theory, trying to make a positive identification of the multiverse would be like trying to distinguish between the composition of two meteorites that hit the roof of a house solely by the sound of the impacts, without knowing how the house is constructed and with what materials.

    Should a signature for a bubble collision be confirmed, Peiris doesn’t see a way to study another bubble universe any further because by now it would be entirely out of causal contact with ours. But it would be a stunning validation that the notion of a multiverse deserves a seat at the testable physics table.

    And should that signal turn out to be evidence for cosmic strings or magnetic monopoles instead, it would still constitute exciting new physics at the frontier of cosmology. In that respect, “the cosmic microwave background radiation is the underpinning of modern cosmology,” Peiris said. “It’s the gift that keeps on giving.”

    See the full article, with video, here.

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: