Tagged: Hydrology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:23 am on October 24, 2021 Permalink | Reply
    Tags: "What’s missing from forest mortality projections? A look underground", , , , Hydrology, Riparian forests   

    From The University at Buffalo-SUNY (US): “What’s missing from forest mortality projections? A look underground” 

    SUNY Buffalo

    From The University at Buffalo-SUNY (US)

    October 22, 2021

    A cottonwood forest adjacent to the Oldman River in Lethbridge in Alberta, Canada. In a recent study, researchers present new techniques for modeling the impact of climate change on riparian forests of this kind, focusing on a nearby region of this forest. Photo: Lawrence B. Flanagan.

    You can’t see it happening. But what goes on below ground in a forest is very important in determining its fate.

    In a new study, scientists conclude that the sideways flow of water through soil can have an important impact on how riparian forests respond to climate change. Models used to predict the future plight of forests typically don’t account for this factor — but they should, researchers say.

    “There hasn’t been a lot of attention on groundwater and how the movement of water from one location to another below ground can impact plants’ survival prospects, making some locations drier, and others wetter,” says lead author Xiaonan Tai, assistant professor of biological sciences at The New Jersey Institute of Technology(US). “Groundwater is a hidden water source for ecosystems that people have neglected over the years. It is very hard to observe and quantify, just because we can’t see it. The contribution of our new research is to begin characterizing lateral groundwater processes and quantifying how much of a role they can have in terms of influencing the future of forests.”

    The study was published in July in Environmental Research Letters, building on research themes that Tai explored as a PhD student in geography at UB, where she completed her doctoral degree in 2018.

    The new paper focuses on incorporating information about subsurface hydrology into computational models that predict the future fates of forests.

    “Our research will fundamentally change the way the Earth systems modeling community will think about the impacts of future climate change droughts on forests,” says Scott Mackay, UB professor and chair of geography and professor of environment and sustainability. “In essence, the various vegetation models out there today assume the world is flat. Our model changes the story by allowing for water to be moved laterally below the surface, while simultaneously modeling the physiological responses of trees on the landscape.”

    In addition to Tai and Mackay, authors of the new study include Martin D. Venturas at The Technical University of Madrid [Universidad Politécnica de Madrid] (ES); Paul D. Brooks at The University of Utah (US); and Lawrence B. Flanagan at The University of Lethbridge (CA). The research was funded by The National Science Foundation (US).

    A cottonwood forest adjacent to the Red Deer River in Alberta, Canada. Visible in the photo is an eddy covariance flux tower — a type of scientific installation that was used in the recent study that presents new techniques for modeling the impact of climate change on riparian forests of this kind. Photo: Laurens J. Philipsen.

    The paper models potential futures for a riparian cottonwood forest in Alberta, Canada, focusing on a 20-year period at the end of the 21st century. Riparian forests are common ecosystems that are located next to a body of water like a stream or pond.

    Conventional wisdom suggests that as carbon dioxide levels in forests increase, tiny pores on leaves — called stomata — will not need to open as wide to absorb the carbon dioxide that plants need for photosynthesis. This, in turn, will lead to a reduction in water loss, which occurs through stomata.

    But the new study suggests that the amount of water saved for future use may not be as great as anticipated. “Once you introduce subsurface lateral water flow, there is still extra saved water, but that saved water won’t all stay local,” Tai says. “Some of it will move away, and once it’s gone, plants won’t be able to use it in future droughts.”

    In addition, models that fail to consider horizontal water flow may overestimate other mortality risks, Mackay says.

    “Within the soil, water can move in all directions from areas of high water content to areas of low water content,” he says. “This is pronounced in mountainous landscapes because water moves from high to low elevation, and in close proximity to water bodies, such as one finds in river floodplains.

    “By moving the water around horizontally, locations that would otherwise be very dry when the rain stops are made wetter, while areas that are typically wet can afford to give up some water without harming the plants.”

    The big-picture message of the research? If scientists and policymakers want to understand how riparian forests will fare in a warming world, they’ll need to think more about hydrology and the hard-to-see processes that occur beneath the forest floor.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    SUNY Buffalo Campus

    The State University of New York at Buffalo (US) is a public research university with campuses in Buffalo and Amherst, New York, United States. The university was founded in 1846 as a private medical college and merged with the State University of New York system in 1962. It is one of four university centers in the system, in addition to The University at Albany-SUNY (US), The University at Binghampton-SUNY (US), and The University at Stony Brook-SUNY (US) . As of fall 2020, the university enrolls 32,347 students in 13 colleges, making it the largest public university in the state of New York.

    Since its founding by a group which included future United States President Millard Fillmore, the university has evolved from a small medical school to a large research university. Today, in addition to the College of Arts and Sciences, the university houses the largest state-operated medical school, dental school, education school, business school, engineering school, and pharmacy school, and is also home to SUNY’s only law school. The University at Binghampton has the largest enrollment, largest endowment, and most research funding among the universities in the SUNY system. The university offers bachelor’s degrees in over 100 areas of study, as well as 205 master’s degrees, 84 doctoral degrees, and 10 professional degrees. The University at Buffalo and The University of Virginia (US) are the only colleges founded by United States Presidents.

    The University at Buffalo is classified as an R1 University, meaning that it engages in a very high level of research activity. In 1989, UB was elected to The Association of American Universities (US), a selective group of major research universities in North America. University at Buffalo’s alumni and faculty have included five Nobel laureates, five Pulitzer Prize winners, one head of government, two astronauts, three billionaires, one Academy Award winner, one Emmy Award winner, and Fulbright Scholars.

    The University at Buffalo intercollegiate athletic teams are the Bulls. They compete in Division I of the NCAA, and are members of the Mid-American Conference.

    The University at Buffalo is organized into 13 academic schools and colleges.

    The School of Architecture and Planning is the only combined architecture and urban planning school in the State University of New York system, offers the only accredited professional master’s degree in architecture, and is one of two SUNY schools that offer an accredited professional master’s degree in urban planning. In addition, the Buffalo School of Architecture and Planning also awards the original undergraduate four year pre-professional degrees in architecture and environmental design in the SUNY system. Other degree programs offered by the Buffalo School of Architecture and Planning include a research-oriented Master of Science in architecture with specializations in historic preservation/urban design, inclusive design, and computing and media technologies; a PhD in urban and regional planning; and, an advanced graduate certificate in historic preservation.
    The College of Arts and Sciences was founded in 1915 and is the largest and most comprehensive academic unit at University at Buffalo with 29 degree-granting departments, 16 academic programs, and 23 centers and institutes across the humanities, arts, and sciences.
    The School of Dental Medicine was founded in 1892 and offers accredited programs in DDS, oral surgery, and other oral sciences.
    The Graduate School of Education was founded in 1931 and is one of the largest graduate schools at University at Buffalo. The school has four academic departments: counseling and educational psychology, educational leadership and policy, learning and instruction, and library and information science. In academic year 2008–2009, the Graduate School of Education awarded 472 master’s degrees and 52 doctoral degrees.
    The School of Engineering and Applied Sciences was founded in 1946 and offers undergraduate and graduate degrees in six departments. It is the largest public school of engineering in the state of New York. University at Buffalo is the only public school in New York State to offer a degree in Aerospace Engineering
    The School of Law was founded in 1887 and is the only law school in the SUNY system. The school awarded 265 JD degrees in the 2009–2010 academic year.
    The School of Management was founded in 1923 and offers AACSB-accredited undergraduate, MBA, and doctoral degrees.
    The School of Medicine and Biomedical Sciences is the founding faculty of the University at Buffalo and began in 1846. It offers undergraduate and graduate degrees in the biomedical and biotechnical sciences as well as an MD program and residencies.
    The School of Nursing was founded in 1936 and offers bachelors, masters, and doctoral degrees in nursing practice and patient care.
    The School of Pharmacy and Pharmaceutical Sciences was founded in 1886, making it the second-oldest faculty at University at Buffalo and one of only two pharmacy schools in the SUNY system.
    The School of Public Health and Health Professions was founded in 2003 from the merger of the Department of Social and Preventive Medicine and the University at Buffalo School of Health Related Professions. The school offers a bachelor’s degree in exercise science as well as professional, master’s and PhD degrees.
    The School of Social Work offers graduate MSW and doctoral degrees in social work.
    The Roswell Park Graduate Division is an affiliated academic unit within the Graduate School of UB, in partnership with Roswell Park Comprehensive Cancer Center, an independent NCI-designated Comprehensive Cancer Center. The Roswell Park Graduate Division offers five PhD programs and two MS programs in basic and translational biomedical research related to cancer. Roswell Park Comprehensive Cancer Center was founded in 1898 by Dr. Roswell Park and was the world’s first cancer research institute.

    The University at Buffalo houses two New York State Centers of Excellence (out of the total 11): Center of Excellence in Bioinformatics and Life Sciences (CBLS) and Center of Excellence in Materials Informatics (CMI). Emphasis has been placed on developing a community of research scientists centered around an economic initiative to promote Buffalo and create the Center of Excellence for Bioinformatics and Life Sciences as well as other advanced biomedical and engineering disciplines.

    Total research expenditures for the fiscal year of 2017 were $401 million, ranking 59th nationally.

    SUNY – The State University of New York (US) is a system of public colleges and universities in New York State. It is the largest comprehensive system of universities, colleges, and community colleges in the United States, with a total enrollment of 424,051 students, plus 2,195,082 adult education students, spanning 64 campuses across the state. The SUNY system has some 7,660 degree and certificate programs overall and a $13.08 billion budget.

    The SUNY system has four “university centers”: The University at Albany- SUNY (US) (1844), The University at Binghampton-(SUNY)(US) (1946), The University at Buffalo-SUNY (US) (1846), and The University at Stony Brook-SUNY (US) (1957). SUNY’s administrative offices are in Albany, the state’s capital, with satellite offices in Manhattan and Washington, D.C. With 25,000 acres of land, SUNY’s largest campus is The SUNY College of Environmental Science and Forestry (US), which neighbors the State University of New York Upstate Medical University – the largest employer in the SUNY system with over 10,959 employees. While the SUNY system doesn’t officially recognize a flagship university, the University at Buffalo and Stony Brook University are sometimes treated as unofficial flagships.

    The State University of New York was established in 1948 by Governor Thomas E. Dewey, through legislative implementation of recommendations made by the Temporary Commission on the Need for a State University (1946–1948). The commission was chaired by Owen D. Young, who was at the time Chairman of General Electric. The system was greatly expanded during the administration of Governor Nelson A. Rockefeller, who took a personal interest in design and construction of new SUNY facilities across the state.

    Apart from units of the unrelated City University of New York (CUNY)(US), SUNY comprises all state-supported institutions of higher education.

  • richardmitnick 9:54 am on July 15, 2021 Permalink | Reply
    Tags: "Mapping Extreme Snowmelt and its Potential Dangers", , , , Hydrology,   

    From University of Arizona (US) : “Mapping Extreme Snowmelt and its Potential Dangers” 

    From University of Arizona (US)


    Media contact:
    Mikayla Mace Kelley
    Science Writer, University Communications

    Researcher contact:
    Xubin Zeng
    Department of Hydrology and Atmospheric Sciences

    Rapid snowmelt can be dangerous, and understanding its drivers is important for understanding the world under the influence of climate change.

    Rising temperatures are the main source of extreme snowmelt events, but relatively warm rainwater falling on snow is also a driver in many parts of the country.

    Snowmelt – the surface runoff from melting snow – is an essential water resource for communities and ecosystems. But extreme snow melt, which occurs when snow melts too rapidly over a short amount of time, can be destructive and deadly, causing floods, landslides and dam failures.

    To better understand the processes that drive such rapid melting, researchers set out to map extreme snowmelt events over the last 30 years. Their findings are published in a new paper in the Bulletin of the American Meteorological Society.

    “When we talk about snowmelt, people want to know the basic numbers, just like the weather, but no one has ever provided anything like that before. It’s like if nobody told you the maximum and minimum temperature or record temperature in your city,” said study co-author Xubin Zeng, director of the UArizona Climate Dynamics and Hydrometeorology Center and a professor of atmospheric sciences. “We are the first to create a map that characterizes snowmelt across the U.S. Now, people can talk about the record snowmelt events over each small area of 2.5 miles by 2.5 miles.”

    Zeng and lead study author Josh Welty, who received his doctoral degree under Zeng’s advising, created a map that catalogs the top-10 extreme snowmelt events in terms of frequency, magnitude, temperature and precipitation over every 2.5-mile square of the U.S. between 1988 and 2017. They also used machine learning to understand how large-scale weather patterns affect extreme snow melt.

    The map shows the greatest amount of snow loss over a two day period across the United States within a 30-year window. The largest snow loss, indicated by green and blue, occurs in the mountains of the western United States. Units are millimeters of snow mass lost per two days. Only pixels, which equate to 2.5 square miles each, with extreme snow loss (exceeding 50 mm per two days) are included. Credit: Josh Welty.

    They found that in the western half of the country, winds transport water vapor from the Pacific Ocean eastward. However, in the eastern half of the country, weather patterns transport moisture primarily south to north from the Gulf of Mexico all the way to the Great Lakes and New England.

    Their maps also reveal that in most cases, extreme snowmelt is caused by unusually warm temperatures. This conclusion is fairly intuitive, but a surprising finding revealed that in certain regions, particularly in the Pacific Northwest and the northeastern U.S., extreme snowmelt events are driven by rain – which is relatively warm – falling on snow. In these cases, extreme snowmelt events become immediately dangerous.

    The paper outlines one such example in detail: The Oroville Dam in Butte County, California, holds the second-largest reservoir in the state. In 2017, a series of storms dropped huge amounts of warm rain on the snowcapped Sierra Nevada Mountains, resulting in rapid snowmelt that filled the dam past its brim. Spillways, which provide controlled water runoff, failed, and over 180,000 people were evacuated.

    Such events might happen more often in the future, according to Zeng and Welty’s findings. The researchers found only a slight increase in the frequency of such events over the 30-year period, and they didn’t see a trend in terms of the magnitude of extreme snowmelt events. However, 30 years isn’t long enough to establish a trend, said Zeng, who is also the Agnes N. Haury Endowed Chair in Environment in the UArizona Department of Hydrology and Atmospheric Sciences. That means future research will be especially important.

    “This paper serves as foundation and a reference point to see if and how things will be changing in different regions over the next 10 to 15 years,” Welty said.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the University of Arizona (US) enrolled 45,918 students in 19 separate colleges/schools, including the UArizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). UArizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association(US). The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), the UArizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. UArizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved the UArizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university (Arizona State University(US) was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by they time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.


    UArizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration(US) for research. UArizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally. The UArizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. UArizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter. While using the HiRISE camera in 2011, UArizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. UArizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech(US)-funded universities combined. As of March 2016, the UArizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    UArizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    UArizona is a member of the Association of Universities for Research in Astronomy(US), a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory(US) just outside Tucson. Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at UArizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope(CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    Giant Magellan Telescope, 21 meters, to be at the NOIRLab(US) National Optical Astronomy Observatory(US) Carnegie Institution for Science’s(US) Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at UArizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Administration(US) mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, the UArizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory(US), a part of UArizona Department of Astronomy Steward Observatory(US), operates the Submillimeter Telescope on Mount Graham.

    The National Science Foundation(US) funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.
    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

  • richardmitnick 10:07 pm on December 9, 2020 Permalink | Reply
    Tags: "Big data offers promise of better groundwater management in California", Analysis of 200000 groundwater samples reveals major mismatch in California groundwater data., , , Hydrology, ,   

    From McGill University (CA): “Big data offers promise of better groundwater management in California” 

    From McGill University (CA)

    December 9, 2020

    Analysis of 200,000 groundwater samples reveals major mismatch in California groundwater data.


    To ensure that California’s groundwater is sustainably managed in the future and over the long-term, current state definitions of what constitutes groundwater may need to be revised, according to research published this week in PNAS. A McGill University-led research team has analyzed big data of more than 200,000 groundwater samples taken from across the state and found that there are problems with the guidelines used for groundwater management. Known as the ‘Base of Fresh Water’, the guidelines are close to fifty years old and don’t reflect current uses, knowledge, concerns or technologies related to managing groundwater in this coastal state with a multi-billion-dollar agricultural industry.

    The research shows that existing groundwater wells already penetrate and encroach upon the bases of fresh water that are used to define basin bottoms. In addition, brackish waters exist within current groundwater basins, and fresh water exists outside delineated groundwater basins. Brackish water, which was once deemed unusable, can now be used, thanks to technological advances. Finally, there are concerns about regulating groundwater on the basis of its quality rather than its usage, as is currently the case, since this provides a loophole for potential groundwater users who could drill deeper and skirt existing restrictions on freshwater pumping.

    Together, these findings suggest that groundwater may already be poorly safeguarded in some places and that the ‘Base of Fresh Water’ concept may need to be reconsidered as a means to define and sustainably manage groundwater in future.

    Need for up-to-date information to manage a critical resource

    “It is challenging for groundwater sustainability agencies to manage groundwater because this critical resource is not being sufficiently monitored,” says Mary Kang, an Assistant Professor in McGill University’s Department of Civil Engineering and the lead author on the study. An expert on groundwater issues, she has studied the topic in California since 2014. “The base of fresh water was historically set to protect high quality groundwater from oil and gas development. And we find that there is a mismatch between this base of fresh water and what the water quality data shows.”

    “One component to managing groundwater sustainably is evaluating the physical resource within the context of its users,” says Debra Perrone co-author of the study and Assistant Professor in UC Santa Barbara’s Environmental Studies Program. “We evaluate the link between groundwater quality, particularly salinity, and groundwater users. We show that the current approach used to manage deep groundwater in some places may risk overlooking the complex realities pertaining to both groundwater salinity and groundwater users. For example, the data suggest that people are constructing groundwater wells deeper than the base of fresh water in some areas.”

    In 2014, in response to repeated droughts, the state passed the Sustainable Groundwater Management Act (SGMA) to regulate groundwater for the first time in California’s history. However, the effectiveness of this legislation is yet to be determined, as it relies upon administrative definitions of groundwater that are based on the extent of fresh water to define a vertical or three-dimensional groundwater basin for managing water.

    “The Sustainable Groundwater Management Act currently only applies to fresh groundwater basins since administrative definitions of groundwater originated decades ago when it was economically infeasible to treat and distribute ‘unusable’ brackish or saline groundwater,” says co-author Melissa Rohde, a scientist with The Nature Conservancy of California. Rohde is currently providing scientific support to advance the successful implementation of SGMA. “With technological advances, brackish water is now usable and increasingly desirable with declining access to fresh water. By excluding brackish groundwater from sustainable groundwater management, we run the risk of undermining SGMA and overexploiting this important public resource.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    All about
    McGill Unversity (CA)

    With some 300 buildings, more than 38,500 students and 250,000 living alumni, and a reputation for excellence that reaches around the globe, McGill has carved out a spot among the world’s greatest universities.

    Founded in Montreal, Quebec, in 1821, McGill (CA) is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 11 professional schools, 300 programs of study and some 39,000 students, including more than 9,300 graduate students. McGill attracts students from over 150 countries around the world, its 8,200 international students making up 21 per cent of the student body.

  • richardmitnick 9:11 am on September 16, 2019 Permalink | Reply
    Tags: "Necessary Negotiations of Bioenergy Development", , Biomass feedstock, , Hydrology, , SWAT-Soil and Water Assessment Tool   

    From Michigan Technical University: “Necessary Negotiations of Bioenergy Development” 

    Michigan Tech bloc

    From Michigan Technical University

    September 9, 2019
    Kelley Christensen


    When it comes to planting trees for bioenergy feedstocks, there are tradeoffs to be made.

    As energy sources increasingly shift toward renewables, it’s important not to lose sight of the fact that energy production always comes with tradeoffs. Modeling the outcomes of those tradeoffs can help natural resource managers and policymakers create informed decisions in energy development.

    Azad Heidari, a civil engineering doctoral candidate at Michigan Technological University, analyzed how biofuel poplar plantations in Wisconsin affect nearby water bodies. Heidari used a watershed model that combines hydrology and plant growth models calibrated to local conditions to investigate tradeoffs between biomass production and impacts on water flow and quality.

    Heidari notes that using an interdisciplinary modeling approach allowed the researchers to come to much more holistic conclusions than they otherwise would have.

    The work, coauthored by environmental engineers Alex Mayer and David Watkins, was published this summer in the Journal of Hydrology.

    Decisions and Consequences

    In any sort of energy development, priorities must be set. Growing corn for ethanol replaces a food crop in the same field. Tree plantations might displace pastures for livestock. It’s up to resource managers to determine which tradeoffs they can live with. Other Michigan Tech researchers also study energy production siting, such as replacing tobacco crop fields with solar farms and methods of harvesting renewable energy sources in a way that don’t significantly alter ecosystems.

    In the case of planted poplar for biomass feedstocks, the main tradeoff is water usage.

    “Poplar trees have a significantly higher water use during the growing season compared to the existing forest land,” Heidari said. “Planting poplar in over 70% of a typical watershed in northern Wisconsin would decrease the average streamflow up to 25%, and during the low flow months of July and August, up to 50%. These streamflow reductions could result in degradation of aquatic ecosystems and greater competition for water use.”

    Heidari used the Soil and Water Assessment Tool (SWAT), frequently used by hydrologists, to test 70 different poplar cultivation scenarios to see how they played out at the watershed scale. He discovered that the impacts to streamflows could be partially mitigated by management techniques.

    Planting density and harvest timing can reduce negative impacts. A properly managed poplar plantation using a high-density short rotation can produce greater biomass with smaller environmental impacts, including careful use of fertilizer to stimulate tree growth and minimize fertilizer loading that could lead to water quality degradation.

    “The idea was if you plant at a higher density, there will be more water use. But what we found was the opposite,” Heidari said. “If you cut the trees down when they’re young, before they become too big and have high water use relative to annual growth, you can control the water use.”

    Heidari said the model that produced the greatest biomass feedstock yield planted 1,100 trees in 100 square meters, but were harvested after five years. The 1,100 trees did not use more water in their growth than a simulation with 11 or 111 trees in the same size test plot because of how soon they were harvested, compared to later harvests in the lower density plantings.

    Branching Out with Interdisciplinary Models

    “There’s no obvious best solution because as you increase the yield and increase the bioenergy production from the feedstock, you have to use more water,” said Alex Mayer, professor in both the Department of Civil and Environmental Engineering and Department of Geological and Mining Engineering and Sciences.

    Mayer said studies like this one are important because they provide a baseline of efficiencies to compare to fossil fuels, as well as provide a low-cost glimpse of future energy potential.

    “That’s the power of using a model; you can explore how well you can manage a system,” he said. “We know there will be impacts, and the model shows us what’s the flexibility in managing those impacts.”

    Watkins, a professor of civil and environmental engineering, noted, “In the popular literature, you see strong opinions about bioenergy — whether it’s absolutely a thing of the future for sustainability, or it’s not sustainable and we’re cutting down and burning all the trees. Bioenergy is really neither of those extremes. Modeling helps us understand and manage adverse impacts.

    “A lot of watershed models we use in engineering do not include a detailed understanding of plant growth. SWAT was one of the few options for watershed scale hydrology that included plant growth,” Watkins said.

    Next Steps

    Heidari’s interdisciplinary approach to the SWAT model has produced benefits beyond the scope of his poplar and water study. He is working with the model developers to improve SWAT itself to better understand land management’s impacts on watersheds.

    “This is a step toward improving our knowledge about biofuels and the related hydrology,” Heidari said. “Biofuels are important because energy has always been important; economies are dependent on energy.”

    Heidari is extending his research on biofuel feedstocks by studying the growth of and water consumption by eucalyptus in Argentina and oil palm in Mexico. He will make similar recommendations on how best to manage these trees to maximize energy production and minimize water impacts.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Michigan Tech Campus
    Michigan Technological University (http://www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.
    The College of Sciences and Arts (CSA) fills one of the most important roles on the Michigan Tech campus. We play a part in the education of every student who comes through our doors. We take pride in offering essential foundational courses in the natural sciences and mathematics, as well as the social sciences and humanities—courses that underpin every major on campus. With twelve departments, 28 majors, 30-or-so specializations, and more than 50 minors, CSA has carefully developed programs to suit many interests and skill sets. From sound design and audio technology to actuarial science, applied cognitive science and human factors to rhetoric and technical communication, the college offers many unique programs.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: