Tagged: HubbleSite Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:37 am on August 14, 2022 Permalink | Reply
    Tags: "Hubble's Closeup of The Orion Nebula Looks Like a Surreal Dreamscape", , , , , HubbleSite, ,   

    From Hubblesite and ESA/Hubble Via “Science Alert (AU)” : “Hubble’s Closeup of The Orion Nebula Looks Like a Surreal Dreamscape” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    Via

    ScienceAlert

    “Science Alert (AU)”

    14 August 2022
    Michelle Starr

    1
    Hubble’s new image of the Orion Nebula. Credit: J. Bally, M. H. Özsaraç/NASA/ESA Hubble.

    One of the most beautiful and spectacular regions of the night sky can be found in the constellation of Orion.

    Between the stars Alnitak, Saif, and Rigel, floats a vast, thick cloud of interstellar dust and gas. This is the Orion Nebula, a nest of material in which baby stars are being born and one of the most studied and photographed objects in the Milky Way.
    Skip advert

    Spanning 24 light-years, it’s so close and large that it’s visible to the naked eye.

    Because of its relative proximity (around 1,344 light-years from the Sun), this spectacular cloud is an important laboratory for understanding star formation.

    You just have to zoom right in, and peer closely at the details.

    This new Hubble image release of the Orion Nebula looks like wisps of delicately tinted cloud peacefully doing their cloud thing against the velvety dark backdrop of space… but in the middle is a rare and wonderful cosmic interaction, triggered by the baby star IX Ori.

    That interaction, called HH 505, is what is known as a Herbig-Haro object. Forming them requires a very particular set of circumstances.

    First, you need a baby star. These form when a dense knot in a molecular cloud, such as the Orion stellar nursery, collapses, spinning, under its own mass. As it spins, it spools in material from the cloud around it, which allows the baby star to grow.

    As this material accretes onto the baby star, powerful jets of plasma can be launched from the star’s poles. It’s thought that some of the material that swirls around the star is diverted along the star’s external magnetic field lines to the poles. These magnetic field lines act as a particle accelerator so that, when the material reaches the poles, it is launched at incredible speeds.

    2
    The yellow circle shows the location of HH 505 within the Orion Nebula. Credit: M. Robberto/STScI NASA/ESA Hubble.

    A Herbig-Haro object forms when these jets, traveling at incredibly high speeds, slam hard into the surrounding gas, shock-heating it so that it glows brightly. This creates what appears to be two glowing rods of light emanating from the baby star.

    These structures change rapidly, so astronomers can study them to understand how baby stars blow away material from the cloud around them. This cuts off the supply of gas and dust that feeds the growing stars, and determines the size of the adult star.

    Could this stunning patch of sky couldn’t get any more beautiful?

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing Heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:07 am on June 27, 2022 Permalink | Reply
    Tags: "Studying Galaxy Growth Spurts in the Early Universe with NASA’s Roman", , , , , HubbleSite   

    From Hubblesite: “Studying Galaxy Growth Spurts in the Early Universe with NASA’s Roman” 

    From Hubblesite

    June 27, 2022

    MEDIA CONTACT:

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland

    1
    About This Image
    This Hubble image features four of the thousands of galaxies found within the Hubble Ultra Deep Field.

    All of the highlighted galaxies show evidence of vigorous star formation (blue regions filled with hot, young stars). In the insets at right, the near-infrared spectrum of each galaxy is displayed. By examining a galaxy’s spectrum, you can learn about the ages of its stars, its star-formation history, how many heavy chemical elements it contains, and more.

    Upon entering operations in 2027, the Nancy Grace Roman Space Telescope will be able to collect spectra for every object in its field of view, which is 200 times larger than Hubble’s in infrared light.

    As a result, it will enable studies of rare galaxies from a period known as “cosmic noon,” when many galaxies went through growth spurts. Credits: SCIENCE: NASA, ESA, STScI, Casey Papovich (TAMU)
    IMAGE PROCESSING: Alyssa Pagan (STScI)


    How the Roman Space Telescope Will Study Galaxies.

    Summary

    Roman will bring new insights into the time known as “cosmic noon.”

    Many parents are familiar with the dreaded growth spurt, where their preteen gains 6 inches in height seemingly overnight and requires a whole new wardrobe. Growth spurts happen on a cosmic scale too. In the early universe, many galaxies just 2 to 3 billion years old underwent growth spurts of their own, forming stars hundreds of times faster than they do today.

    While astronomers see evidence for these galactic growth spurts, many questions remain. Why did some galaxies “live fast and die young” while others ceased forming stars more gradually? Did their neighbors influence their evolution? To answer questions like these, scientists need to study a large number of galaxies.

    The Nancy Grace Roman Space Telescope, with a field of view 200 times Hubble’s in the infrared, will be able to capture images and spectra from thousands of galaxies in a single observation. Such a bounty of data will help astronomers discover hidden chapters in the universe’s history of stars.
    _______________________________________________________________________

    In the American Wild West, high noon was a time for duels and showdowns. When it comes to the history of the universe, “Cosmic Noon” featured fireworks of a different sort.

    Some 2 to 3 billion years after the big bang most galaxies went through a growth spurt, forming stars at a rate hundreds of times higher than we see in our own galaxy, the Milky Way, today. When it launches by May 2027, NASA’s Nancy Grace Roman Space Telescope [above] promises to bring new insights into the heyday of star formation.

    Cosmic noon is an important time in the universe’s history because it shaped what galaxies are like today. But many questions remain unanswered. Why did star formation peak and then decline? Why did some galaxies suddenly stop forming stars while others faded out gradually? How important were local influences, like the number of galactic neighbors, in shaping this evolution?

    To answer these questions, astronomers need to study a bountiful sample of galaxies from that time period. Roman’s power will lie in its ability to capture thousands of objects of interest in a single view. With such a large survey, scientists won’t have to pick and choose their preferred targets in advance, which can lead to unintended biases.

    “With a field of view 200 times that of the Hubble Space Telescope in infrared light, Roman can change the astronomical landscape by being so efficient,” said Kate Whitaker, assistant professor of Astronomy at the University of Massachusetts in Amherst. Whitaker’s research focuses on studying the regulation of star formation and quenching in massive galaxies in the early universe.

    Roman’s wide field of view also will enable astronomers to put individual galaxies into context by seeing how their growth spurts, and subsequent slow-downs, vary depending on their location within the cosmic “web” – the large-scale structure of the universe.

    “You take one image, and you get everything. We will see what and where the interesting objects are,” said Casey Papovich, professor of Astronomy at Texas A&M University in College Station, Texas. Papovich’s research includes quantifying the growth and assembly of stellar mass in galaxies in the early universe.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Space Telescope Science Institute (STScI) is the science operations center for the Hubble Space Telescope (HST) and mission operations for the James Webb Space Telescope (JWST).

    STScI is located on The Johns Hopkins University Homewood Campus in Baltimore, Maryland and was established in 1981 as a community-based science center that is operated for National Aeronautics Space Agency by The Assocation of Universities for Research in Astronomy (AURA). In addition to performing continuing science operations of HST and preparing for scientific exploration with JWST, STScI manages and operates the NASA Mikulski Archive for Space Telescopes, the Kepler Mission Data Resources in the Exoplanet Archive – NASA and a number of other activities benefiting from its expertise in and infrastructure for supporting the operations of space-based astronomical observatories. Most of the funding for STScI activities comes from contracts with NASA’s Goddard Space Flight Center but there are smaller activities funded by NASA’s Ames Research Center, NASA’s Jet Propulsion Laboratory, and The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The staff at STScI consists of scientists (mostly astronomers and astrophysicists), spacecraft engineers, software engineers, data management personnel, education and public outreach experts, and administrative and business support personnel. There are approximately 100 Ph.D. scientists working at STScI, 15 of which are ESA staff who are on assignment to the HST project. The total STScI staff consists of about 850 people as of 2021.

    STScI operates its missions on behalf of NASA, the worldwide astronomy community, and to the benefit of the public. The science operations activities directly serve the astronomy community, primarily in the form of HST, and eventually JWST observations and grants, but also include distributing data from other NASA missions, such as the FUSE: Far Ultraviolet Spectroscopic Explorer – NASA, Galaxy Evolution Explorer – Universe Missions – NASA JPL-Caltech and ground-based sky surveys.

    The ground system development activities create and maintain the software systems that are needed to provide these services to the astronomy community. STScI’s public outreach activities provide a wide range of information, on-line media, and programs for formal educators, planetariums and science museums, and the general public. STScI also serves as a source of guidance to NASA on a range of optical and UV space astrophysics issues.

    The STScI staff interacts and communicates with the professional astronomy community through a number of channels, including participation at the bi-annual meetings of the American Astronomical Society, publication of quarterly STScI newsletters and the STScI website, hosting user committees and science working groups, and holding several scientific and technical symposia and workshops each year. These activities enable STScI to disseminate information to the telescope user community as well as enabling the STScI staff to maximize the scientific productivity of the facilities they operate by responding to the needs of the community and of NASA.

     
  • richardmitnick 4:00 pm on June 16, 2022 Permalink | Reply
    Tags: "New Images Using Data From Retired Telescopes Reveal Hidden Features", , , , , , HubbleSite   

    From Hubblesite: “New Images Using Data From Retired Telescopes Reveal Hidden Features” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite

    June 16, 2022

    Infrared-Radio Image of the Large Magellanic Cloud
    1
    About This Image
    The Large Magellanic Cloud (LMC) is a satellite of the Milky Way, containing about 30 billion stars. Seen here in a far-infrared and radio view, the LMC’s cool and warm dust are shown in green and blue, respectively, with hydrogen gas in red. The image is composed of data from the European Space Agency (ESA) Herschel mission, supplemented with data from ESA’s retired Planck observatory and two retired NASA missions: the Infrared Astronomy Survey and Cosmic Background Explorer, as well as the Parkes, ATCA, and Mopra radio telescopes.


    Credits: IMAGE: Christopher Clark (STScI), S. Kim (Sejong University), T. Wong (UIUC)/ESA, NASA, NASA-JPL, Caltech.

    Infrared-Radio Image of the Small Magellanic Cloud
    3
    About This Image
    The Small Magellanic Cloud is a satellite of the Milky Way, containing about 3 billion stars. This far-infrared and radio view of it shows the cool (green) and warm (blue) dust, as well as the hydrogen gas (red). The image is composed of data from the European Space Agency (ESA) Herschel mission, supplemented with data from ESA’s retired Planck observatory and two retired NASA missions: the Infrared Astronomy Survey and Cosmic Background Explorer, as well as the Parkes, ATCA, and NANTEN radio telescopes.


    Credits: IMAGE: Christopher Clark (STScI), S. Stanimirovic (UW-Madison), N. Mizuno (Nagoya University)/ ESA, NASA, NASA-JPL, Caltech.

    Infrared-Radio Image of the Andromeda Galaxy (Messier 31)
    4
    About This Image
    The Andromeda galaxy, or Messier 31, is shown here in far-infrared and radio wavelengths of light. Some of the hydrogen gas (red) that traces the edge of Andromeda’s disc was pulled in from intergalactic space, and some was torn away from galaxies that merged with Andromeda far in the past. The image is composed of data from the European Space Agency (ESA) Herschel mission, supplemented with data from ESA’s retired Planck observatory and two retired NASA missions: the Infrared Astronomy Survey and Cosmic Background Explorer, as well as the Green Bank Telescope, WRST, and IRAM radio telescopes.

    Credits: IMAGE: Christopher Clark (STScI), R. Braun (SKA Observatory), C. Nieten (MPI Radioastronomie), Matt Smith (Cardiff University)/ ESA, NASA, NASA-JPL, Caltech.

    Infrared-Radio Image of the Triangulum Galaxy (Messier 33)
    5
    About This Image
    The Triangulum galaxy, or Messier 33, is shown here in far-infrared and radio wavelengths of light. Some of the hydrogen gas (red) that traces the edge of the Triangulum’s disc was pulled in from intergalactic space, and some was torn away from galaxies that merged with Triangulum far in the past. The image is composed of data from the European Space Agency (ESA) Herschel mission, supplemented with data from ESA’s retired Planck observatory and two retired NASA missions: the Infrared Astronomy Survey and Cosmic Background Explorer, as well as the Very Large Array, Green Bank Telescope, and IRAM radio telescope.


    Credits: IMAGE: Christopher Clark (STScI), E. Koch (University of Alberta), C. Druard (University of Bordeaux)/ ESA, NASA, NASA-JPL, Caltech,

    Summary

    The stunning perspectives show four of our galactic neighbors in a different light.

    New images using data from European Space Agency (ESA) and NASA missions showcase the gas and dust that fill the space between stars in four of the galaxies closest to our own Milky Way. More than striking, the snapshots are also a scientific trove, lending insight into how dramatically the density of dust clouds can vary within a galaxy.
    _____________________________________________________
    New images using data from European Space Agency (ESA) and NASA missions showcase the gas and dust that fill the space between stars in four of the galaxies closest to our own Milky Way. More than striking, the snapshots are also a scientific trove, lending insight into how dramatically the density of dust clouds can vary within a galaxy.

    With a consistency similar to smoke, dust is created by dying stars and is one of the materials that forms new stars. The dust clouds observed by space telescopes are constantly shaped and molded by exploding stars, stellar winds, and the effects of gravity. Almost half of all the starlight in the universe is absorbed by dust. Many of the heavy chemical elements essential to forming planets like Earth are locked up in dust grains in interstellar space. Understanding dust is an essential part of understanding our universe.

    The observations were made possible through the work of ESA’s Herschel Space Observatory, which operated from 2009 to 2013. Herschel’s super-cold instruments were able to detect the thermal glow of dust, which is emitted as far-infrared light, a range of wavelengths longer than what human eyes can detect.

    Herschel’s images of interstellar dust provide high-resolution views of fine details in these clouds, revealing intricate substructures. But the way the space telescope was designed meant that it often couldn’t detect light from clouds that are more spread out and diffuse, especially in the outer regions of galaxies, where the gas and dust become sparse and thus fainter. For some nearby galaxies, that meant Herschel missed up to 30% of all the light given off by dust. With such a significant gap, astronomers struggled to use the Herschel data to understand how dust and gas behaved in these environments. To fill out the Herschel dust maps, the new images combine data from three other missions: ESA’s retired Planck observatory, along with two retired NASA missions, the Infrared Astronomical Satellite (IRAS) and Cosmic Background Explorer (COBE).

    The images show the Andromeda galaxy, also known as M31; the Triangulum galaxy, or M33; and the Large and Small Magellanic Clouds – dwarf galaxies orbiting the Milky Way that do not have the spiral structure of the Andromeda and Triangulum galaxies. All four are within 3 million light-years of Earth.

    In the images, red indicates hydrogen gas, the most common element in the universe. The image of the Large Magellanic Cloud shows a red tail coming off the bottom left of the galaxy that was likely created when it collided with the Small Magellanic Cloud about 100 million years ago. Bubbles of empty space indicate regions where stars have recently formed, because intense winds from the newborn stars blow away the surrounding dust and gas. The green light around the edges of those bubbles indicates the presence of cold dust that has piled up as a result of those winds. Warmer dust, shown in blue, indicates where stars are forming or other processes have heated the dust.

    Many heavy elements in nature – like carbon, oxygen, and iron – can get stuck to dust grains, and the presence of different elements changes the way dust absorbs starlight. This in turn affects the view astronomers get of events like star formation. In the densest dust clouds, almost all the heavy elements can get locked up in dust grains, which increases the dust-to-gas ratio. But in less dense regions, the destructive radiation from newborn stars or shockwaves from exploding stars will smash the dust grains and return some of those locked-up heavy elements back into the gas, changing the ratio once again. Scientists who study interstellar space and star formation want to better understand this ongoing cycle. The Herschel images show that the dust-to-gas ratio can vary within a single galaxy by up to a factor of 20, far more than previously estimated.

    “These improved Herschel images show us that the dust ‘ecosystems’ in these galaxies are very dynamic,” said Christopher Clark, an astronomer at the Space Science Telescope Institute in Baltimore, Maryland, who led the work to create the new images.

    These results were featured in a press conference at the summer meeting of the American Astronomical Society.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the U.S. National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:07 pm on June 15, 2022 Permalink | Reply
    Tags: "Dead Star Caught Ripping Up Planetary System", After the red giant phase the white dwarf star that remains is compact – no larger than Earth., , , , , Earth might be completely vaporized along with the inner planets., HubbleSite, Like pinballs in an arcade game the surviving objects can be thrown into highly eccentric orbits., Planetary systems, The presence of at least two objects that the white dwarf is consuming: it's likely one is metal-rich like an asteroid and another is an icy body similar to what is found in the Kuiper belt., The researchers are looking at the ultimate scenario for the Sun's evolution 5 billion years from now., The transition between a red giant star and white dwarf is a chaotic process., The White Dwarf G238-44, The white dwarf is all that remains after a Sun-like star has exhausted its nuclear fuel and expelled most of its outer material – decimating objects in the planetary system that orbit it., This shedding can be the gravitational scattering of small objects like asteroids comets and moons by any remaining large planets., This study confirms the true scale of this violent chaotic phase., Wayward planets end up getting very close to the star and experience powerful tidal forces that tear them apart creating a gaseous and dusty disk that eventually falls onto the white dwarf's surface., When a star like our Sun expands into a bloated red giant late in its life it will shed mass by puffing off its outer layers.   

    From Hubblesite: “Dead Star Caught Ripping Up Planetary System” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite

    June 15, 2022

    MEDIA CONTACTS:
    Claire Blome
    Space Telescope Science Institute, Baltimore, Maryland

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Ted Johnson
    University of California-Los Angeles

    Material Accreting onto the White Dwarf G238-44

    1
    About This Image
    This illustration shows a white dwarf star siphoning off debris from shattered objects in a planetary system. The Hubble Space Telescope detects the spectral signature of the vaporized debris that revealed a combination of rocky-metallic and icy material, the ingredients of planets. The findings help describe the violent nature of evolved planetary systems and the composition of its disintegrating bodies.
    Credits: ILLUSTRATION: Joseph Olmsted (STScI)/NASA, ESA.

    Layout of the White Dwarf System G238-44

    2
    About This Image
    This illustrated diagram of the planetary system G238-44 traces its destruction. The tiny white dwarf star is at the center of the action. A very faint accretion disk is made up of the pieces of shattered bodies falling onto the white dwarf. The remaining asteroids and planetary bodies make up a reservoir of material surrounding the star. Larger gas giant planets may still exist in the system. Much farther out is a belt of icy bodies such as comets, which also ultimately feed the dead star.
    Credits: ILLUSTRATION: Joseph Olmsted (STScI)/NASA, ESA.

    Summary

    Both Rocky and Icy Bodies Were Identified Among the Debris on the Surface of a White Dwarf Star

    Bring out your dead! rings in the air in the classic Monty Python and the Holy Grail, a merry parallel to what’s happening around a white dwarf star in a nearby planetary system. The dead star is “ringing” its own bell, calling out to the “dead” to collect at its footsteps. The white dwarf is all that remains after a Sun-like star has exhausted its nuclear fuel and expelled most of its outer material – decimating objects in the planetary system that orbit it. What’s left is a band of players with unpredictable orbits that – despite protests that they “aren’t dead yet!” – will ultimately be captured by the central star.

    How do we know? The bodies consumed by the star leave telltale “fingerprints” – caught by the Hubble Space Telescope and other NASA observatories – on its surface. The spectral evidence shows that the white dwarf is siphoning off both rocky-metallic and icy material – debris from both its system’s inner and outer reaches. Uncovering evidence of icy bodies is intriguing, since it implies that a “water reservoir” might be common on the edges of planetary systems, improving the chances for the emergence of life as we know it.
    _____________________________________________________________________
    A star’s death throes have so violently disrupted its planetary system that the dead star left behind, called a white dwarf, is siphoning off debris from both the system’s inner and outer reaches. This is the first time astronomers have observed a white dwarf star that is consuming both rocky-metallic and icy material, the ingredients of planets.

    Archival data from NASA’s Hubble Space Telescope [above] and other NASA observatories were essential in diagnosing this case of cosmic cannibalism. The findings help describe the violent nature of evolved planetary systems and can tell astronomers about the makeup of newly forming systems.

    The findings are based on analyzing material captured by the atmosphere of the nearby white dwarf star G238-44. A white dwarf is what remains of a star like our Sun after it sheds its outer layers and stops burning fuel though nuclear fusion. “We have never seen both of these kinds of objects accreting onto a white dwarf at the same time,” said Ted Johnson, the lead researcher and recent University of California-Los Angeles bachelor’s graduate. “By studying these white dwarfs, we hope to gain a better understanding of planetary systems that are still intact.”

    The findings are also intriguing because small icy objects are credited for crashing into and “irrigating” dry, rocky planets in our solar system. Billions of years ago comets and asteroids are thought to have delivered water to Earth, sparking the conditions necessary for life as we know it. The makeup of the bodies detected raining onto the white dwarf implies that icy reservoirs might be common among planetary systems, said Johnson.

    “Life as we know it requires a rocky planet covered with a variety of elements like carbon, nitrogen, and oxygen,” said Benjamin Zuckerman, UCLA professor and co-author. “The abundances of the elements we see on this white dwarf appear to require both a rocky and a volatile-rich parent body – the first example we’ve found among studies of hundreds of white dwarfs.”

    Demolition Derby

    Theories of planetary system evolution describe the transition between a red giant star and white dwarf phases as a chaotic process. The star quickly loses its outer layers and its planets’ orbits dramatically change. Small objects, like asteroids and dwarf planets, can venture too close to giant planets and be sent plummeting toward the star. This study confirms the true scale of this violent chaotic phase, showing that within 100 million years after the beginning of its white dwarf phase, the star is able to simultaneously capture and consume material from its asteroid belt and Kuiper belt-like regions.

    The estimated total mass eventually gobbled up by the white dwarf in this study may be no more than the mass of an asteroid or small moon. While the presence of at least two objects that the white dwarf is consuming is not directly measured, it’s likely one is metal-rich like an asteroid and another is an icy body similar to what’s found at the fringe of our solar system in the Kuiper belt.

    Though astronomers have cataloged over 5,000 exoplanets, the only planet where we have some direct knowledge of its interior makeup is Earth. The white dwarf cannibalism provides a unique opportunity to take planets apart and see what they were made of when they first formed around the star.

    The team measured the presence of nitrogen, oxygen, magnesium, silicon and iron, among other elements. The detection of iron in a very high abundance is evidence for metallic cores of terrestrial planets, like Earth, Venus, Mars and Mercury. Unexpectedly high nitrogen abundances led them to conclude the presence of icy bodies. “The best fit for our data was a nearly two-to-one mix of Mercury-like material and comet-like material, which is made up of ice and dust,” Johnson said. “Iron metal and nitrogen ice each suggest wildly different conditions of planetary formation. There is no known solar system object with so much of both.”

    Death of a Planetary System

    When a star like our Sun expands into a bloated red giant late in its life it will shed mass by puffing off its outer layers. One consequence of this can be the gravitational scattering of small objects like asteroids, comets and moons by any remaining large planets. Like pinballs in an arcade game the surviving objects can be thrown into highly eccentric orbits.

    “After the red giant phase the white dwarf star that remains is compact – no larger than Earth. The wayward planets end up getting very close to the star and experience powerful tidal forces that tear them apart, creating a gaseous and dusty disk that eventually falls onto the white dwarf’s surface,” Johnson explained.

    The researchers are looking at the ultimate scenario for the Sun’s evolution 5 billion years from now. Earth might be completely vaporized along with the inner planets. But the orbits of many of the asteroids in the main asteroid belt will be gravitationally perturbed by Jupiter and will eventually fall onto the white dwarf that the remnant Sun will become.

    For over two years, the research group at the University of California-LOs Angeles, the University of California=San Diego and the Kiel University in Germany, has worked to unravel this mystery by analyzing the elements detected on the white dwarf star cataloged as G238-44. Their analysis includes data from NASA’s retired Far Ultraviolet Spectroscopic Explorer (FUSE), the Keck Observatory’s High Resolution Echelle Spectrometer (HIRES) in Hawaii, and the Hubble Space Telescope’s Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS).

    3
    NASA’s retired Far Ultraviolet Spectroscopic Explorer.


    The team’s results were presented at an American Astronomical Society (AAS) press conference on Wednesday, June 15, 2022.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the U.S. National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:46 am on June 10, 2022 Permalink | Reply
    Tags: "Hubble Determines Mass of Isolated Black Hole Roaming Our Milky Way Galaxy", A black hole warps space which then deflects and amplifies starlight from anything that momentarily lines up exactly behind it., Astrometric Microlensing, Astronomers estimate that 100 million black holes roam among the stars in our Milky Way galaxy but they have never conclusively identified an isolated black hole., , , , , Black holes roaming our galaxy are born from rare monstrous stars (less than one-thousandth of the galaxy's stellar population) that are at least 20 times more massive than our Sun., , , , HubbleSite, NASA's Hubble Space Telescope has for the first time ever provided direct evidence for a lone black hole drifting through interstellar space by a precise mass measurement of the phantom object., Telescopes can't photograph a wayward black hole because it doesn't emit any light.   

    From Hubblesite and ESA/Hubble: “Hubble Determines Mass of Isolated Black Hole Roaming Our Milky Way Galaxy” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    June 10, 2022
    MEDIA CONTACT:

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Kailash Sahu
    Space Telescope Science Institute, Baltimore, Maryland

    3
    About This Image. This is an illustration of a close-up look at a black hole drifting through our Milky Way galaxy. The black hole is the crushed remnant of a massive star that exploded as a supernova. The surviving core is several times the mass of our Sun. The black hole traps light due to its intense gravitational field. The black hole distorts the space around it, which warps images of background stars lined up almost directly behind it. This gravitational “lensing” effect offers the only telltale evidence for the existence of lone black holes wandering our galaxy, which may be a population of 100 million. The Hubble Space Telescope goes hunting for these black holes by looking for distortion in starlight as the black holes drift in front of background stars. IMAGE: FECYT, IAC.

    1
    Microlensing Black Hole Compass.
    About This Image Credits: SCIENCE: NASA, ESA, Kailash Sahu (STScI)
    IMAGE PROCESSING: Joseph DePasquale (STScI)

    2
    Gravitational Lensing By A Black Hole .
    About This Image. This illustration reveals how the gravity of a black hole warps space and bends the light of a distant star behind it. A black hole is the crushed remnant of a massive star that exploded as a supernova. The black hole traps light due to its intense gravitational field, hence it cannot be seen directly. The black hole distorts the space around it, which warps images of stars lined up almost directly behind it. This offers telltale evidence for the existence of lone black holes wandering our galaxy. The light from a background star is deflected and brightened by the black hole’s intense gravitational field. The Hubble Space Telescope goes hunting for these black holes by looking for distortion in starlight as the black hole drifts in front of background stars.
    Credits: ILLUSTRATION: NASA, ESA, STScI, Joseph Olmsted.

    Summary

    Hubble Finds Phantom Imprint in Space Revealing Wandering Stellar Corpse

    Our Milky Way galaxy is haunted. The vast gulf of space between the stars is plied by the dead, burned-out and crushed remnants of once glorious stars. These black holes cannot be directly seen because their intense gravity swallows light. Like legendary wandering ghosts, their presence can only be deduced by seeing how they affect the environment around them.

    Imagine crushing the mass of a fleet of battleships into something no bigger than a baseball. That only begins to describe the infinite density locked away into a black hole left over from a stellar explosion. The black hole is typically several times the mass of our Sun. The intense gravity from something so dense warps the fabric of space around it, like a bowling ball rolling across the skin of a trampoline. Starlight passing near this gravitational pothole in space is deflected. And this is how the phantom black holes are found.

    Astronomers estimate that there should be 100 million black holes roaming among the 100 billion stars in our galaxy. But since black holes emit no light of their own, they are extremely difficult to detect. Now, astronomers have at last come up with clear evidence for finding one in a needle-in-a-haystack search among a blizzard of stars seen toward the galactic center. The light from a star far behind the black hole was momentarily brightened and deflected by the black hole passing in front of it. This was a long and painstaking measurement that the Hubble Space Telescope’s exquisite resolution is well-suited for. The black hole’s powerful gravitation left a unique fingerprint on the deflection of starlight, eliminating other potential gravitational lensing candidates.

    No need for us to worry because the black hole is 5,000 light-years away. But, statistically, this detection means that the nearest wandering black hole to Earth could be no more than 80 light-years away.
    _______________________________________________________

    Astronomers estimate that 100 million black holes roam among the stars in our Milky Way galaxy but they have never conclusively identified an isolated black hole. Following six years of meticulous observations, NASA’s Hubble Space Telescope has for the first time ever provided direct evidence for a lone black hole drifting through interstellar space by a precise mass measurement of the phantom object. Until now, all black hole masses have been inferred statistically, or through interactions in binary systems or in the cores of galaxies. Stellar-mass black holes are usually found with companion stars, making this one unusual.

    The newly detected wandering black hole lies about 5,000 light-years away, in the Carina-Sagittarius spiral arm of our galaxy. However, its discovery allows astronomers to estimate that the nearest isolated stellar-mass black hole to Earth might be as close as 80 light-years away. The nearest star to our solar system, Proxima Centauri, is a little over 4 light-years away.

    Black holes roaming our galaxy are born from rare monstrous stars (less than one-thousandth of the galaxy’s stellar population) that are at least 20 times more massive than our Sun. These stars explode as supernovae, and the remnant core is crushed by gravity into a black hole. Because the self-detonation is not perfectly symmetrical, the black hole may get a kick, and go careening through our galaxy like a blasted cannonball.

    Telescopes can’t photograph a wayward black hole because it doesn’t emit any light. However a black hole warps space, which then deflects and amplifies starlight from anything that momentarily lines up exactly behind it.

    Ground-based telescopes, which monitor the brightness of millions of stars in the rich star fields toward the central bulge of our Milky Way, look for a tell-tale sudden brightening of one of them when a massive object passes between us and the star. Then Hubble follows up on the most interesting such events.

    Two teams used Hubble data in their investigations — one
    led by Kailash Sahu of the Space Telescope Science Institute in Baltimore, Maryland; and the other
    by Casey Lam of the University of California-Berkeley. The teams’ results differ slightly, but both suggest the presence of a compact object.

    The warping of space due to the gravity of a foreground object passing in front of a star located far behind it will momentarily bend and amplify the light of the background star as it passes in front of it. Astronomers use the phenomenon, called gravitational microlensing, to study stars and exoplanets in the approximately 30,000 events seen so far inside our galaxy.

    The signature of a foreground black hole stands out as unique among other microlensing events. The very intense gravity of the black hole will stretch out the duration of the lensing event for over 200 days. Also, if the intervening object was instead a foreground star, it would cause a transient color change in the starlight as measured because the light from the foreground and background stars would momentarily be blended together. But no color change was seen in the black hole event.

    Next, Hubble was used to measure the amount of deflection of the background star’s image by the black hole. Hubble is capable of the extraordinary precision needed for such measurements. The star’s image was offset from where it normally would be by about a milliarcsecond. That’s equivalent to measuring the diameter of a 25-cent coin in Los Angeles as seen from New York City.

    This astrometric microlensing technique provided information on the mass, distance, and velocity of the black hole. The amount of deflection by the black hole’s intense warping of space allowed Sahu’s team to estimate that it weighs seven solar masses.

    Lam’s team reports a slightly lower mass range, meaning that the object may be either a neutron star or a black hole. They estimate that the mass of the invisible compact object is between 1.6 and 4.4 times that of the Sun. At the high end of this range the object would be a black hole; at the low end, it would be a neutron star.

    “As much as we would like to say it is definitely a black hole, we must report all allowed solutions. This includes both lower-mass black holes and possibly even a neutron star,” said Jessica Lu of the Berkeley team.

    “Whatever it is, the object is the first dark stellar remnant discovered wandering through the galaxy unaccompanied by another star,” Lam added.

    This was a particularly difficult measurement because there is a bright, unrelated star that is extremely close in angular separation to the source star. “So it’s like trying to measure the tiny motion of a firefly next to a bright light bulb,” said Sahu. “We had to meticulously subtract the light from the nearby bright star to precisely measure the deflection of the faint source.”

    Sahu’s team estimates the isolated black hole is traveling across the galaxy at 100,000 miles per hour, or 160,000 kilometers (fast enough to travel from Earth to the Moon in less than three hours). That’s faster than most of the other neighboring stars in that region of our galaxy.

    “Astrometric microlensing is conceptually simple but observationally very tough,” said Sahu. “Microlensing is the only technique available for identifying isolated black holes.” When the black hole passed in front of a background star located 19,000 light-years away in the galactic bulge, the starlight coming toward Earth was amplified for a duration of 270 days as the black hole passed by. However, it took several years of Hubble observations to follow how the background star’s position appeared to be deflected by the bending of light by the foreground black hole.

    The existence of stellar-mass black holes has been known since the early 1970s, but all of their mass measurements—until now—have been in binary star systems. Gas from the companion star falls into the black hole and is heated to such high temperatures that it emits X-rays. About two dozen black holes have had their masses measured in X-ray binaries through their gravitational effect on their companions. Mass estimates range from 5 to 20 solar masses. Black holes detected in other galaxies by gravitational waves from mergers between black holes and companion objects have been as high as 90 solar masses.

    “Detections of isolated black holes will provide new insights into the population of these objects in our Milky Way,” said Sahu. But it is a needle-in-a-haystack search. The prediction is that only one in a few hundred microlensing events are caused by isolated black holes.

    NASA’s upcoming Nancy Grace Roman Space Telescope will discover several thousand microlensing events out of which many are expected to be black holes, and the deflections will be measured with very high accuracy.

    In a 1916 paper on General Relativity, Albert Einstein predicted that his theory could be tested by observing the Sun’s gravity offsetting the apparent position of a background star. This was tested by a collaboration led by astronomers Arthur Eddington and Frank Dyson during a solar eclipse on May 29, 1919. Eddington and his colleagues measured a background star being offset by 2 arcseconds, validating Einstein’s theories.

    These scientists could hardly have imagined that over a century later this same technique would be used – with unimaginable precision of a thousandfold better — to look for black holes across the galaxy.

    Science papers:
    The Astrophysical Journal
    Un-named journal

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the U.S. National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:03 am on May 19, 2022 Permalink | Reply
    Tags: "Hubble Reaches New Milestone in Mystery of Universe's Expansion Rate", , HubbleSite,   

    From Hubblesite and From ESA/Hubble: “Hubble Reaches New Milestone in Mystery of Universe’s Expansion Rate” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    May 19, 2022

    From Hubblesite and From ESA/Hubble

    MEDIA CONTACT:

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Adam G. Riess
    Space Telescope Science Institute, Baltimore, Maryland
    Johns Hopkins University, Baltimore, Maryland

    1
    About This Image

    This collection of 36 images from NASA’s Hubble Space Telescope features galaxies that are all hosts to both Cepheid variables and supernovae. These two celestial phenomena are both crucial tools used by astronomers to determine astronomical distance, and have been used to refine our measurement of the Hubble constant, the expansion rate of the universe.

    Credits:
    SCIENCE: NASA, ESA, Adam G. Riess (STScI, JHU)

    Summary
    Three Decades of Space Telescope Observations Converge on a Precise Value for the Hubble Constant.

    Science history will record that the search for the expansion rate of the universe was the great Holy Grail of 20th century cosmology. Without any observational evidence for space expanding, contracting, or standing still, we wouldn’t have a clue to whether the universe was coming or going. What’s more, we wouldn’t have a clue about its age either – or in fact if the universe was eternal.

    The first act of this revelation came when, a century ago, American astronomer Edwin Hubble discovered myriad galaxies outside of our home galaxy, the Milky Way.

    And, the galaxies weren’t standing still. Hubble found that the farther a galaxy is, the faster it appears to be moving away from us. This could be interpreted as the uniform expansion of space. Hubble even said that he studied the galaxies simply as “markers of space.” However he was never fully convinced of the idea of a uniformly expanding universe. He suspected his measurements might be evidence of something else more oddball going on in the universe.

    For decades after Hubble, astronomers have toiled to nail down the expansion rate that would yield a true age for the universe. This required building a string of cosmic distance ladders assembled from sources that astronomers have a reasonable confidence in their intrinsic brightness. The brightest, and therefore farthest detectable milepost markers are Type Ia supernovae.

    When the Hubble Space Telescope was launched in 1990 the universe’s expansion rate was so uncertain that its age might only be 8 billion years or as great as 20 billion years.

    After 30 years of meticulous work using the Hubble telescope’s extraordinary observing power, numerous teams of astronomers have narrowed the expansion rate to a precision of just over 1%. This can be used to predict that the universe will double in size in 10 billion years.

    The measurement is about eight times more precise than Hubble’s expected capability. But it’s become more than just refining a number to cosmologists. In the interim the mystery of dark energy pushing the universe apart was discovered. To compound things even further, the present expansion rate is different than it is expected to be as the universe appeared shortly after the big bang.

    You think this would frustrate astronomers, but instead it opens the door to discovering new physics, and confronting unanticipated questions about the underlying workings of the universe. And, finally, reminding us that we have a lot more to learn among the stars.
    ______________________________________________
    Completing a nearly 30-year marathon, NASA’s Hubble Space Telescope has calibrated more than 40 “milepost markers” of space and time to help scientists precisely measure the expansion rate of the universe — a quest with a plot twist.

    Pursuit of the universe’s expansion rate began in the 1920s with measurements by astronomers Edwin P. Hubble and Georges Lemaître. In 1998, this led to the discovery of “dark energy,” a mysterious repulsive force accelerating the universe’s expansion. In recent years, thanks to data from Hubble and other telescopes, astronomers found another twist: a discrepancy between the expansion rate as measured in the local universe compared to independent observations from right after the big bang, which predict a different expansion value.

    The cause of this discrepancy remains a mystery. But Hubble data, encompassing a variety of cosmic objects that serve as distance markers, support the idea that something weird is going on, possibly involving brand new physics.

    “You are getting the most precise measure of the expansion rate for the universe from the gold standard of telescopes and cosmic mile markers,” said Nobel Laureate Adam Riess of the Space Telescope Science Institute (STScI) and the Johns Hopkins University in Baltimore, Maryland.

    Riess leads a scientific collaboration investigating the universe’s expansion rate called SHOES, which stands for Supernova, H0, for the Equation of State of Dark Energy. “This is what the Hubble Space Telescope was built to do, using the best techniques we know to do it. This is likely Hubble’s magnum opus, because it would take another 30 years of Hubble’s life to even double this sample size,” Riess said.

    Riess’s team’s paper, to be published in the Special Focus issue of The Astrophysical Journal reports on completing the biggest and likely last major update on the “Hubble constant”. The new results more than double the prior sample of cosmic distance markers. His team also reanalyzed all of the prior data, with the whole dataset now including over 1,000 Hubble orbits.

    When NASA conceived of a large space telescope in the 1970s, one of the primary justifications for the expense and extraordinary technical effort was to be able to resolve Cepheids, stars that brighten and dim periodically, seen inside our Milky Way and external galaxies. Cepheids have long been the gold standard of cosmic mile markers since their utility was discovered by astronomer Henrietta Swan Leavitt in 1912. To calculate much greater distances, astronomers use exploding stars called Type Ia supernovae.

    Combined, these objects built a “cosmic distance ladder” across the universe and are essential to measuring the expansion rate of the universe, called the Hubble constant after Edwin Hubble. That value is critical to estimating the age of the universe and provides a basic test of our understanding of the universe.

    Starting right after Hubble’s launch in 1990, the first set of observations of Cepheid stars to refine the Hubble constant was undertaken by two teams: the HST Key Project led by Wendy Freedman, Robert Kennicutt and Jeremy Mould, Marc Aaronson and another by Allan Sandage and collaborators, that used Cepheids as milepost markers to refine the distance measurement to nearby galaxies. By the early 2000s the teams declared “mission accomplished” by reaching an accuracy of 10 percent for the Hubble constant, 72 plus or minus 8 kilometers per second per megaparsec.

    In 2005 and again in 2009, the addition of powerful new cameras onboard the Hubble telescope launched “Generation 2” of the Hubble constant research as teams set out to refine the value to an accuracy of just one percent. This was inaugurated by the SHOES program. Several teams of astronomers using Hubble, including SHOES, have converged on a Hubble constant value of 73 plus or minus 1 kilometer per second per megaparsec. While other approaches have been used to investigate the Hubble constant question, different teams have come up with values close to the same number.

    The SHOES team includes long-time leaders Dr. Wenlong Yuan of Johns Hopkins University, Dr. Lucas Macri of Texas A&M University, Dr. Stefano Casertano of STScI and Dr. Dan Scolnic of Duke University. The project was designed to bracket the universe by matching the precision of the Hubble constant inferred from studying the cosmic microwave background [CMB] radiation leftover from the dawn of the universe.

    “The Hubble constant is a very special number. It can be used to thread a needle from the past to the present for an end-to-end test of our understanding of the universe. This took a phenomenal amount of detailed work,” said Dr. Licia Verde, a cosmologist at ICREA Barcelona (ES) and the ICC-University of Barcelona, speaking about the SHOES team’s work.

    The team measured 42 of the supernova milepost markers with Hubble. Because they are seen exploding at a rate of about one per year, Hubble has, for all practical purposes, logged as many supernovae as possible for measuring the universe’s expansion. Riess said, “We have a complete sample of all the supernovae accessible to the Hubble telescope seen in the last 40 years.” Like the lyrics from the song “Kansas City,” from the Broadway musical Oklahoma, Hubble has “gone about as fur as it can go!”

    Weird Physics?

    The expansion rate of the universe was predicted to be slower than what Hubble actually sees. By combining the Standard Cosmological Model of the Universe and measurements by the European Space Agency’s Planck mission (which observed the relic cosmic microwave background from 13.8 billion years ago), astronomers predict a lower value for the Hubble constant: 67.5 plus or minus 0.5 kilometers per second per megaparsec, compared to the SHOES team’s estimate of 73.

    Given the large Hubble sample size, there is only a one-in-a-million chance astronomers are wrong due to an unlucky draw, said Riess, a common threshold for taking a problem seriously in physics. This finding is untangling what was becoming a nice and tidy picture of the universe’s dynamical evolution. Astronomers are at a loss for an explanation of the disconnect between the expansion rate of the local universe versus the primeval universe, but the answer might involve additional physics of the universe.

    Such confounding findings have made life more exciting for cosmologists like Riess. Thirty years ago they started out to measure the Hubble constant to benchmark the universe, but now it has become something even more interesting. “Actually, I don’t care what the expansion value is specifically, but I like to use it to learn about the universe,” Riess added.

    NASA’s new Webb Space Telescope will extend on Hubble’s work by showing these cosmic milepost markers at greater distances or sharper resolution than what Hubble can see.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the U.S. National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:32 am on May 5, 2022 Permalink | Reply
    Tags: "Hubble Reveals Surviving Companion Star in Aftermath of Supernova", , , , HubbleSite, If both the stars' remnant cores are not flung from the system they will eventually merge and produce gravitational waves, In time the surviving massive companion star will also undergo a supernova., It's not unheard of to find a surviving star at the scene of a titanic supernova explosion which would be expected to obliterate everything around it., SN 2013ge, , Suspicions that companion stars are responsible for siphoning away their partners' outer shell before their death are supported by Hubble's identification of a surviving companion star., The discovery also lends support to the theory that the majority of massive stars form and evolve as binary systems.   

    From Hubblesite and From ESA/Hubble: “Hubble Reveals Surviving Companion Star in Aftermath of Supernova” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and From ESA/Hubble

    May 05, 2022
    MEDIA CONTACTS:

    Leah Ramsay
    Space Telescope Science Institute, Baltimore, Maryland

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Ori Fox
    Space Telescope Science Institute, Baltimore, Maryland

    Compass Image of SN 2013ge in NGC 3287
    1
    About This Image. Credits: SCIENCE: Ori Fox (STScI). IMAGE PROCESSING: Joseph DePasquale (STScI).

    Summary
    The discovery helps explain the puzzle of hydrogen loss pre-supernova, and supports the theory that most massive stars are paired.

    It’s not unheard of to find a surviving star at the scene of a titanic supernova explosion, which would be expected to obliterate everything around it, but the latest research from the Hubble Space Telescope has provided a long-awaited clue to a specific type of stellar death. In some supernova cases, astronomers find no trace of the former star’s outermost layer of hydrogen. What happened to the hydrogen? Suspicions that companion stars are responsible—siphoning away their partners’ outer shell before their death—are supported by Hubble’s identification of a surviving companion star on the scene of supernova 2013ge. The discovery also lends support to the theory that the majority of massive stars form and evolve as binary systems. It could also be the prequel to another cosmic drama: In time the surviving massive companion star will also undergo a supernova, and if both the stars’ remnant cores are not flung from the system they will eventually merge and produce gravitational waves, shaking the fabric of space itself.
    ________________________________________________________________
    NASA’s Hubble Space Telescope has uncovered a witness at the scene of a star’s explosive death: a companion star previously hidden in the glare of its partner’s supernova. The discovery is a first for a particular type of supernova—one in which the star was stripped of its entire outer gas envelope before exploding.

    The finding provides crucial insight into the binary nature of massive stars, as well as the potential prequel to the ultimate merger of the companion stars that would rattle across the universe as gravitational waves, ripples in the fabric of spacetime itself.

    Astronomers detect the signature of various elements in supernova explosions. These elements are layered like an onion pre-supernova. Hydrogen is found in the outermost layer of a star, and if no hydrogen is detected in the aftermath of the supernova, that means it was stripped away before the explosion occurred.

    The cause of the hydrogen loss had been a mystery, and astronomers have been using Hubble to search for clues and test theories to explain these stripped supernovae. The new Hubble observations provide the best evidence yet to support the theory that an unseen companion star siphons off the gas envelope from its partner star before it explodes.

    “This was the moment we had been waiting for, finally seeing the evidence for a binary system progenitor of a fully stripped supernova,” said astronomer Ori Fox of the Space Telescope Science Institute in Baltimore, Maryland, lead investigator on the Hubble research program. “The goal is to move this area of study from theory to working with data and seeing what these systems really look like.”

    Fox’s team used Hubble’s Wide Field Camera 3 to study the region of supernova (SN) 2013ge in ultraviolet light, as well as previous Hubble observations in The Barbara A. Mikulski Archive for Space Telescopes (MAST). Astronomers saw the light of the supernova fading over time from 2016 to 2020—but another nearby source of ultraviolet light at the same position maintained its brightness. This underlying source of ultraviolet emission is what the team proposes is the surviving binary companion to SN 2013ge.

    Two by two?

    Previously, scientists theorized that a massive progenitor star’s strong winds could blow away its hydrogen gas envelope, but observational evidence didn’t support that. To explain the disconnect, astronomers developed theories and models in which a binary companion siphons off the hydrogen.

    “In recent years many different lines of evidence have told us that stripped supernovae are likely formed in binaries, but we had yet to actually see the companion. So much of studying cosmic explosions is like forensic science—searching for clues and seeing what theories match. Thanks to Hubble, we are able to see this directly,” said Maria Drout of The University of Toronto (CA), a member of the Hubble research team.

    In prior observations of SN 2013ge, Hubble saw two peaks in the ultraviolet light, rather than just the one typically seen in most supernovae. Fox said that one explanation for this double brightening was that the second peak shows when the supernova’s shock wave hit a companion star, a possibility that now seems much more likely. Hubble’s latest observations indicate that while the companion star was significantly jostled, including the hydrogen gas it had siphoned off its partner, it was not destroyed. Fox likens the effect to a jiggling bowl of jelly, which will eventually settle back to its original form.

    While additional confirmation and similar supporting discoveries need to be found, Fox said that the implications of the discovery are still substantial, lending support to theories that the majority of massive stars form and evolve as binary systems.
    ===
    One to Watch

    Unlike supernovae that have a puffy shell of gas to light up, the progenitors of fully stripped-envelope supernovae have proven difficult to identify in pre-explosion images. Now that astronomers have been lucky enough to identify the surviving companion star, they can use it to work backward and determine characteristics of the star that exploded, as well as the unprecedented opportunity to watch the aftermath unfold with the survivor.

    As a massive star itself, SN 2013ge’s companion is also destined to undergo a supernova. Its former partner is now likely a compact object, such as a neutron star or black hole, and the companion will likely go that route as well.

    The closeness of the original companion stars will determine if they stay together. If the distance is too great, the companion star will be flung out of the system to wander alone across our galaxy, a fate that could explain many seemingly solitary supernovae.

    However, if the stars were close enough to each other pre-supernova, they will continue orbiting each other as black holes or neutron stars. In that case, they would eventually spiral toward each other and merge, creating gravitational waves in the process.

    That is an exciting prospect for astronomers, as gravitational waves are a branch of astrophysics that has only begun to be explored. They are waves or ripples in the fabric of spacetime itself, predicted by Albert Einstein in the early 20th century. Gravitational waves were first directly observed by the Laser Interferometer Gravitational-Wave Observatory (LIGO).

    “With the surviving companion of SN 2013ge, we could potentially be seeing the prequel to a gravitational wave event, although such an event would still be about a billion years in the future,” Fox said.

    Fox and his collaborators will be working with Hubble to build up a larger sample of surviving companion stars to other supernovae, in effect giving SN 2013ge some company again.

    “There is great potential beyond just understanding the supernova itself. Since we now know most massive stars in the universe form in binary pairs, observations of surviving companion stars are necessary to help understand the details behind binary formation, material-swapping, and co-evolutionary development. It’s an exciting time to be studying the stars,” Fox said.

    “Understanding the lifecycle of massive stars is particularly important to us because all heavy elements are forged in their cores and through their supernovae. Those elements make up much of the observable universe, including life as we know it,” added co-author Alex Filippenko of the University of California at Berkeley.

    The results are published in The Astrophysical Journal Letters.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the U.S. National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:16 am on April 19, 2022 Permalink | Reply
    Tags: "Celebrating Hubble's 32nd Birthday with an Eclectic Galaxy Grouping", , , , , , HubbleSite, , The Hickson Compact Group 40   

    From Hubblesite and ESA/Hubble: “Celebrating Hubble’s 32nd Birthday with an Eclectic Galaxy Grouping” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    April 19, 2022

    MEDIA CONTACT:

    Ann Jenkins
    Space Telescope Science Institute, Baltimore, Maryland

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    1
    Hickson Compact Group 40 Compass.
    About This Image.
    Credits:
    SCIENCE: The National Aeronautics and Space Administration, The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), STScI
    IMAGE PROCESSING: Alyssa Pagan (STScI)


    HICKSON COMPACT GROUP 40: A FLIGHT THROUGH INTERACTING GALAXIES.

    Summary:

    The isolated menagerie of five galaxies is caught in a gravitational dance.

    In a lonely patch of the universe, five tightly grouped galaxies engage in a leisurely dance. Called the Hickson Compact Group 40 (HCG 40), this eclectic bunch includes three spiral-shaped galaxies, an elliptical galaxy and a lenticular (lens-like) galaxy. In about 1 billion years, they will collide and merge to form a giant elliptical galaxy. For its 32nd birthday, Hubble captured these galaxies at a very special moment in their lifetimes as they fall together and continue their dance, but before they merge.

    Scientists have cataloged more than 100 such compact galaxy groups, but HCG 40 is one of the most densely packed. Tight groups like this may have been more common in the early universe when their superheated, infalling material may have fueled very energetic black holes called quasars. Studying nearby groups like HCG 40 helps astronomers learn about how galaxies formed.
    ______________________________________________________________
    NASA is celebrating the Hubble Space Telescope’s 32nd birthday with a stunning look at an unusual close-knit collection of five galaxies, called The Hickson Compact Group 40.

    This menagerie includes three spiral-shaped galaxies, an elliptical galaxy, and a lenticular (lens-like) galaxy. Somehow, these different galaxies crossed paths in their evolution to create an exceptionally crowded and eclectic galaxy sampler.

    Caught in a leisurely gravitational dance, the whole group is so crowded that it could fit within a region of space that is less than twice the diameter of our Milky Way’s stellar disk.

    Though such cozy galaxy groupings can be found in the heart of huge galaxy clusters, these galaxies are notably isolated in their own small patch of the universe, in the direction of the constellation Hydra.

    One possible explanation is that there’s a lot of dark matter (an unknown and invisible form of matter) associated with these galaxies. If they come close together, then the dark matter can form a big cloud within which the galaxies are orbiting. As the galaxies plow through the dark matter they feel a resistive force due to its gravitational effects. This slows their motion and makes the galaxies lose energy, so they fall together.

    Therefore, this snapshot catches the galaxies at a very special moment in their lifetimes. In about 1 billion years they will eventually collide and merge to form a giant elliptical galaxy.

    Astronomers have studied this compact galaxy group not only in visible light, but also in radio, infrared, and X-ray wavelengths. Almost all of them have a compact radio source in their cores, which could be evidence for the presence of supermassive black holes. X-ray observations show that the galaxies have been gravitationally interacting due to the presence of a lot of hot gas among the galaxies. Infrared observations reveal clues to the rate of new star formation.

    Though over 100 such compact galaxy groups have been cataloged in sky surveys going back several decades, Hickson Compact Group 40 is one of the most densely packed. Observations suggest that such tight groups may have been more abundant in the early universe and provided fuel for powering black holes, known as quasars, whose light from superheated infalling material blazed across space. Studying the details of galaxies in nearby groups like this help astronomers sort out when and where galaxies assembled themselves, and what they are assembled from.

    “I remember seeing this on a sky survey and saying, ‘wow look at that!'” said Paul Hickson of The University of British Columbia (CA). “All that I was using at the time was a big plastic ruler and a magnifying glass while looking over sky survey prints.” He re-discovered the group by browsing through a collection of peculiar galaxies first published by Halton Arp in 1966.

    Hubble was deployed into orbit around Earth by NASA astronauts aboard the space shuttle Discovery, on April 25, 1990. The telescope has taken 1.5 million observations of approximately 50,000 celestial targets to date. This treasure trove of knowledge about the universe is stored for public access in the Mikulski Archive for Space Telescopes, at the Space Telescope Science Institute in Baltimore, Maryland.

    Hubble’s unique capabilities in observing visible and ultraviolet light are a critical scientific complement to the infrared-light observations of the recently launched Webb Space Telescope, which will begin science observations this summer.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such a