From DOE’s Lawrence Berkeley National Laboratory (US) : “How Can Next-Gen Computer Chips Reduce Our Carbon Footprint?” 

From DOE’s Lawrence Berkeley National Laboratory (US)

December 1, 2021
Theresa Duque
(510) 495-2418

A Q&A with two scientists aiming to overcome limits in computing power and energy efficiency by designing new microchips.

Computer chips on an electronic circuit board. Credit: raigvi/Shutterstock.

Our laptops and smartphones are compact yet powerful because of silicon microelectronics, also known as microchips or chips, the tiny brains behind the digital brawn of almost every modern device.

But such modern convenience comes at a cost. By 2030 about 25% of the world’s energy – most of which is produced by burning carbon-rich fossil fuels – could be consumed by electronic devices if nothing is done to make them more energy efficient.

Silicon chips originate from a design known as CMOS, shorthand for complementary metal-oxide-semiconductor. As Moore’s Law first predicted in 1975, CMOS silicon chips are approaching limits in miniaturization and performance. For decades, scientists have been on the hunt for new electronic materials that go beyond the limits of Moore’s Law as well as the constraints of silicon CMOS chips.

Now, scientists Maurice Garcia-Sciveres and Ramamoorthy Ramesh at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) are designing new microchips that could perform better – and require less energy – than silicon. Over the next three years, they will lead two of the 10 projects recently awarded nearly $54 million by the Department of Energy to increase energy efficiency in microelectronics design and production.

They discuss their projects in this Q&A.

Q: Over the next 3 years, what do you hope to achieve? What is the significance of your work?

Garcia-Sciveres: Our project – the “Co-Design and Integration of Nano-Sensors on CMOS” – aims to improve performance by integrating tiny light sensors made with nanomaterials into a conventional CMOS (complementary metal-oxide-semiconductor) integrated circuit. (A nanomaterial is matter designed at an ultrasmall scale of a billionth of a meter.)

CMOS chips are made of silicon, but if you look at how much power silicon uses it’s starting to be significant – and in a decade, silicon chips will be consuming a large fraction of our energy. For example, the computing needed to run a self-driving car consumes significant energy compared to the energy needed to run the car. We need to compute with less energy, or increase performance without more power, but you can’t do that with silicon chips because silicon has to run on a certain voltage – and those physical limitations are costing us.

In our project, nanomaterials such as carbon nanotubes – devices so small that they are invisible to the naked eye – would serve as light sensors. The nanosensors add new functionality to a CMOS chip, increasing performance.

Sensing is a good initial application, but when integrated into a chip, the carbon nanotubes could also serve as transistors or switches that process data. Integrating many carbon nanotubes into a silicon chip could lead to new kinds of electronic devices that are smaller and faster as well as more energy efficient than current technologies.

Ramesh: In our project, “Co-Design of Ultra-Low-Voltage Beyond CMOS Microelectronics,” we plan to explore new physical phenomena that will lead to significantly higher energy efficiency in computing. This is important because we believe that the next Moore’s Law is likely to be focused on the energy scale and not the length scale, since we are already at the limits of length scaling.

In around 2015, energy consumption from microelectronics was only about 4-5% of the world’s total primary energy. Primary energy typically means the chemical energy produced by a coal- or natural gas-based power plant. This typically has an efficiency of conversion to electricity of 35-40%.

Our increasing reliance on artificial intelligence, machine learning, and IoT – or the Internet of Things where everything is electronically connected, such as our traffic systems, emergency response systems, and renewable energy and electrical grid systems – will lead to an exponential increase of electronics from the systems perspective.

This means that by 2030, energy consumption from microelectronics is projected to be at least 25% of primary energy. Therefore, making electronics more energy efficient is a big deal.

For our project, we are asking, “What fundamental materials innovations could significantly scale back the energy consumption of microelectronics?” We’re looking at a totally different framework that explores new physics using a co-design approach, in which world-leading experts in materials physics, device and circuit design, fabrication and testing, and chip-level architecture are working in collaboration to carry out a holistic study of pathways to next-generation computing.

Q: What new applications will your work enable, and how will you demonstrate these new capabilities?

Garcia-Sciveres: Our work will demonstrate a single-photon imager that can measure the spectrum – the wavelength or energy – of every single photon or light particle it detects. This allows for hyperspectral imaging – that is, images where each pixel can be decomposed into many colors, providing much more information. Hyperspectral imaging benefits a broad range of science, from cosmology to biological imaging.

The Dark Energy Spectroscopic Experiment (DESI), an international science collaboration managed by Berkeley Lab, captures the spectra of distant galaxies, starting from images of the galaxies that were previously taken with other instruments.

DOE’s Lawrence Berkeley National Laboratory(US) DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory, in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

National Optical Astronomy Observatory (US) Mayall 4 m telescope at NSF NOIRLab NOAO Kitt Peak National Observatory (US) in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

National Science Foundation(US) NOIRLab (US) NOAO Kitt Peak National Observatory (US) on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft), annotated.

This added spectral information helps cosmologists understand how dark energy shaped the expansion of our universe. Had the original observations of the galaxies been made with a hyperspectral imager, spectral information would have been available to begin with.

Another growing application of hyperspectral imaging is the study of exoplanets. (Planets in our solar system orbit around the Sun. Planets that orbit around other stars are called exoplanets.)

But the sensors used for these types of observations work at temperatures less than 1 degree above absolute zero. Our device would work at more practical temperatures, perhaps even up to room temperature.

Hyperspectral imaging has many applications in medicine and biosciences, and many commercial instruments are available. However, these instruments, which are all much more complex and more expensive than a regular camera, either scan an object pixel by pixel or have complex arrangements of robotic fibers or filters. Moreover, these instruments do not have single-photon sensitivity. Our device would enable a simple camera that provides hyperspectral images with single-photon sensitivity.

Ramesh: Our team is designed to demonstrate the viability and power of our co-design platform, “Atoms to Architecture,” which is built upon two fundamental physical phenomena:

The first is a novel behavior in ferroelectric-based transistor architectures that provides a pathway to reduce the total energy consumed in a silicon-based microelectronics device. (A ferroelectric is a material with an electrical dipole – or a pair of positive and negative electrical charges – that is switchable with an electric field.) The second is the low-voltage electric field manipulation of electronic spin using a novel class of materials called multiferroics.

In 2014, we demonstrated a magneto-electric material that can convert charge into magnetic spin at 5 volts of applied voltage. Subsequent collaborative work with researchers at Intel showed how this could be used to create a new class of logic-in-memory devices, termed the MESO device, which uses spins to carry out logic operations.

For one of our projects within our program, we will use our magneto-electric material to explore multiferroic elements that will function at 100 millivolts, leading to a significant drop in energy consumption. (A millivolt is one thousandth of a volt.)

Our second project is exploring the fundamental physics of a capacitor device, in which a ferroelectric layer is overlaid on a conventional silicon transistor to enhance its energy efficiency through what’s known as the negative capacitance effect. Our design would enable a microelectronics device that carries out both memory and logic functions – This approach is radically different from the chips in our computers today, where one kind of chip performs the logic or processing of data, and another chip stores data.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

LBNL campus

LBNL Molecular Foundry

Bringing Science Solutions to the World

In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences (US), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering (US), and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (US) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley (US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.



The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

LBNL 88 inch cyclotron.

LBNL 88 inch cyclotron.

Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory (US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).


Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.


After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy (US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory (US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

The lab remains owned by the Department of Energy (US), with management from the University of California (US). Companies such as Intel were funding the lab’s research into computing chips.

Science mission

From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

Berkeley Lab operates five major National User Facilities for the DOE Office of Science (US):

The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.


The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

The DOE Joint Genome Institute (US) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory (US), DOE’s Oak Ridge National Laboratory (US)(ORNL), DOE’s Pacific Northwest National Laboratory (US) (PNNL), and the HudsonAlpha Institute for Biotechnology (US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

The LBNL Molecular Foundry (US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

The DOE’s NERSC National Energy Research Scientific Computing Center (US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

DOE’s NERSC National Energy Research Scientific Computing Center(US) at Lawrence Berkeley National Laboratory

Cray Cori II supercomputer at National Energy Research Scientific Computing Center(US) at DOE’s Lawrence Berkeley National Laboratory(US), named after Gerty Cori, the first American woman to win a Nobel Prize in science.

NERSC Hopper Cray XE6 supercomputer.

NERSC Cray XC30 Edison supercomputer

NERSC GPFS for Life Sciences.

The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

NERSC PDSF computer cluster in 2003.

PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

NERSC is a DOE Office of Science User Facility.

The DOE’s Energy Science Network (US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory (US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science (US), and DOE’s Lawrence Livermore National Laboratory (US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology (US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory (US) leads JCESR and Berkeley Lab is a major partner.