From Symmetry: “Machine evolution”

Symmetry Mag
Symmetry

12/19/17
Amanda Solliday

1
Courtesy of SLAC

Planning the next big science machine requires consideration of both the current landscape and the distant future.

Around the world, there’s an ecosystem of large particle accelerators where physicists gather to study the most intricate details of matter.

These accelerators are engineering marvels. From planning to construction to operation to retirement, their lifespans stretch across decades.

But to get the most out of their investments of talent and funding, laboratories planning such huge projects have to think even longer-term: What could these projects become in their next lives?

The following examples show how some of the world’s big physics machines have evolved to stay at the forefront of science and technology.

Same tunnel, new collisions

Before CERN research center in Geneva, Switzerland, had its Large Hadron Collider, it had the Large Electron-Positron Collider. LEP was the largest electron-positron collider ever built, occupying a nearly 17-mile circular tunnel dug beneath the border of Switzerland and France. The tunnel took three years to completely excavate and build.

The first particle beam traveled around the LEP circular collider in 1989. Long before then, the international group of CERN physicists and engineers were already thinking about what CERN’s next machine could be.

“People were saying, ‘Well, if we do build LEP, then we should make it compatible with the [then-proposed] Large Hadron Collider,’” says James Gillies, a senior communications advisor and member of the strategic planning and evaluation unit at CERN. “If you want to have a future facility, you often have to engage the people who just finished designing one machine to start thinking about the next one.”

LEP’s designers chose an energy for the collider that would mass-produce Z bosons, fundamental particles discovered by earlier experiments at CERN. The LHC would be a step up from LEP, reaching higher energies that scientists hoped could produce the Higgs boson. In the 1960s, theorists proposed the Higgs as a way to explain the origin of the mass of elementary particles. And the new machine to look for it could be built in the same 17-mile tunnel excavated for LEP.

Engineers began working on the LHC while LEP was still running. The new machine required enlargements to underground areas—it needed bigger detectors and new experimental halls.

“That was challenging because these caverns are huge. As they were being excavated, the pressure on the LEP tunnel was reduced and the LEP beamline needed realignment,” Gillies says. “So you constantly had to realign the collider for experiments as you were digging.”

After LEP reached its highest energy in 2000, it was switched off. The tunnel remained the same, says Gillies, but there were many other changes. Only one of the LEP detectors, DELPHI, remains underground at CERN as a visitors’ point.

In 2012, LHC scientists announced the discovery of the long-sought Higgs boson. The LHC is planned to continue running until at least 2035, gradually increasing the intensity of its particle collisions. The research and development into the accelerator’s successor is already happening. The possibilities include a higher energy LHC, a compact linear collider or an even larger circular collider.

2

Large Electron-Positron Collider
Location: CERN—Geneva, Switzerland
First beam: 1989
Link to LEP Timeline: Timeline
Courtesy of CERN

LHC

CERN/LHC Map

CERN LHC Tunnel

CERN LHC particles

Large Hadron Collider
Location: CERN—Geneva, Switzerland
First beam: 2008
Link to LHC Timeline: Timeline
Courtesy of CERN

High-powered science
Decades before the LHC came into existence, a suburb of Chicago was home to the most powerful collider in the world: the Tevatron. A series of accelerators at Fermi National Accelerator Laboratory boosted protons and antiprotons to nearly the speed of light. In the final, 4-mile Tevatron ring, the particles reached record energy levels, and more than 1000 superconducting magnets steered them into collisions. Physicists used the Tevatron to make the first direct measurement of the tau neutrino and to discover the top quark, the last observed lepton and quark, respectively, in the Standard Model.

The Tevatron shut down in 2011 after the LHC came up to speed, but the rest of Fermilab’s accelerator infrastructure was still hard at work powering research in particle physics—particularly on the abundant, mysterious and difficult-to-detect neutrino.

Starting in 1999, a brand-new, 2-mile circular accelerator called the Main Injector was added to the Fermilab complex to increase the number of Tevatron particle collisions tenfold. It was joined in its tunnel by the Recycler, a permanent magnet ring that stored and cooled antiprotons.

But before the Main Injector was even completed, scientists had identified a second purpose: producing powerful beams of neutrinos for experiments in Illinois and 500 miles away in Minnesota.

FNAL/NOvA experiment map

By 2005, the proton beam circulating in the Main Injector was doing double duty: sending ever-more-intense beams to the Tevatron collider and smashing into a target to produce neutrinos. Following the shutdown of the Tevatron, the Recycler itself was recycled to increase the proton beam power for neutrino research.

“I’m still amazed at how we are able to use the Recycler. It can be difficult to transition if a machine wasn’t originally built for that purpose,” says Ioanis Kourbanis, the head of the Main Injector department at Fermilab.

Fermilab’s high-energy neutrino beam is already the most intense in the world, but the laboratory plans to enhance it with future improvements to the Main Injector and the Recycler, and to build a brand-new neutrino beamline.

Neutrinos almost never interact with matter, so they can pass straight through the Earth on their way to detectors onsite and others several hundred miles away. Scientists hope to learn more about neutrinos and their possible role in shaping our early universe.

The new beamline will be part of the Long-Baseline Neutrino Facility, which will send neutrinos 800 miles underground to the massive, mile-deep detectors of the Deep Underground Neutrino Experiment.

FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


FNAL DUNE Argon tank at SURF


Surf-Dune/LBNF Caverns at Sanford



SURF building in Lead SD USA

Scientists from around the world will use the DUNE data to answer questions about neutrinos, thanks to the repurposed pieces of the Fermilab accelerator complex.

5

FNAL Tevatron

FNAL/Tevatron map


FNAL/Tevatron DZero detector


FNAL/Tevatron CDF detector

Tevatron
Location: Fermilab—Batavia, Illinois
First beam: 1983
Link to Tevatron Timeline: Timeline
Courtesy of Fermilab

6

Neutrinos at the Main Injector (NuMI) beam
Location: Fermilab—Batavia, Illinois
First beam: 2004
Link to Fermilab Timeline: Timeline
Courtesy of Fermilab

A monster accelerator

When physicists first came up with the idea to build a two-mile linear accelerator at what is now called SLAC National Accelerator Laboratory, managed by Stanford University, they called it “Project M” for “Monster.” Engineers began building it from hand-drawn designs. Once completed, the machine was able to accelerate electrons to near the speed of light, producing its first particle beam in May 1966.

SLAC Campus

The accelerator’s scientific purpose has gone through several iterations of particle physics experiments over the decades, from fixed-target experiments to the Stanford Linear Collider (the only electron-positron linear collider ever built) to an injector for a circular collider, the Positron-Electron Project.

These experiments led to the discovery that protons are made of quarks, the first evidence that the charm quark existed (through observations of the J/psi particle, co-discovered with researchers at MIT) and the discovery of the tau lepton.

In 2009, the lab used the accelerator as the backbone for a different type of science machine—an X-ray free-electron laser, the Linac Coherent Light Source.

“Looking around, SLAC was the only place in the world with a linear accelerator capable of driving a free-electron laser,” says Claudio Pellegrini, a distinguished professor emeritus of physics at the University of California, Los Angeles and a visiting scientist and consulting professor at SLAC. Pellegrini first proposed the idea to transform SLAC’s linear accelerator.

The new machine, a DOE Office of Science user facility, would be the world’s first laser of its kind that could produce extremely bright hard X-rays, the high-energy X-rays that let scientists take snapshots of atoms and molecules.

“Much of the physics and many of the tools learned and developed during the operation of the Stanford Linear Collider were directly applicable to the free electron laser,” says Lia Merminga, head of the accelerator directorate at SLAC. “This was a big factor in the LCLS being commissioned in record time. Without the Stanford Linear Collider experience, this significant body of work would have to be reinvented and reproduced almost from scratch.”

Little about the accelerator itself needed to change. But to create a free-electron laser, scientists needed to design a new part: an electron gun, a device that generates electrons to be injected into the accelerator. A collaboration of several national labs and UCLA created a new type of electron gun for LCLS, while other national labs helped build undulators, a series of magnets that would wiggle the electrons to create X-rays.

LCLS used only the last third of SLAC’s original linear accelerator. In part of the remaining section, scientists are developing plasma wakefield and other new particle acceleration techniques.

For the X-ray laser’s next iteration, LCLS-II, scientists are aiming for an even brighter laser that will fire 1 million pulses per second, allowing them to observe rare and exceptionally transient events.

SLAC/LCLS II

To do this, they will need to replace the original copper structures with superconducting technology. The technology is derived from designs for a large International Linear Collider [ILC] proposed to be built in Japan.

ILC schematic

“I’m in awe of the foresight of the original builders of SLAC’s linear accelerator,” Merminga adds. “We’ve been able to do so much with this machine, and the end is not yet in sight.”

7

Fixed target and collider experiments

Location: SLAC—Menlo Park, California
First beam: 1966
Link to SLAC Timeline: Timeline
Courtesy of SLAC

8

Linac Coherent Light Source
Location: SLAC—Menlo Park, California
First beam: 2009
Link to SLAC Timeline: Timeline
Courtesy of SLAC

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Symmetry is a joint Fermilab/SLAC publication.


#accelerator-science, #basic-research, #cern-large-hadron-collider, #fnal-lbnf-dune-at-surf, #fnal-tevatron, #hep, #ilc, #large-electron-positron-collider, #neutrinos, #particle-accelerators, #physics, #slac-lcls, #slac-lcls-ii, #symmetry-magazine

From ILC and CERN via Accelerating News: “A revolutionary mini-accelerator”

CERN

CERN

2

Accelerating News

12.15.16
Panos Charitos (CERN)

1
A glimpse in the accelerator structures of the world’s smallest accelerator (Credit: CERN)

CERN is the home of the 27-kilometre Large Hadron Collider (LHC) that searches for new discoveries by colliding protons at extraordinarily high energies.

CERN/LHC Map
CERN LHC Grand Tunnel
CERN LHC particles
LHC at CERN

The unprecedented energy levels led to the discovery of the Higgs boson, the last missing piece in the Standard Model, and now open a new chapter in fundamental physics. The development of such complex machines is based on the advancement of novel technologies and invaluable know-how, which can be capitalised in other fields outside particle physics.

Sometimes working for the largest accelerators gives ideas on how to build the smallest ones; the construction of the world’s smallest Radio Frequency Quadrupole (RFQ) for proton acceleration that was completed in September provides one of the most successful examples. This miniature machine is a linear accelerator (linac) consisting of four sections of only 130 mm diameter, operating at a frequency of 750 MHz, for a total length of 2 metres. It can accelerate low-intensity proton beams of a few hundreds of microA up to the energy of 5 MeV.

It should be noted that the mini RFQ cannot be used for the large colliders needed for fundamental research, since it cannot achieve high peak currents. The small size and low current is however what makes this design ideal for a wide range of medical and industrial applications.

Maurizio Vretenar (CERN), head of the LINAC4 project and coordinator of the design and construction of the mini accelerator, said: “The challenge to develop this miniature accelerator came from a spin-off company that aims to take advantage of the knowledge and infrastructure of CERN in building new accelerators. The main idea was that a mini-RFQ is a much more efficient injector than a cyclotron to a compact proton linac for particle therapy. The linac-based facility under development will permit a more precise 3D scanning of tumours than what is possible with other proton therapy machines or conventional radiotherapy.”

Vretenar explained: “Reaching high frequencies is particularly challenging, but it is the only way to build compact accelerators. For proton linacs at CERN, we started with the 200 MHz LINAC2 at the end of the 1970s and since then we have almost doubled the frequency to 350 MHz for the recently commissioned LINAC4. With the new LINAC4 we will be able to double the beam intensity in the LHC injectors, thus significantly contributing to an increase of the LHC luminosity,” and continues: “the idea of constructing a smaller accelerator that could produce low-intensity beams for medical purposes has been a long-standing technological challenge. It dates back to the 1990s when it seemed almost impossible to build such a small RFQ.”

The rich experience that the CERN team has gained from the design and development of LINAC4 made a new miniature RFQ accelerator seem more plausible. The main challenge was to double the operating frequency, resulting in more accelerating cells and a shorter length, but at the same time leading to a very challenging beam optics design and RF resonator. With the high frequency RFQ, we have more than doubled the accelerating capabilities (2.5 MeV/metre in place of 1 for the LINAC4 RFQ) and reduced by a factor 2 the construction cost per metre.

The way to the higher frequencies was opened by a new beam dynamics approach developed by Alessandra Lombardi, who now follows the testing and commissioning of the RFQ in ADAM’s premises. The next challenges to address were the tuning of RFQs that are long with respect to the wavelength and the machining and brazing of RFQ parts of unprecedented small size.

The design and construction of the RFQ relied on a sophisticated mechanical approach defined by Serge Mathot and on a detailed definition of the resonator properties and tuning strategy by Alexej Grudiev (BE).

Thanks to the collaborative spirit and the passionate work of CERN’s people who worked in this project, the team recently completed the brand-new mini accelerator. The four modules that make up the final accelerator have been entirely constructed in CERN’s workshops within less than two years through the effort of a small but enthusiastic team. The fact that what they were building could help treating thousands of patients gave extra motivation to everyone involved in the project. In addition, Serge Mathot explains: “the construction was a very delicate procedure, given the need for high precision and the geometry of each module. Thanks to the experience and the skills we have gained from our previous works on the cavities for LINAC4, we successfully met the challenges of this project”.

2
Serge Mathot in front of one of the four modules (Credit: CERN)

The technological breakthrough achieved by the team behind the mini-accelerator has attracted interest from the industry, in first instance from A.D.A.M. SA (link is external), which stands for Applications of Detectors and Accelerators to Mediciane, a Geneva-based spin-off company from CERN, and from its parent company Advanced Oncotherapy in the United Kingdom. “Behind every innovative aspect of this accelerator, there is unique CERN intellectual property and know-how”, says David Mazur from CERN’s Knowledge Transfer Group, “and we have concluded a license agreement with A.D.A.M. SA which enables them to commercialize such accelerators in the field of proton therapy, based on our IP”.

The mini accelerator was delivered to the ADAM test facility last September and is presently being commissioned. It is more modular, more compact and cheaper than its “big brothers”. Its small size and light weight mean that the mini-RFQ could become the key element of proton therapy systems but also of systems able to produce radioactive isotopes on-site in hospitals.

3
The mini accelerator (RFQ) installed in the ADAM test stand (Credit: ADAM)

The team that developed the mini-RFQ foresees many other potential medical applications, such as acceleration of alpha particles for advanced radiotherapy techniques that may be the new frontier in the treatment of cancer or industrial applications, where a mini accelerator could analyse the quality of surfaces or trace aerosol pollution for example.

Also, the small size of the new accelerator means that it can be easily transported, which would be particularly useful for the surface analysis of archaeological materials or artworks presently exhibited in museums around the world, using proton-induced x-ray emission (PIXE) analytical technique. Indeed a new generation of mini accelerators have great potential and could find numerous applications in many fields. The mini-RFQ offers another example of the societal benefits stemming from fundamental research.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The International Linear Collider (ILC) is a proposed linear particle accelerator.It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). The host country for the accelerator has not yet been chosen and proposed locations are Japan, Europe (CERN) and the USA (Fermilab). Japan is considered the most likely candidate, as the Japanese government is willing to contribute half of the costs, according to a representative for the European Commission on Future Accelerators.Construction could begin in 2015 or 2016 and will not be completed before 2026.

#accelerating-news, #accelerator-science, #adam, #applied-research-technology, #basic-research, #cern, #ilc, #linac4-project

From Nature- “China, Japan, CERN: Who will host the next LHC?”

Nature Mag
Nature

[The title is in error. There will possibly be another particle accelerator, or more than one. But none will be the LHC. It is what it is. They will want and need a new name. Might I suggest superconducting super collider, and might I suggest the United States?]

19 August 2016
Elizabeth Gibney

Labs are vying to build ever-bigger colliders against a backdrop of uncertainty about how particle physicists will make the next big discoveries.

1
Whether the Large Hadron Collider will find phenomena outside the standard model of particle physics remains to be seen. Harold Cunningham/Getty

CERN/LHC Map
CERN LHC Grand Tunnel
CERN LHC particles
LHC at CERN

It was a triumph for particle physics — and many were keen for a piece of the action. The discovery of the Higgs boson in 2012 using the world’s largest particle accelerator, the Large Hadron Collider (LHC), prompted a pitch from Japanese scientists to host its successor. The machine would build on the LHC’s success by measuring the properties of the Higgs boson and other known, or soon-to-be-discovered, particles in exquisite detail.

But the next steps for particle physics now seem less certain, as discussions at the International Conference on High Energy Physics (ICHEP) in Chicago on 8 August suggest. Much hinges on whether the LHC unearths phenomena that fall outside the standard model of particle physics — something that it has not yet done but on which physicists are still counting — and whether China’s plans to build an LHC successor move forward.

The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

When Japanese scientists proposed hosting the International Linear Collider (ILC), a group of international scientists had already drafted its design. The ILC would collide electrons and positrons along a 31-kilometre-long track, in contrast to the 27-kilometre-long LHC, which collides protons in a circular track that is based at Europe’s particle-physics laboratory, CERN (See ‘World of colliders’).

ILC schematic
ILC schematic

Because protons are composite particles made of quarks, collisions create a mess of debris. The ILC’s particles, by contrast, are fundamental and so provide the cleaner collisions more suited to precision measurements, which could reveal deviations from expected behaviour that point to physics beyond the standard model.

Higgs study

For physicists, the opportunity to carry out detailed study of the Higgs boson and the heaviest, ‘top’ quark, the second most recently discovered particle, is reason enough to build the facility. Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) was expected to make a call on whether to host the project — which could begin experiments around 2030 — in 2016. But the Japanese panel advising MEXT indicated last year that opportunities to study the Higgs boson and the top quark would not on their own justify building the ILC, and that it would wait until the end of the LHC’s first maximum-energy run – scheduled for 2018 – before making a decision.

That means the panel is not yet convinced by the argument that the ILC should be built irrespective of what the LHC finds, says Masanori Yamauchi, director-general of Japan’s High Energy Accelerator Research Organization (KEK) in Tsukuba who sat on an ICHEP panel at a session on future facilities. “That’s the statement hidden under their statement,” he says.

If the LHC discovers new phenomena, these would be further fodder for ILC study — and would strengthen the case for building the high precision machine.

US physicists have long backed building a linear collider. And a joint MEXT and US Department of Energy group is discussing ways to reduce the ILC’s costs, says Yamauchi, which are now estimated at US$10 billion. A reduction of around 15% is feasible — but Japan will need funding commitments from other countries before it formally agrees to host, he added.

Chinese competitor

Snapping at Japan’s heels is a Chinese team. In the months after the Higgs discovery, a team of physicists led by Wang Yifang, director of the Institute of High Energy Physics in Beijing, floated a plan to host a collider in the 2030s, also partially funded by the international community and focused on precision measurements of the Higgs and other particles.

2
Circular rather than linear, this 50–100-kilometre-long electron–positron smasher would not reach the energies of the ILC. But it would require the creation of a tunnel that could allow a proton–proton collider — similar to the LHC, but much bigger — to be built at a hugely reduced cost.

Wang and his team this year secured around 35 million yuan (US$5 million) in funding from China’s Ministry of Science and Technology to continue research and development for the project, Wang told the ICHEP session. Last month, China’s National Development and Reform Commission turned down a further request from the team for 800 million yuan, but other funding routes remain open, Wang said, and the team now plans to focus on raising international interest in the project.

By affirming worldwide interest in Higgs physics, the Chinese proposal bolsters Japan’s case for building the ILC, says Yamauchi. But if it goes ahead, it could drain international funding from the ILC and put its future on shakier ground. “It may have a negative impact,” he says.

Super-LHC

In the future, the option to use China’s electron–positron collider as the basis for a giant proton–proton collider could interfere with CERN’s own plans for a 100-kilometre-circumference circular machine that would smash protons together at more than 7 times the energy of the LHC. Until the mid-2030s, CERN will be busy with an upgrade that will raise the intensity — but not the energy — of the LHC’s proton beam. And by that time, China might have a suitable tunnel that could make it harder to get backing for this ‘super-LHC’.

At ICHEP, Fabiola Gianotti, CERN’s director-general, floated an interim idea: souping up the energy of the LHC beyond its current design by installing a new generation of superconducting magnets by around 2035. This would provide a relatively modest boost in energy — from 14 teraelectronvolts (TeV) to 20 TeV — that would have a strong science case if the LHC finds new physics at 14 TeV, said Gianotti. Its $5-billion price tag could be paid for out of CERN’s regular budget.

For decades, successive facilities have found particles predicted by the standard model, and neither the LHC nor any of its proposed successors is guaranteed to find new physics. Questions asked at the ICHEP session revealed some soul-searching among attendees, including a plea to reassure young high-energy physicists about the future of the field and contemplation of whether money would be better spent on other approaches rather than ever-bigger accelerators.

Indeed, the US is betting on neutrinos, fundamental particles that could reveal physics beyond the standard model, not colliders. The Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, hopes to become the world capital of neutrino physics by hosting the $1-billion Long-Baseline Neutrino Facility, which will beam neutrinos to a range of detectors starting in 2026.

FNAL LBNFFNAL DUNE Argon tank at SURF
SURF logo
Sanford Underground levels
LBMF/DUNE map from FNAL, Batavia, IL to SURF, SD, USA; DUNE’s Argon tank; SURF caverns for science

Funding will require approval from US Congress in 2017. But at the ICHEP session, Fermilab director Nigel Lockyer was confident: “We are beyond the point of no return. It is happening.”

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.

#cern-lhc, #hep, #ilc, #nature, #particle-accelerators, #particle-physics

From ILC: “Practi-Cal”

Linear Collider Collaboration header
Linear Collider Collaboration

7 July 2016
No writer credit found

1
Testing, testing… calorimeters in the test beam at CERN.

Better together: two technological prototypes of the high-granularity calorimeters for a future ILC detector have been tested together with particle beams at CERN in a combined mode. The Semi-Digital Hadronic CALorimeter (SDHCAL) prototype with its 48 layers and the Silicon Electromagnetic CALorimeter (SiECAL) with its 10 units, both part of the CALICE collaboration, spent two weeks taking data on the “H2” beam line at CERN’s SPS. The principal goal of this beam test was to validate their combined data acquisition (DAQ) system developed by the teams working on the two calorimeters. After the fixing of a few problems that appeared during the data taking, the DAQ system ran smoothly and both prototypes took common data. This is what they will have to do in the future to register electron-positron collisions at the ILC.

Physicists and engineers from six countries participated in this beam test: Belgium, China, France, Japan, Korea and Spain. Future tests will focus on studying the common response of these two calorimeters to the different kinds of particles. “The success of this combined test will certainly encourage other detectors proposed for the tracking system (Silicon and TPC detectors) to join the adventure…,” Imad Laktineh, professor at IN2P3’s Institut de Physique Nucléaire de Lyon,who supervised the combined beam test, hopes.

More about calorimeter test beams here and here.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The Linear Collider Collaboration is an organisation that brings the two most likely candidates, the Compact Linear Collider Study (CLIC) and the International Liner Collider (ILC), together under one roof. Headed by former LHC Project Manager Lyn Evans, it strives to coordinate the research and development work that is being done for accelerators and detectors around the world and to take the project linear collider to the next step: a decision that it will be built, and where.

Some 2000 scientists – particle physicists, accelerator physicists, engineers – are involved in the ILC or in CLIC, and often in both projects. They work on state-of-the-art detector technologies, new acceleration techniques, the civil engineering aspect of building a straight tunnel of at least 30 kilometres in length, a reliable cost estimate and many more aspects that projects of this scale require. The Linear Collider Collaboration ensures that synergies between the two friendly competitors are used to the maximum.

Linear Collider Colaboration Banner

#accelerator-science, #hep, #ilc, #particle-accelerators, #particle-physics, #testing-calorimeters-at-cern

From AAAS: “Japan hopes to staff up to host the International Linear Collider”

AAAS

AAAS

7 January 2016
Dennis Normile

1
Japan will grow its scientific workforce to handle the International Linear Collider, to be built in a tunnel through these mountains in northeastern Japan. WIKIMEDIA

The International Linear Collider (ILC) took another small step forward yesterday when Japan’s High Energy Accelerator Research Organization (KEK) released a plan for getting the country ready to host the $10 billion project by tripling its relevant science and engineering workforce over the next 4 years.

ILC schematic
ilc schematic

As currently envisioned, the collider will occupy a 31-kilometer-long tunnel in Iwate Prefecture north of Tokyo. The education ministry needs to be convinced the country has the human resources required to execute the project before it will approve the project, says Yasuhiro Okada, a theorist at KEK, which has led Japan’s preliminary planning and design work. The “Action Plan,” released yesterday, “is a small but critical point to show [the ministry] we will have the necessary manpower,” says Okada, who chaired the working group charged with drafting the plan. Japan also needs to demonstrate to potential international partners that the country will shoulder its share of the final design effort, he adds.

“We are concentrating on getting the green light from the government by 2018,” says Satoru Yamashita, a University of Tokyo physicist involved in the planning. The government would then initiate negotiations for support from other interested countries, with the goal of starting construction by 2020 and beginning experiments around 2030.

The ILC would pick up where Europe’s Large Hadron Collider leaves off in studies of the Higgs boson and other exotic particles.

CERN LHC Map
CERN LHC Grand Tunnel
CERN LHC particles
LHC at CERN

In the 1990s, groups in North America, Japan, and Europe independently started planning linear colliders to smash together electrons and antielectrons, or positrons. The project’s complexity and projected costs led the teams to pool their efforts in 2004. An international team completed a basic design in June 2013 based on superconducting techniques to accelerate the particles to energies of up to 500 gigaelectron volts. The collider could be upgraded later to even higher energies.

Scientists in each region originally hoped to host the facility. But in 2012 the Japanese high energy physics community raised its hand and gradually got the support of American and European physicists. In August 2013 a committee picked the Iwate Prefecture site.

Before starting a final engineering design, KEK took a hard look at the project’s manpower requirements. The U.S. and Europe are currently designing and building large physics facilities with superconducting radiofrequency cavities similar to what the ILC will use, and many of those scientists and engineers will become available to work on the ILC, Okada says. But Japan hasn’t had a similar cutting-edge project. Okada says KEK currently has 30 to 40 scientists and engineers with relevant expertise but will need about triple that number to manage its share of the final design work. KEK hopes to fill the gap by luring experienced hands as well as signing up new recruits. “We think the ILC is a project which can attract young talent,” Okada says.

Meanwhile, Yamashita says support for the project is building among local governments and neighboring prefectures as well as among national politicians. He says the ILC may also benefit from the fact that government spending on the 2020 Olympics in Tokyo will be winding down before the first funds are needed for its construction.

See the full article here .

The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

Please help promote STEM in your local schools.
STEM Icon
Stem Education Coalition

#aaas, #hep, #ilc, #particle-accelerators, #particle-physics

From LC Collaboration: “And vertically down it goes”

1 October 2015
Ricarda Laash

1
The change request was submitted by the MDI group to provide a vertical access shaft for the ILC experimental hall as well, so that the detectors could be assembled mainly above ground.

One of the major changes on the ILC design laid out in the Technical Design Report (TDR) that is ongoing right now is a layout change of the experimental hall complex. A vertical shaft connecting the underground experimental hall to the buildings above ground will be added to the original plans. This change request was submitted to the Change Management Board (CMB) after the choice of the Kitakami area as possible construction site for the ILC.

“I have written this change request in my function as leader of the MDI Working Group,” explains Karsten Büßer from the German lab DESY, who is also part of the team that is in charge of the implementation of this request (aptly named Change Implementation Team). “Both the ILD and SiD detector groups want this shaft.” This shaft will be an important addition to the whole layout of the experimental hall complex.

The ILC has two different detector groups working on further plans and improvements for the possible future detectors at the ILC. Both detectors will be placed in the same hall so that they can be moved into the interaction point in a push-pull configuration. Just like the accelerator, the whole interaction region and thus the experimental facilities are underground; meaning a plan to access these underground facilities was needed no matter where this machine would be built.

The original design within the TDR foresaw an inclined horizontal tunnel to access the underground experimental hall. This was a design choice based on the question whether or not both halls – on the surface and underground – could be built on top of each other or not. “When TDR was published the Kitakami area had not been an option yet,” says Büßer. At this point it was unclear whether the machine would be built in Asia, the U.S. or even in Europe. Therefore it was essential that the TDR plans were as generic as possible to fit any possible site in any country on this earth. “For Asia it was assumed that most sites would be in mountains,” Büßer explains further. “There might have been a mountain peak above the interaction. On a mountain peak you can’t build any infrastructure to support the underground, so you don’t build vertical access shafts.” And even if it would have been possible to build support facilities on top of a mountain, the shaft would have been too long and probably too pricy to build. So to compensate for the lack of an acceptable possible vertical access shaft the horizontal tunnel was included into the plans.

“After the choice of the Kitakami region as the possible construction site for the ILC physicists all around the world started working on more solid plans for the construction. And one of these more concrete plans was to figure out whether or not a vertical access shaft could be added to the plan for this specific site,” Büßer explains. “Kitakami is not a mountainous region, it is just hilly. Therefore we could move the location of the underground experimental hall to a place where we have a relatively flat surface.” Therefore it would be possible to construct support facilities on the surface directly above the interaction point. “Before we handed in the change request, we checked this possibility very carefully. We did not want to start such a request unless we were sure that the site would be flat enough to house the facilities directly above the interaction point.”

The formal change request for the addition of the vertical shaft has now been processed and finalised. Such an extensive change for the design of the machine of course means that a number of further questions come up. Moving things around in one place means changes in the overall layout of the whole facility. “For example another point which we have now on our to-do-list is to check the geological properties of the area for the new interaction point,” says Büßer. Relocating the interaction point within the Kitakami site by 800 metres has quite some impact. “We now need to take a test drilling to further investigate the geological properties in the depth of the experimental hall.” This test drilling should give the last needed clues for the new setup plan which is based on this change request.

Not only the qualities of the underground but also the installation with in the planed support facilities of the surface need to be checked. The new layout includes a gigantic gantry crane within the surface halls (see picture). “The crane can lift masses up to 4000 tons,” says Büßer. The crane itself will consist of a massive gantry and the extremely stabile holding structure for the loaded goods right above the vertical shaft. It will also be movable along the size of the shaft to allow maneuverability of the hanging loads.

“In the actual design concept for the hall we now have the vertical shaft which enables us to mostly assemble the detectors on the surface and then crane the remaining parts into the experimental hall for final assembly and later usage,” says Büßer. But they also kept the inclined horizontal tunnel for access to the damping rings and the hall. The new horizontal tunnel is smaller than in the old design since it is no longer needed as entry way for the heavy pieces of the detectors. It will still be used for smaller installations and transportation for smaller equipment into the underground halls.

“We hope that the tunnel will be very helpful during the construction phase for the hall and for transporting most of the infrastructure which does not need craning,” says Büßer Another reason to support the vertical shaft is that even though the detectors could be assembled by bringing in the parts via truck along the tunnel, it would still be a lot of heavy lifting on a 10% inclination for the trucks which could have also caused problems. The tunnel will also always be an emergency exit for the detector hall without a lift or stairs.

Mike Harrison, Associate Director for the ILC in the Linear Collider Collaboration, summarises this development with the following words: “It is extremely fortunate that the Kitakami site offers the possibility of an interaction region design based on a vertical shaft topology. There are many advantages of such an approach. This is an important and highly useful step forward for the whole Project.”

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The International Linear Collider (ILC) is a proposed linear particle accelerator.It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). The host country for the accelerator has not yet been chosen and proposed locations are Japan, Europe (CERN) and the USA (Fermilab). Japan is considered the most likely candidate, as the Japanese government is willing to contribute half of the costs, according to a representative for the European Commission on Future Accelerators.Construction could begin in 2015 or 2016 and will not be completed before 2026.

#accelerator-science, #basic-research, #ilc

From LC Newsline- “Director’s Corner: Study on technical feasibility”

Linear Collider Collaboration header
Linear Collider Collaboration

17 September 2015

FNAL Lyn Evans
Lyn Evans

1
Cryomodule production for the European XFEL in CEA Saclay, France. Image: DESY

Since 2014, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) has been conducting studies to gather information to decide whether Japan is interested in hosting the ILC. The summary report of the ILC Advisory Panel set up by MEXT for this purpose was outlined in the last edition of Newsline.

In addition to the internal MEXT committees they have also commissioned an additional study by one of Japan’s leading consultancy firms, Nomura Research Institute (NRI), to study the technical and economic impact of the ILC, as a first-stage commissioned survey. Their report is now available, currently only in Japanese, but we are told that the English translation is in progress.

Very recently, MEXT has launched two new initiatives. The first is to form another internal committee to study human resource requirements for ILC construction and operation. We are providing them with all the information they request on this subject.

The second new initiative is to commission a further study by NRI to survey and analyse the technical feasibility of the project and the technical challenges posed by the construction of the ILC accelerator. The study consists of the following main elements:

Survey of the technical feasibility of the ILC accelerator
Survey of the technical issues that will need to be surmounted to manage mass production of the components required by the ILC accelerator
Survey of ways to reduce the cost.

As part of this study NRI plans to visit leading institutes for accelerator science and companies manufacturing accelerator components or related products in Europe and the USA this autumn.

This is a very tight schedule and we are looking for the cooperation of all institutes and companies to present our work in the best possible way. It is particularly important to show that we can handle big projects in collaboration with industry. The LHC and the on-going construction of the European XFEL hosted at DESY and LCLS-II hosted at SLAC should provide ample evidence of this.

European XFEL Tunnel
European XFEL Tunnel

SLAC LCLSII
SLAC LSLS-II

The final report of this commissioned survey and analysis should be available by February 2016. Hopefully this will complete the information that MEXT needs in order to decide whether the Japanese government wants to proceed to the next step, opening international negotiations with potential partners.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The Linear Collider Collaboration is an organisation that brings the two most likely candidates, the Compact Linear Collider Study (CLIC) and the International Liner Collider (ILC), together under one roof. Headed by former LHC Project Manager Lyn Evans, it strives to coordinate the research and development work that is being done for accelerators and detectors around the world and to take the project linear collider to the next step: a decision that it will be built, and where.

Some 2000 scientists – particle physicists, accelerator physicists, engineers – are involved in the ILC or in CLIC, and often in both projects. They work on state-of-the-art detector technologies, new acceleration techniques, the civil engineering aspect of building a straight tunnel of at least 30 kilometres in length, a reliable cost estimate and many more aspects that projects of this scale require. The Linear Collider Collaboration ensures that synergies between the two friendly competitors are used to the maximum.

Linear Collider Colaboration Banner

#accelerator-science, #basic-research, #ilc