Tagged: Hydrogen Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:23 am on March 5, 2019 Permalink | Reply
    Tags: Deuterium and tritium- called heavy hydrogen have been used to make hydrogen bombs, Fusion Technology-when burned in a controlled way hydrogen offers the cleanest fuel producing only water as the waste product, Hydrogen, , Protons also are the key component of fuel cells. Rather than burn the hydrogen fuel cells convert it to electricity and are seen as the way of the future. They do this by splitting the hydrogen gas i, , With rapid advances in chemistry and engineering hydrogen stations could start to appear soon becoming as commonplace as gasoline filling stations are today.   

    From The Conversation: “Lightweight of periodic table plays big role in life on Earth” 

    Conversation
    From The Conversation

    3.3.19
    Nicholas Leadbeater

    Periodic table Sept 2017. Wikipedia

    Although hydrogen is the lightweight of the chemical elements, it packs a real punch when it comes to its role in life and its potential as a solution to some of the world’s challenges. As we celebrate the 150th anniversary of the periodic table, it seems reasonable to tip our hat to this, the first element on the table.

    1
    One oxygen atom is connected to two hydrogen atoms to make water. Liaskovskaia Ekaterina/SHutterstock.com

    Hydrogen is the most abundant element in the universe, but not on Earth due to its light weight, which allows the gas to just float off into space. Hydrogen is essential to our life – it fuels the sun, which converts hundreds of million tons of hydrogen into helium every second. And two hydrogen atoms are attached to one oxygen atom to make water. Both these things make our planet habitable.

    Not only does hydrogen enable the sun to warm the Earth and help create the water that sustains life, but this simplest of all the elements may also provide the key to finding a clean fuel source to power the planet.

    Hydrogen’s yin and yang as an energy source

    Like many other chemical elements, although hydrogen is of immense value to us, it also has a darker side. Being lighter than air, it makes things float, which is why is was used in early airships. But hydrogen is highly explosive, and in 1937 the German airship the Hindenburg exploded on its attempt to dock with its mooring mast after a transatlantic journey, killing 36 people.

    3
    Isotopes of hydrogen: protium, deuterium and tritium. Designua/Shutterstock.com

    Hydrogen’s cousins, deuterium and tritium, called heavy hydrogen, have been used to make hydrogen bombs. Here, the heavy hydrogen atoms merge together in a process called nuclear fusion to make helium, a bit like the reaction that takes place in the sun. The amount of energy produced by this process is greater than any other known process – the area at the center of the explosion is essentially vaporized, generating shock waves that destroy anything in their way. The bright white light produced can blind people many miles away. It also produces radioactive products that are carried in the air and cause widespread contamination of the environment.

    Taming the beast, however, could be the solution to the energy problems of the future. When burned in a controlled way, hydrogen offers the cleanest fuel, producing only water as the waste product. That’s refreshing when compared with a gasoline engine that produces climate change-inducing carbon dioxide and a range of other nasty gases. When stored under high pressure and very low temperature of -400 degrees Fahrenheit, hydrogen exists as a liquid, and its combustion with oxygen is used for propelling rockets into space.

    However, a car with a tank of highly explosive hydrogen rocket fuel doesn’t sound like a safe bet. There’s currently lots of research focused on solving the storage problem. Large numbers of scientists are trying to develop chemical compounds that safely hold and release hydrogen. This is actually a hard nut to crack and is something that will take time and many great minds to solve.

    The power of hydrogen

    Hydrogen atoms also give things like lemon juice and vinegar their distinctive tart taste. Positively charged hydrogen atoms, called protons, having been stripped of their only electron, float around in these solutions and are the key component of acids. The chemistry of these protons is also responsible for driving photosynthesis, the process whereby plants turn light energy into chemical energy, and powering many processes in the human body.

    3
    This is the symbol and electron diagram for hydrogen. BlueRingMedia/Shutterstock.com

    Protons also are the key component of fuel cells. Rather than burn the hydrogen, fuel cells convert it to electricity and are seen as the way of the future. They do this by splitting the hydrogen gas into protons and electrons on one side of the fuel cell. The positively charged protons move over to the other side of the cell, leaving behind the negatively charged electrons. This creates a flow of electricity between the sides of the cell when connected with an external circuit. This current can power an electric motor placed in this circuit. Hydrogen-powered trains are already in operation in Germany, and several international car manufacturers are developing fuel-cell powered cars. Again, the only byproduct of the process is water.

    In the future, I think we will see increasing use of hydrogen as a fuel. For it to be useful, there are two major challenges. A big one is the storage issue. Engineers need to figure out how to store hydrogen safely and start to build places where people can fill up. With rapid advances in chemistry and engineering, hydrogen stations could start to appear soon, becoming as commonplace as gasoline filling stations are today. This sort of infrastructure is going to be essential. You don’t want run out of fuel on a journey because, unlike a gas-powered car, you can’t call a friend to bring you a canister of hydrogen.

    4
    Hydrogen fuel pump at Shell station, for automobiles running on pollution-free hydrogen-powered fuel cells. Rob Crandall/Shutterstock.com

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 3:53 am on August 24, 2018 Permalink | Reply
    Tags: , , , Hydrogen   

    From CSIROscope: “How hydrogen power can help us cut emissions, boost exports, and even drive further between refills” 

    CSIRO bloc

    From CSIROscope

    24 August 2018
    Sam Bruce

    1
    Could this be the way to fill up in future?

    Hydrogen could become a significant part of Australia’s energy landscape within the coming decade, competing with both natural gas and batteries, according to our new roadmap for the industry.

    2

    Hydrogen gas is a versatile energy carrier with a wide range of potential uses. However, hydrogen is not freely available in the atmosphere as a gas. It therefore requires an energy input and a series of technologies to produce, store and then use it.

    Why would we bother? Because hydrogen has several advantages over other energy carriers, such as batteries. It is a single product that can service multiple markets and, if produced using low- or zero-emissions energy sources, it can help us significantly cut greenhouse emissions.

    2
    Potential uses for hydrogen. No image credit.

    Compared with batteries, hydrogen can release more energy per unit of mass. This means that in contrast to electric battery-powered cars, it can allow passenger vehicles to cover longer distances without refuelling. Refuelling is quicker too and is likely to stay that way.

    The benefits are potentially even greater for heavy vehicles such as buses and trucks which already carry heavy payloads, and where lengthy battery recharge times can affect the business model.

    Hydrogen can also play an important role in energy storage, which will be increasingly necessary both in remote operations such as mine sites, and as part of the electricity grid to help smooth out the contribution of renewables such as wind and solar. This could work by using the excess renewable energy (when generation is high and/or demand is low) to drive hydrogen production via electrolysis of water. The hydrogen can then be stored as compressed gas and put into a fuel cell to generate electricity when needed.

    Australia is heavily reliant on imported liquid fuels and does not currently have enough liquid fuel held in reserve. Moving towards hydrogen fuel could potentially alleviate this problem. Hydrogen can also be used to produce industrial chemicals such as ammonia and methanol, and is an important ingredient in petroleum refining.

    Further, as hydrogen burns without greenhouse emissions, it is one of the few viable green alternatives to natural gas for generating heat.

    Our roadmap predicts that the global market for hydrogen will grow in the coming decades. Among the prospective buyers of Australian hydrogen would be Japan, which is comparatively constrained in its ability to generate energy locally. Australia’s extensive natural resources, namely solar, wind, fossil fuels and available land lend favourably to the establishment of hydrogen export supply chains.

    Why embrace hydrogen now?

    Given its widespread use and benefit, interest in the “hydrogen economy” has peaked and troughed for the past few decades. Why might it be different this time around? While the main motivation is hydrogen’s ability to deliver low-carbon energy, there are a couple of other factors that distinguish today’s situation from previous years.

    Our analysis shows that the hydrogen value chain is now underpinned by a series of mature technologies that are technically ready but not yet commercially viable. This means that the narrative around hydrogen has now shifted from one of technology development to “market activation”.

    The solar panel industry provides a recent precedent for this kind of burgeoning energy industry. Large-scale solar farms are now generating attractive returns on investment, without any assistance from government. One of the main factors that enabled solar power to reach this tipping point was the increase in production economies of scale, particularly in China. Notably, China has recently emerged as a proponent for hydrogen, earmarking its use in both transport and distributed electricity generation.

    But whereas solar power could feed into a market with ready-made infrastructure (the electricity grid), the case is less straightforward for hydrogen. The technologies to help produce and distribute hydrogen will need to develop in concert with the applications themselves.

    A roadmap for hydrogen

    In light of this, the primary objective of our National Hydrogen Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With several activities already underway, it is designed to help industry, government and researchers decide where exactly to focus their attention and investment.

    Our first step was to calculate the price points at which hydrogen can compete commercially with other technologies. We then worked backwards along the value chain to understand the key areas of investment needed for hydrogen to achieve competitiveness in each of the identified potential markets. Following this, we modelled the cumulative impact of the investment priorities that would be feasible in or around 2025.

    3

    What became evident from the report was that the opportunity for clean hydrogen to compete favourably on a cost basis with existing industrial feedstocks and energy carriers in local applications such as transport and remote area power systems is within reach. On the upstream side, some of the most material drivers of reductions in cost include the availability of cheap low emissions electricity, utilisation and size of the asset.

    The development of an export industry, meanwhile, is a potential game-changer for hydrogen and the broader energy sector. While this industry is not expected to scale up until closer to 2030, this will enable the localisation of supply chains, industrialisation and even automation of technology manufacture that will contribute to significant reductions in asset capital costs. It will also enable the development of fossil-fuel-derived hydrogen with carbon capture and storage, and place downward pressure on renewable energy costs dedicated to large scale hydrogen production via electrolysis.

    In light of global trends in industry, energy and transport, development of a hydrogen industry in Australia represents a real opportunity to create new growth areas in our economy. Blessed with unparalleled resources, a skilled workforce and established manufacturing base, Australia is extremely well placed to capitalise on this opportunity. But it won’t eventuate on its own.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 10:07 am on April 20, 2017 Permalink | Reply
    Tags: , , , , , Everywhere!, Hydrogen,   

    From U Arizona: “Hydrogen, Hydrogen, Everywhere!” 

    U Arizona bloc

    University of Arizona

    April 18, 2017
    Daniel Stolte

    1
    What our Milky Way might look like to alien astronomers: This image of NGC 2683, a spiral galaxy also known as the “UFO Galaxy” due to its shape, was taken by the Hubble Space Telescope. Since trying to find out what the Milky Way looks like is a bit like trying to picture an unfamiliar house while being confined to a room inside, studies like this one help us gain a better idea of our cosmic home. (Image: NASA/ESA/Hubble)

    UA astronomers Huanian Zhang and Dennis Zaritsky are lifting the veil of our galactic home by providing the first detections of diffuse hydrogen wafting about in a vast halo surrounding the Milky Way.

    3
    http://www.dailymail.co.uk/sciencetech/article-2208485/Nasa-Milky-Way-Galaxy-The-stunning-image-revealing-massive-halo-hot-gas-envelops-universe.html

    1
    The spectra used in this study cover large portions of the sky, depicted here as a map wrapping around the observer. The colors code for spectral emissions from diffuse hydrogen gas in the Milky Way’s halo: While the degrees of brightness vary, they are remarkably uniform across the sky, indicating a rather uniform distribution of hydrogen as would be expected in a galactic halo. (Image: H. Zhang and D. Zaritsky)

    Sometimes it takes a lot of trees to see the forest. In the case of the latest discovery made by astronomers at the University of Arizona, exactly 732,225. Except that in this case, the “forest” is a veil of diffuse hydrogen gas enshrouding the Milky Way, and each “tree” is another galaxy observed with the 2.5-meter telescope of the Sloan Digital Sky Survey.

    SDSS Telescope at Apache Point Observatory, NM, USA

    After combining this staggering number of spectra — recorded patterns of wavelengths revealing clues about the nature of a cosmic target — UA astronomers Huanian Zhang and Dennis Zaritsky report the first detections of diffuse hydrogen wafting about in a vast halo surrounding the Milky Way. Such a halo had been postulated based on what astronomers knew about other galaxies, but never directly observed.

    Astronomers have long known that the most prominent features of a typical spiral galaxy such as our Milky Way — a central bulge surrounded by a disk and spiral arms — account only for the lesser part of its mass.

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    The bulk of the missing mass is suspected to lie in so-called dark matter, a postulated but not yet directly observed form of matter believed to account for the majority of matter in the universe. Dark matter emits no electromagnetic radiation of any kind, nor does it interact with “normal” matter (which astronomers call baryonic matter), and is therefore invisible and undetectable through direct imaging.

    The dark matter of a typical galaxy is thought to reside in a more or less spherical halo that extends 10 to 30 times farther out than the distance between the center of our galaxy and the sun, according to Zaritsky, a professor in the UA’s Department of Astronomy and deputy director of the UA’s Steward Observatory.

    U Arizona Steward Observatory at Kitt Peak, AZ, USA

    “We infer its existence through dynamical simulations of galaxies,” Zaritsky explains. “And because the ratio of normal matter to dark matter is now very well known, for example from measuring the cosmic microwave background, we have a pretty good idea of how much baryonic matter should be in the halo. But when we add all the things we can see with our instruments, we get only about half of what we expect, so there has to be a lot of baryonic matter waiting to be detected.”

    By combining such a large number of spectra, Zaritsky and Zhang, a postdoctoral fellow in the Department of Astronomy/Steward Observatory, covered a large portion of space surrounding the Milky Way and found that diffuse hydrogen gas engulfs the entire galaxy, which would account for a large part of the galaxy’s baryonic mass.

    “It’s like peering through a veil,” Zaritsky said. “We see diffuse hydrogen in every direction we look.”

    He pointed out that this is not the first time gas has been detected in halos around galaxies, but in those instances, the hydrogen is in a different physical state.

    “There are cloudlets of hydrogen in the galaxy halo, which we have known about for a long time, called high-velocity clouds,” Zaritsky said. “Those have been detected through radio observations, and they’re really clouds — you see an edge, and they’re moving. But the total mass of those is small, so they couldn’t be the dominant form of hydrogen in the halo.”

    Since observing our own galaxy is a bit like trying to see what an unfamiliar house looks like while being confined to a room inside, astronomers rely on computer simulations and observations of other galaxies to get an idea of what the Milky Way might look like to an alien observer millions of light-years away.

    For their study, published in the journal Nature Astronomy, the researchers sifted through the public databases of the Sloan Digital Sky Survey and looked for spectra taken by other scientists of galaxies outside our Milky Way in a narrow spectral line called hydrogen alpha. Seeing this line in a spectrum tells of the presence of a particular state of hydrogen that is different from the vast majority of hydrogen found in the universe.

    Unlike on Earth, where hydrogen occurs as a gas consisting of molecules of two hydrogen atoms bound together, hydrogen exists as single atoms in outer space, and those can be positively or negatively charged, or neutral. Neutral hydrogen constitutes a small minority compared to its ionized (positive) form, which constitutes more than 99.99 percent of the gas spanning the intergalactic gulfs of the universe.

    Unless neutral hydrogen atoms are being energized by something, they are extremely difficult to detect and therefore remain invisible to most observational approaches, which is why their presence in the Milky Way’s halo had eluded astronomers until now. Even in other galaxies, halos are difficult to pin down.

    “You don’t just see a pretty picture of a halo around a galaxy,” Zaritsky said. “We infer the presence of galactic halos from numerical simulations of galaxies and from what we know about how they form and interact.”

    Zaritsky explained that based on those simulations, scientists would have predicted the presence of large amounts of hydrogen gas stretching far out from the center of the Milky Way, but remaining associated with the galaxy, and the data collected in this study confirm the presence of just that.

    “The gas we detected is not doing anything very noticeable,” he said. “It is not spinning so rapidly as to indicate that it’s in the process of being flung out of the galaxy, and it does not appear to be falling inwards toward the galactic center, either.”

    One of the challenges in this study was to know whether the observed hydrogen was indeed in a halo outside the Milky Way, and not just part of the galactic disk itself, Zaritsky said.

    “When you see things everywhere, they could be very close to us, or they could be very far away,” he said. “You don’t know.”

    The answer to this question, too, was in the “trees,” the more than 700,000 spectral analyses scattered across the galaxy. If the hydrogen gas were confined to the disk of the galaxy, our solar system would be expected to “float” inside of it like a ship in a slowly churning maelstrom, orbiting the galactic center. And just like the ship drifting with the current, very little relative movement would be expected between our solar system and the ocean of hydrogen. If, on the other hand, it surrounded the spinning galaxy in a more or less stationary halo, the researchers expected that wherever they looked, they should find a predictable pattern of relative motion with respect to our solar system.

    “Indeed, in one direction, we see the gas coming toward us, and the opposite direction, we see it moving away from us,” Zaritsky said. “This tells us that the gas is not in the disk of our galaxy, but has to be out in the halo.”

    Next, the researchers want to look at even more spectra to better constrain the distribution around the sky and the motions of the gas in the halo. They also plan to search for other spectral lines, which may help better understand the physical state such as temperature and density of the gas.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium? An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: