Tagged: Hubble Constant Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:29 pm on June 30, 2021 Permalink | Reply
    Tags: "‘There may not be a conflict after all’ in expanding universe debate", A new analysis by UChicago astronomer finds agreement with standard model in ongoing Hubble tension., , , , , Hubble Constant, , If it turns out that errors are causing the mismatch that would confirm our basic model of how the universe works., One way to measure the Hubble constant is by looking at very faint light left over from the Big Bang called the cosmic microwave background [CMB]., The latest observations are beginning to close the gap., The other method is to look at stars and galaxies in the nearby universe and measure their distances and how fast they are moving away from us., The value of the Hubble constant Freedman’s team gets from the red giants is 69.8 km/s/Mpc—virtually the same as the value derived from the cosmic microwave background experiment.,   

    From University of Chicago (US) : “‘There may not be a conflict after all’ in expanding universe debate” 

    U Chicago bloc

    From University of Chicago (US)

    Jun 30, 2021
    Louise Lerner

    1
    Certain stars undergo a flash at the end of their lives, which astronomers can use as a measuring stick to estimate how fast the universe is expanding. Image courtesy of European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics Space Agency (US)

    New analysis by UChicago astronomer finds agreement with standard model in ongoing Hubble tension.

    Our universe is expanding, but our two main ways to measure how fast this expansion is happening have resulted in different answers. For the past decade, astrophysicists have been gradually dividing into two camps: one that believes that the difference is significant, and another that thinks it could be due to errors in measurement.

    If it turns out that errors are causing the mismatch that would confirm our basic model of how the universe works. The other possibility presents a thread that, when pulled, would suggest some fundamental missing new physics is needed to stitch it back together. For several years, each new piece of evidence from telescopes has seesawed the argument back and forth, giving rise to what has been called the “Hubble tension”.

    Wendy Freedman, a renowned astronomer and the John and Marion Sullivan University Professor in Astronomy and Astrophysics at the University of Chicago, made some of the original measurements of the expansion rate of the universe that resulted in a higher value of the “Hubble constant”. But in a new review paper accepted to The Astrophysical Journal, Freedman gives an overview of the most recent observations. Her conclusion: the latest observations are beginning to close the gap.

    That is, there may not be a conflict after all, and our standard model of the universe does not need to be significantly modified.

    Universal questions

    The rate at which the universe is expanding is called the Hubble constant, named for UChicago alum Edwin Hubble, SB 1910, PhD 1917, who is credited with discovering the expansion of the universe in 1929. Scientists want to pin down this rate precisely, because the Hubble constant is tied to the age of the universe and how it evolved over time.

    A substantial wrinkle emerged in the past decade when results from the two main measurement methods began to diverge. But scientists are still debating the significance of the mismatch.

    One way to measure the Hubble constant is by looking at very faint light left over from the Big Bang called the cosmic microwave background [CMB].

    This has been done both in space and on the ground with facilities like the UChicago-led South Pole Telescope.

    Scientists can feed these observations into their ‘standard model’ of the early universe and run it forward in time to predict what the Hubble constant should be today; they get an answer of 67.4 kilometers per second per megaparsec.

    The other method is to look at stars and galaxies in the nearby universe and measure their distances and how fast they are moving away from us. Freedman has been a leading expert on this method for many decades; in 2001, her team made one of the landmark measurements using the Hubble Space Telescope to image stars called Cepheids. The value they found was 72.

    Freedman has continued to measure Cepheids in the years since, reviewing more telescope data each time; however, in 2019, she and her colleagues published an answer based on an entirely different method using stars called red giants. The idea was to cross-check the Cepheids with an independent method.

    Red giants are very large and luminous stars that always reach the same peak brightness before rapidly fading. If scientists can accurately measure the actual, or intrinsic, peak brightness of the red giants, they can then measure the distances to their host galaxies, an essential but difficult part of the equation. The key question is how accurate those measurements are.

    The first version of this calculation in 2019 [The Astrophysical Journal] used a single, very nearby galaxy to calibrate the red giant stars’ luminosities. Over the past two years, Freedman and her collaborators have run the numbers for several different galaxies and star populations. “There are now four independent ways of calibrating the red giant luminosities, and they agree to within 1% of each other,” said Freedman. “That indicates to us this is a really good way of measuring the distance.”

    “I really wanted to look carefully at both the Cepheids and red giants. I know their strengths and weaknesses well,” said Freedman. “I have come to the conclusion that that we do not require fundamental new physics to explain the differences in the local and distant expansion rates. The new red giant data show that they are consistent.”

    University of Chicago graduate student Taylor Hoyt, who has been making measurements of the red giant stars in the anchor galaxies, added, “We keep measuring and testing the red giant branch stars in different ways, and they keep exceeding our expectations.”

    The value of the Hubble constant Freedman’s team gets from the red giants is 69.8 km/s/Mpc—virtually the same as the value derived from the cosmic microwave background experiment. “No new physics is required,” said Freedman.

    The calculations using Cepheid stars still give higher numbers, but according to Freedman’s analysis, the difference may not be troubling. “The Cepheid stars have always been a little noisier and a little more complicated to fully understand; they are young stars in the active star-forming regions of galaxies, and that means there’s potential for things like dust or contamination from other stars to throw off your measurements,” she explained.

    To her mind, the conflict can be resolved with better data.

    Kicking the tires

    Next year, when the James Webb Space Telescope is expected to launch, scientists will begin to collect those new observations. Freedman and collaborators have already been awarded time on the telescope for a major program to make more measurements of both Cepheid and red giant stars. “The Webb will give us higher sensitivity and resolution, and the data will get better really, really soon,” she said.

    But in the meantime, she wanted to take a careful look at the existing data, and what she found was that much of it actually agrees.

    “That’s the way science proceeds,” Freedman said. “You kick the tires to see if something deflates, and so far, no flat tires.”

    Some scientists who have been rooting for a fundamental mismatch might be disappointed. But for Freedman, either answer is exciting.

    “There is still some room for new physics, but even if there isn’t, it would show that the standard model we have is basically correct, which is also a profound conclusion to come to,” she said. “That’s the interesting thing about science: We don’t know the answers in advance. We’re learning as we go. It is a really exciting time to be in the field.”

    See the full article here3 .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    The University of Chicago (US) is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory (US), DOE’s Fermi National Accelerator Laboratory (US), and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory(US) and DOE’s Argonne National Laboratory(US), as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL)(US). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics; establishing revolutionary theories of economics; and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

    Research

    According to the National Science Foundation (US), University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities (US) and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages Fermi National Accelerator Laboratory (Fermilab), a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory (US) in Sunspot, New Mexico. Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center (US) is located on Chicago’s campus.

     
  • richardmitnick 4:51 pm on December 17, 2020 Permalink | Reply
    Tags: "Multi-messenger astronomy offers new estimates of neutron star size and universe expansion", , , , , , , Hubble Constant   

    From DOE’s Los Alamos National Laboratory via phys.org: “Multi-messenger astronomy offers new estimates of neutron star size and universe expansion” 

    LANL bloc

    From DOE’s Los Alamos National Laboratory

    via


    From phys.org

    December 17, 2020

    1
    Collision of two neutron stars showing the electromagnetic and gravitational-wave emissions during the merger process. The combined interpretation of multiple messengers allows astrophysicists to understand the internal composition of neutron stars and to reveal the properties of matter under the most extreme conditions in the universe. Credit: Tim Dietrich.

    A combination of astrophysical measurements has allowed researchers to put new constraints on the radius of a typical neutron star and provide a novel calculation of the Hubble constant that indicates the rate at which the universe is expanding.

    “We studied signals that came from various sources, for example recently observed mergers of neutron stars,” said Ingo Tews, a theorist in Nuclear and Particle Physics, Astrophysics and Cosmology group at Los Alamos National Laboratory, who worked with an international collaboration of researchers on the analysis to appear in the journal Science on December 18. “We jointly analyzed gravitational-wave signals and electromagnetic emissions from the mergers, and combined them with previous mass measurements of pulsars or recent results from NASA’s Neutron Star Interior Composition Explorer.

    NASA NICER on the ISS.

    We find that the radius of a typical neutron star is about 11.75 kilometers and the Hubble constant is approximately 66.2 kilometers per second per megaparsec.”

    Combining signals to gain insight into distant astrophysical phenomena is known in the field as multi-messenger astronomy. In this case, the researchers’ multi-messenger analysis allowed them to restrict the uncertainty of their estimate of neutron star radii to within 800 meters.

    Their novel approach to measuring the Hubble constant contributes to a debate that has arisen from other, competing determinations of the universe’s expansion. Measurements based on observations of exploding stars known as supernovae are currently at odds with those that come from looking at the Cosmic Microwave Background (CMB), which is essentially the left over energy from the Big Bang. The uncertainties in the new multimessenger Hubble calculation are too large to definitively resolve the disagreement, but the measurement is slightly more supportive of the CMB approach.

    Tews’ primary scientific role in the study was to provide the input from nuclear theory calculations that are the starting point of the analysis. His seven collaborators on the paper comprise an international team of scientists from Germany, the Netherlands, Sweden, France, and the United States.

    A combination of astrophysical measurements has allowed researchers to put novel constraints on the radius of a typical neutron star and provide a new calculation of the Hubble constant that indicates the rate at which the universe is expanding.

    3
    Artist’s impression of two inspiralling neutron stars shortly before their collision. Credit: Nicals Moldenhauer.

    “We studied signals that came from various sources, for example recently observed mergers of neutron stars,” said Ingo Tews, a theorist in Nuclear and Particle Physics, Astrophysics and Cosmology group at Los Alamos National Laboratory, who worked with an international collaboration of researchers on the analysis to appear in the journal Science on December 18. “We jointly analyzed gravitational-wave signals and electromagnetic emissions from the mergers, and combined them with previous mass measurements of pulsars or recent results from NASA’s Neutron Star Interior Composition Explorer. We find that the radius of a typical neutron star is about 11.75 kilometers and the Hubble constant is approximately 66.2 kilometers per second per megaparsec.”

    Combining signals to gain insight into distant astrophysical phenomena is known in the field as multi-messenger astronomy. In this case, the researchers’ multi-messenger analysis allowed them to restrict the uncertainty of their estimate of neutron star radii to within 800 meters.

    Their novel approach to measuring the Hubble constant contributes to a debate that has arisen from other, competing determinations of the universe’s expansion. Measurements based on observations of exploding stars known as supernovae are currently at odds with those that come from looking at the Cosmic Microwave Background (CMB), which is essentially the left over energy from the Big Bang. The uncertainties in the new multimessenger Hubble calculation are too large to definitively resolve the disagreement, but the measurement is slightly more supportive of the CMB approach.

    Tews’ primary scientific role in the study was to provide the input from nuclear theory calculations that are the starting point of the analysis. His seven collaborators on the paper comprise an international team of scientists from Germany, the Netherlands, Sweden, France, and the United States.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Los Alamos National Laboratory mission is to solve national security challenges through scientific excellence.

    LANL campus
    Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.
    Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

    Operated by Los Alamos National Security, LLC for the U.S. Dept. of Energy’s NNSA

     
  • richardmitnick 9:36 am on November 17, 2020 Permalink | Reply
    Tags: "Gravitational lenses could hold the key to better estimates of the expansion of the universe", , Hubble Constant, SLAC-Kavli Institute for Particle Physics and Astrophysics, Time-delay cosmography   

    From DOE’s SLAC National Accelerator Laboratory and Stanford University Kavli Institute for Particle Physics and Astrophysics: “Gravitational lenses could hold the key to better estimates of the expansion of the universe” 

    From DOE’s SLAC National Accelerator Laboratory

    and

    KIPAC bloc

    SLAC- KIPAC: Kavli Institute for Particle Astrophysics and Cosmology

    November 16, 2020
    Nathan Collins

    SLAC cosmologists are using multiple images of the same quasars, produced by massive galaxies’ gravitational pull, to calibrate cosmic distances. Their work may help resolve long-standing debates about how quickly the universe is expanding.

    The universe is expanding but astrophysicists aren’t sure exactly how fast that expansion is happening – not because there aren’t answers, but rather because the answers they could give don’t agree.

    Now, Simon Birrer, a postdoctoral fellow at Stanford University and the Kavli Institute for Particle Physics and Astrophysics at the Department of Energy’s SLAC National Accelerator Laboratory, and an international team of researchers have a new answer that may, once refined with more data, help resolve the debate.

    That new answer is the result of revisiting a decades-old method called time-delay cosmography with new assumptions and additional data to derive a new estimate of the Hubble constant, a measure of the expansion of the Universe. Birrer and colleagues published their results November 20 in the journal Astronomy and Astrophysics.

    “It’s a continuation of a large and successful decade-long effort by a large team, with a reset in certain key aspects of our analysis,” Birrer said, and a reminder that “we should always reconsider our assumptions. Our recent work is exactly in this spirit.”

    1
    If everything lines up just right, a galaxy’s gravitational pull can bend light from a distant quasar into four separate images. And if the light that forms those images has reached us along paths of slightly different lengths, researchers can measure the time delays between the paths and infer distances to the galaxy and the distant quasar. Credit: Martin Millon/Swiss Federal Institute of Technology Lausanne (CH). Galaxy and quasar image: Hubble Space Telescope/NASA.)

    Distance, speed and sound

    Cosmologists have known for nearly a century that the cosmos is expanding, and in that time they have settled on two main ways to measure that expansion. One method is the cosmic distance ladder, a series of steps that help estimate the distance to far-away supernovae.

    4
    Three Steps to Measuring the Hubble Constant. Credit: NASA.

    By examining the spectrum of light from these supernovae, scientists can calculate how quickly they’re receding from us, then divide by distance to estimate the Hubble constant. (The Hubble constant is usually measured in kilometers per second per megaparsec, reflecting the fact that space itself is growing, so that more distant objects recede from us faster than nearer objects.)

    Astrophysicists can also estimate the constant from ripples in the cosmic microwave background radiation, or CMB.

    CMB per ESA/Planck

    Those ripples result from sound waves traveling through plasma in the early universe. By measuring the ripples’ size they can infer how long ago and how far away the CMB light we see today was created. Drawing on well-established cosmological theory, researchers can then estimate how rapidly the universe is expanding.

    Both approaches, however, have drawbacks. Sound-wave methods rely heavily on how sound travelled in the early universe, which depends in turn on the particular mix of types of matter at the time, on how long sound waves travelled before leaving their imprint on the CMB, and on assumptions about the expansion of the universe since that time. Meanwhile, cosmic distance ladder methods chain together a series of estimates, starting with radar estimates of the distance to the sun and parallax estimates of the distance to pulsating stars called cepheids. That introduces a chain of calibrations and measurements, each of which needs to be precise and accurate enough to ensure a reliable estimate of the Hubble constant.

    2
    (Top) The gravitational pull of a massive galaxy (center object) bends the light from a distant quasar on four paths, resulting in four images of the same quasar (A–D). Because each path has a slightly different length, light takes different amounts of time to traverse the paths, so the images appear to twinkle slightly out of sync with each other. (Bottom) A graph of the magnitude, or brightness, of the four quasar images over time. Credit: M. Millon and F. Courbin/Swiss Federal Institute of Technology Lausanne (CH).

    A lens from the past

    But there is a way to measure distances more directly, based on what are called strong gravitational lenses.

    Gravitational Lensing

    Gravitational Lensing NASA/ESA.

    Gravity bends spacetime itself and with it the path light takes through the cosmos. One special case is when a very massive object, such as a galaxy, bends the light of a distant object around such that light reaches us along multiple different paths, effectively creating multiple images of the same background object. A particularly beautiful example is when the distant object varies over time – for example, as accreting supermassive black holes, known as quasars, do. Because the light travels slightly different amounts of time along each path around the lensing galaxy, the result is multiple slightly out-of-sync images of the same flickering.

    This phenomenon is more than just pretty. Back in the 1960s, students of Einstein’s theory of gravity, general relativity, showed they could use strong gravitational lenses and the light they bend to more directly measure cosmic distances – if they could measure the relative timing along each path precisely enough and if they knew how matter in the lensing galaxy was distributed.

    Over the last decade, Birrer said, measurements became precise enough to take this method, time-delay cosmography, from idea to reality. Successive measurements and a dedicated effort by the H0LiCOW, COSMOGRAIL, STRIDES, and SHARP teams, now under the joint umbrella organization TDCOSMO, culminated in a precise Hubble constant measurement at around 73 kilometers per second per megaparsec with a precision of 2%. That’s in agreement with estimates made with the local distance ladder method, but in tension with the cosmic microwave background measurements under the standard cosmological model assumptions.

    Galaxy mass distribution assumptions

    But something didn’t sit right with Birrer: The models of galaxy structure previous studies relied on might not have been accurate enough to conclude that the Hubble constant was different from estimates based on the cosmic microwave background. “I went to my colleagues and said, ‘I want to conduct a study that does not rely on those assumptions,’” Birrer said.

    In their place, Birrer proposed to investigate a range of additional gravitational lenses to make more observationally grounded estimate of the mass and structure of the lensing galaxies to replace previous assumptions. The new avenue Birrer and the team, TDCOSMO, were undertaking was deliberately held blind – meaning the entire analysis was performed without knowing the resulting outcome on the Hubble constant – to avoid experimenter bias, a procedure established already in the previous analyses of the team and an integral part in moving forward, Birrer said.

    Based on this new analysis with significantly fewer assumptions applied to the seven lensing galaxies with time delays the team has analyzed in previous studies, the team arrived at a higher value of the Hubble constant, around 74 kilometers per second per megaparsec, but with greater uncertainty – enough so that their value was consistent with both high and low estimates of the Hubble constant.

    However, when Birrer and TDCOSMO added 33 additional lenses with similar properties – but without a variable source to work for time-delay cosmography directly – used to estimate galactic structure, the Hubble constant estimate went down to about 67 kilometers per second per megaparsec, with a 5% uncertainty, in good agreement with sound-wave estimates such as that from the CMB, but also statistically consistent with the previous determinations, given the uncertainties.

    That substantial shift does not mean the debate over the Hubble constant’s value is over – far from it, Birrer said. For one thing, his method introduces new uncertainty into the estimate associated with the 33 additional lenses being added into the analysis, and TDCOSMO will need more data to confirm their results, although that data may not be far off into the future. Birrer: “While our new analysis does not statistically invalidate the mass profile assumptions of our previous work, it demonstrates the importance of understanding the mass distribution within galaxies,” he said.

    “We are collecting now the data that will allow us to gain back most of the precision we previously had achieved based on stronger assumptions. Looking further ahead we’ll also have images from a lot more lensing galaxies from the Rubin Observatory Legacy Survey of Space and Time to draw on to improve our estimates. Our current analysis is only the first step and paves the way to utilizing these upcoming data sets to provide a definite conclusion on the remaining problem.”

    The research was supported by grants from the National Science Foundation, the National Aeronautics and Space Administration, the Packard Foundation, the Kavli Foundation, the Danish Council for Independent Research, the Villum Foundation, the Royal Astronomical Society, the European Research Council, the Hintze Family Charitable Foundation, the Max Planck Society, the World Premier International Research Center Initiative and the Japan Society for the Promotion of Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Kavli Institute for Particle Astrophysics and Cosmology, or KIPAC, is an independent laboratory of Stanford University. Initiated with a generous grant from Fred Kavli and The Kavli Foundation, KIPAC is housed at the SLAC National Accelerator Laboratory and in the Varian Physics and Physics Astrophysics buildings on the Stanford campus. The lab is funded in part by Stanford University and the United States Department of Energy.

    SLAC National Accelerator Lab

    SLAC/LCLS

    SLAC/LCLS II projected view

    SLAC LCLS-II Undulators The Linac Coherent Light Source’s new undulators each use an intricately tuned series of magnets to convert electron energy into intense bursts of X-rays. The “soft” X-ray undulator stretches for 100 meters on the left side of this hall, with the “hard” x-ray undulator on the right. Credit: Alberto Gamazo/SLAC National Accelerator Laboratory.


    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 3:54 pm on January 29, 2020 Permalink | Reply
    Tags: CBR, , , , , How standard are "standard candles"?, Hubble Constant, , Solid experimental evidence but unsatisfying theories,   

    From FNAL via Inside Science: “Dark Energy Skeptics Raise Concerns, But Remain Outnumbered” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    via

    Inside Science

    January 24, 2020
    Ramin Skibba

    Some scientists have been poking at the foundations of dark energy, but many say the concept remains on solid, if mysterious, ground.

    2
    Spiral galaxy NGC 5714. In 2003, a faint supernova (not visible in this later picture) appeared about 8000 light-years below the central bulge of NGC 5714. European Space Agency via Flickr. CC BY 2.0

    Since the dawn of the universe, the biggest stars have ended their lives with a bang, blowing out their outer layers in bright, fiery bursts that can be seen many light-years away. Astronomers use these supernova explosions like marks on an expanding balloon to measure how fast the universe is growing.

    Based on studies of dozens of supernova explosions, astronomers in the late 1990s realized that the universe’s expansion seems to be accelerating. They hypothesized that some unseen “energy,” which works the opposite of gravity, was pushing everything outward. The concept of so-called dark energy quickly became popular, and ultimately, scientists’ consensus view. It earned three physicists the 2011 Nobel Prize.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    Recently, however, some scientists have been poking at this foundation of dark energy research.

    A team of Korean scientists published findings on Jan. 5 questioning the reliability of using supernovae to measure intergalactic distances. This followed a paper published in November [Astronomy and Astrophysics] that also cast doubt on the supernova evidence from a different angle, arguing that our galactic neighborhood is flowing in a particular direction, affecting certain kinds of distance measurements.

    In both instances, other scientists pushed back, noting potential flaws in the methodology and conclusions of the new studies.

    While most scientists still seem to believe that dark energy remains on solid ground, no one yet has any firm idea what it actually is.

    How standard are “standard candles”?

    Standard Candles to measure age and distance of the universe from supernovae. NASA

    Every time a star goes supernova, its radiant explosion follows such a familiar pattern that scientists nicknamed them “standard candles.” Assuming supernovae are predictable that way, astronomers can estimate how far away they are mainly based on how bright they appear. They can then map the universe’s expansion history by studying supernova both nearby and far away — that is, both recent and from a long time ago.

    It’s like gauging how far away vehicles are at night by looking at their headlights. If you made incorrect assumptions about what kinds of vehicles they are — for example assuming they are trucks with bright lights a long distance away when they are in fact smaller vehicles much closer — then your data and your inferences about the length of the road would be skewed.

    Young-Wook Lee, an astronomer at Yonsei University in South Korea and lead author of the Jan. 5 study, and his colleagues question a common and important assumption in the standard candle approach: that the brightness or luminosity of supernova explosions don’t vary when you look further back into the universe’s past.

    To test their hypothesis, they studied supernova in galaxies whose stars’ ages had been precisely measured and found that the brightness of a supernova depends on the ages of its host galaxy’s stellar population. The stars that produce supernovae are generally younger, further in the universe’s past, which is problematic for physicists estimating the universe’s expansion rate.

    “Supernova luminosity should vary as a function of cosmic time, and that hasn’t been accounted for in the so-called ‘discovery’ of dark energy,” said Lee.

    But to Dragan Huterer, an astrophysicist at the University of Michigan in Ann Arbor, the data from the paper doesn’t warrant a sweeping reconsideration of dark energy.

    “These evolution effects have not been observed to be strong, and cosmologists partly take them into account,” Huterer argued. He conceded there may be a small correlation, but not one large enough to shake the foundation of dark energy’s consensus. “I’d bet my life on it,” he said.

    Joshua Frieman, a Fermilab astrophysicist, thinks Lee and his team are doing legitimate research, but is also skeptical about whether one could draw sweeping conclusions from it. He points out that the study’s findings show only a weak trend with age; they use a model that estimates ages of a few supernova older than the universe’s age; and they focus only on a small sample of elliptical galaxies, while the scope of supernova studies that support dark energy include all kinds of galaxies.

    Solid experimental evidence, but unsatisfying theories

    While many scientists argue against overinterpreting results that seem to question the foundations of dark energy, both of the recent papers fall into accepted lines of research. Supernova cosmology has for years been plagued by questions about systematic uncertainties infecting every step of calculations, including how their fluxes and light curves are measured and calibrated. Researchers need to account for every factor, no matter how small, that could muddy a study of the expanding universe. And there’s always a concern for something missed, an unknown unknown.

    Such concerns are actually evidence of a well-developed field, argued Tamara Davis, an astrophysicist at the University of Queensland in Australia. “Once a field becomes very mature, the tiny details that were negligible before become more important,” said Davis. A focus on myriad uncertainties that affect a measurement by just a percent or two is actually a sign that the measurement’s quite good already, she argued.

    Astronomers’ current controversy over the precise value of the Hubble constant, which describes how fast the universe is expanding, reflects a similarly mature field, she said. (This question about the exact expansion rate is different than the one about whether the rate’s accelerating.) That research, similar to supernova cosmology, has made great strides since the 1990s, and now small, previously ignored discrepancies come to the fore.

    Most scientists Inside Science interviewed feel dark energy is still on solid ground. Even if Lee’s study and others like it discredited the kinds of supernova cosmology findings that formed the groundwork for dark energy research, other kinds of research now also point toward dark energy, Frieman argued. This includes studies of fluctuations in the cosmic microwave background [CMB] radiation — radiation [CBR] that’s thought to be left over from soon after the Big Bang and which bears an imprint of the growing universe when it was young — and studies of the large-scale structure of the universe, involving surveys of hundreds of thousands of galaxies over a wide area.

    CMB per ESA/Planck

    CBR per ESA/Planck

    “Yes, in 1998, you could’ve said, ‘There are supernova systematic uncertainties, so maybe the universe isn’t accelerating,'” Frieman said. “But in 2020, we now have multiple pieces of evidence that the stool holding up dark energy is much more stable, so you could knock out supernova and still say we have strong evidence for cosmic acceleration from these other probes.”

    Current and upcoming experiments could add yet more precision to studies of dark energy. These include the Dark Energy Survey, the Dark Energy Spectroscopic Instrument, space-based missions, and the newly renamed Vera Rubin Observatory, being built in northern Chile. But theoretical physicists are behind, Huterer said, as they still don’t have a compelling explanation for what dark energy is and where it came from.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Timeline of the Inflationary Universe WMAP

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.

    LBNL/DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018

    NOAO/Mayall 4 m telescope at Kitt Peak, Arizona, USA, Altitude 2,120 m (6,960 ft)

    Fritz Zwicky discovered Dark Matter when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com

    Coma cluster via NASA/ESA Hubble

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL)


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu

    The LSST, or Large Synoptic Survey Telescope renamed named the Vera C. Rubin Observatory by an act of the U.S. Congress.

    LSST telescope, The Vera Rubin Survey Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    LSST Data Journey, Illustration by Sandbox Studio, Chicago with Ana Kova

    “I think the precision on dark energy parameters is definitely going to be improving with these missions,” Frieman said. The data so far is consistent with the idea of dark energy as a simple cosmological constant, a ubiquitous vacuum energy somehow produced by the universe’s expansion that generates yet more expansion. But Frieman hopes new data may reveal something more exotic, such as a mysterious substance called quintessence, which some scientists have proposed could explain the accelerating expansion of the universe. Which theory will be ahead 10 years from now “is anyone’s guess,” Freiman said.

    See the full here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:19 pm on January 14, 2020 Permalink | Reply
    Tags: "Have Dark Forces Been Messing With the Cosmos?", Alan Guth MIT "Inflation", , , , , CMB per Planck, , , , Discrepancy in how fast the niverse is expanding., Edwin Hubble in 1929 discovers the Universe is Expanding, Hubble Constant, , Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronom; the 2011 Nobel Prize in Physics; and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt ,   

    From The New York Times: “Have Dark Forces Been Messing With the Cosmos?” 


    From The New York Times

    Feb. 25, 2019 [Sorry, missed the first time around. Picked up from another article found today by Dennis Overbye]
    Dennis Overbye

    1
    Brian Stauffer

    There was, you might say, a disturbance in the Force.

    Long, long ago, when the universe was only about 100,000 years old — a buzzing, expanding mass of particles and radiation — a strange new energy field switched on. That energy suffused space with a kind of cosmic antigravity, delivering a not-so-gentle boost to the expansion of the universe.

    Then, after another 100,000 years or so, the new field simply winked off, leaving no trace other than a speeded-up universe.

    So goes the strange-sounding story being promulgated by a handful of astronomers from Johns Hopkins University. In a bold and speculative leap into the past, the team has posited the existence of this field to explain an astronomical puzzle: the universe seems to be expanding faster than it should be.

    The cosmos is expanding only about 9 percent more quickly than theory prescribes. But this slight-sounding discrepancy has intrigued astronomers, who think it might be revealing something new about the universe.

    And so, for the last couple of years, they have been gathering in workshops and conferences to search for a mistake or loophole in their previous measurements and calculations, so far to no avail.

    “If we’re going to be serious about cosmology, this is the kind of thing we have to be able to take seriously,” said Lisa Randall, a Harvard theorist who has been pondering the problem.

    At a recent meeting in Chicago, Josh Frieman, a theorist at the Fermi National Accelerator Laboratory [FNAL] in Batavia, Ill., asked: “At what point do we claim the discovery of new physics?”

    Now ideas are popping up. Some researchers say the problem could be solved by inferring the existence of previously unknown subatomic particles. Others, such as the Johns Hopkins group, are invoking new kinds of energy fields.

    Adding to the confusion, there already is a force field — called dark energy — making the universe expand faster.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Timeline of the Inflationary Universe WMAP

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.

    And a new, controversial report suggests that this dark energy might be getting stronger and denser, leading to a future in which atoms are ripped apart and time ends.

    Thus far, there is no evidence for most of these ideas. If any turn out to be right, scientists may have to rewrite the story of the origin, history and, perhaps, fate of the universe.

    Or it could all be a mistake. Astronomers have rigorous methods to estimate the effects of statistical noise and other random errors on their results; not so for the unexamined biases called systematic errors.

    As Wendy L. Freedman, of the University of Chicago, said at the Chicago meeting, “The unknown systematic is what gets you in the end.”

    Edwin Hubble looking through a 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding

    Edwin Hubble in 1949, two decades after he discovered that the universe is expanding.Credit…Boyer/Roger Viollet, via Getty Images (credit: Emilio Segre Visual Archives/AIP/SPL)

    Hubble trouble

    Generations of great astronomers have come to grief trying to measure the universe. At issue is a number called the Hubble constant, named after Edwin Hubble, the Mount Wilson astronomer who in 1929 discovered that the universe is expanding.

    As space expands, it carries galaxies away from each other like the raisins in a rising cake. The farther apart two galaxies are, the faster they will fly away from each other. The Hubble constant simply says by how much.

    But to calibrate the Hubble constant, astronomers depend on so-called standard candles: objects, such as supernova explosions and certain variable stars, whose distances can be estimated by luminosity or some other feature. This is where the arguing begins.

    Standard Candles to measure age and distance of the universe from supernovae. NASA

    Until a few decades ago, astronomers could not agree on the value of the Hubble constant within a factor of two: either 50 or 100 kilometers per second per megaparsec. (A megaparsec is 3.26 million light years.)

    But in 2001, a team using the Hubble Space Telescope, and led by Dr. Freedman, reported a value of 72. For every megaparsec farther away from us that a galaxy is, it is moving 72 kilometers per second faster.

    More recent efforts by Adam G. Riess [The Astrophysical Journal], of Johns Hopkins and the Space Telescope Science Institute, and others have obtained similar numbers, and astronomers now say they have narrowed the uncertainty in the Hubble constant to just 2.4 percent.

    But new precision has brought new trouble. These results are so good that they now disagree with results from the European Planck spacecraft, which predict a Hubble constant of 67.

    The discrepancy — 9 percent — sounds fatal but may not be, astronomers contend, because Planck and human astronomers do very different kinds of observations.

    Planck is considered the gold standard of cosmology. It spent four years studying the cosmic bath of microwaves [CMB] left over from the end of the Big Bang, when the universe was just 380,000 years old.

    CMB per ESA/Planck


    ESA/Planck 2009 to 2013

    But it did not measure the Hubble constant directly. Rather, the Planck group derived the value of the constant, and other cosmic parameters, from a mathematical model largely based on those microwaves.

    In short, Planck’s Hubble constant is based on a cosmic baby picture. In contrast, the classical astronomical value is derived from what cosmologists modestly call “local measurements,” a few billion light-years deep into a middle-aged universe.

    What if that baby picture left out or obscured some important feature of the universe?

    ‘Cosmological Whac-a-Mole’

    And so cosmologists are off to the game that Lloyd Knox, an astrophysicist from the University of California, Davis, called “cosmological Whac-a-Mole” at the recent Chicago meeting: attempting to fix the model of the early universe, to make it expand a little faster without breaking what the model already does well.

    One approach, some astrophysicists suggest, is to add more species of lightweight subatomic particles, such as the ghostlike neutrinos, to the early universe. (Physicists already recognize three kinds of neutrinos, and argue whether there is evidence for a fourth variety.) These would give the universe more room to stash energy, in the same way that more drawers in your dresser allow you to own more pairs of socks. Thus invigorated, the universe would expand faster, according to the Big Bang math, and hopefully not mess up the microwave baby picture.

    A more drastic approach, from the Johns Hopkins group, invokes fields of exotic anti-gravitational energy. The idea exploits an aspect of string theory, the putative but unproven “theory of everything” that posits that the elementary constituents of reality are very tiny, wriggling strings.

    String theory suggests that space could be laced with exotic energy fields associated with lightweight particles or forces yet undiscovered. Those fields, collectively called quintessence, could act in opposition to gravity, and could change over time — popping up, decaying or altering their effect, switching from repulsive to attractive.

    The team focused in particular on the effects of fields associated with hypothetical particles called axions. Had one such field arisen when the universe was about 100,000 years old, it could have produced just the right amount of energy to fix the Hubble discrepancy, the team reported in a paper late last year. They refer to this theoretical force as “early dark energy.”

    “I was surprised how it came out,” said Marc Kamionkowski, a Johns Hopkins cosmologist who was part of the study. “This works.”

    The jury is still out. Dr. Riess said that the idea seems to work, which is not to say that he agrees with it, or that it is right. Nature, manifest in future observations, will have the final say.

    Dr. Knox called the Johns Hopkins paper “an existence proof” that the Hubble problem could be solved. “I think that’s new,” he said.

    Dr. Randall, however, has taken issue with aspects of the Johns Hopkins calculations. She and a trio of Harvard postdocs are working on a similar idea that she says works as well and is mathematically consistent. “It’s novel and very cool,” Dr. Randall said.

    So far, the smart money is still on cosmic confusion. Michael Turner, a veteran cosmologist at the University of Chicago and the organizer of a recent airing of the Hubble tensions, said, “Indeed, all of this is going over all of our heads. We are confused and hoping that the confusion will lead to something good!”

    Doomsday? Nah, nevermind

    Early dark energy appeals to some cosmologists because it hints at a link to, or between, two mysterious episodes in the history of the universe. As Dr. Riess said, “This is not the first time the universe has been expanding too fast.”

    The first episode occurred when the universe was less than a trillionth of a trillionth of a second old. At that moment, cosmologists surmise, a violent ballooning propelled the Big Bang; in a fraction of a trillionth of a second, this event — named “inflation” by the cosmologist Alan Guth, of M.I.T. — smoothed and flattened the initial chaos into the more orderly universe observed today.

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes
    Alex Mittelmann, Coldcreation

    Alan Guth’s notes:

    Alan Guth’s original notes on inflation

    Nobody knows what drove inflation.

    The second episode is unfolding today: cosmic expansion is speeding up. But why? The issue came to light in 1998, when two competing teams of astronomers asked whether the collective gravity of the galaxies might be slowing the expansion enough to one day drag everything together into a Big Crunch.

    To great surprise, they discovered the opposite: the expansion was accelerating under the influence of an anti-gravitational force later called dark energy. The two teams won a Nobel Prize.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    Dark energy comprises 70 percent of the mass-energy of the universe. And, spookily, it behaves very much like a fudge factor known as the cosmological constant, a cosmic repulsive force that Einstein inserted in his equations a century ago thinking it would keep the universe from collapsing under its own weight. He later abandoned the idea, perhaps too soon.

    Under the influence of dark energy, the cosmos is now doubling in size every 10 billion years — to what end, nobody knows.

    Early dark energy, the force invoked by the Johns Hopkins group, might represent a third episode of antigravity taking over the universe and speeding it up. Perhaps all three episodes are different manifestations of the same underlying tendency of the universe to go rogue and speed up occasionally. In an email, Dr. Riess said, “Maybe the universe does this from time-to-time?”

    If so, it would mean that the current manifestation of dark energy is not Einstein’s constant after all. It might wink off one day. That would relieve astronomers, and everybody else, of an existential nightmare regarding the future of the universe. If dark energy remains constant, everything outside our galaxy eventually will be moving away from us faster than the speed of light, and will no longer be visible. The universe will become lifeless and utterly dark.

    But if dark energy is temporary — if one day it switches off — cosmologists and metaphysicians can all go back to contemplating a sensible tomorrow.

    “An appealing feature of this is that there might be a future for humanity,” said Scott Dodelson, a theorist at Carnegie Mellon who has explored similar scenarios.

    The phantom cosmos

    But the future is still up for grabs.

    Far from switching off, the dark energy currently in the universe actually has increased over cosmic time, according to a recent report in Nature Astronomy. If this keeps up, the universe could end one day in what astronomers call the Big Rip, with atoms and elementary particles torn asunder — perhaps the ultimate cosmic catastrophe.

    This dire scenario emerges from the work of Guido Risaliti, of the University of Florence in Italy, and Elisabeta Lusso, of Durham University in England. For the last four years, they have plumbed the deep history of the universe, using violent, faraway cataclysms called quasars as distance markers.

    Quasars arise from supermassive black holes at the centers of galaxies; they are the brightest objects in nature, and can be seen clear across the universe. As standard candles, quasars aren’t ideal because their masses vary widely. Nevertheless, the researchers identified some regularities in the emissions from quasars, allowing the history of the cosmos to be traced back nearly 12 billion years. The team found that the rate of cosmic expansion deviated from expectations over that time span.

    One interpretation of the results is that dark energy is not constant after all, but is changing, growing denser and thus stronger over cosmic time. It so happens that this increase in dark energy also would be just enough to resolve the discrepancy in measurements of the Hubble constant.

    The bad news is that, if this model is right, dark energy may be in a particularly virulent and — most physicists say — implausible form called phantom energy. Its existence would imply that things can lose energy by speeding up, for instance. Robert Caldwell, a Dartmouth physicist, has referred to it as “bad news stuff.”

    As the universe expands, the push from phantom energy would grow without bounds, eventually overcoming gravity and tearing apart first Earth, then atoms.

    The Hubble-constant community responded to the new report with caution. “If it holds up, this is a very interesting result,” said Dr. Freedman.

    Astronomers have been trying to take the measure of this dark energy for two decades. Two space missions — the European Space Agency’s Euclid and NASA’s Wfirst — have been designed to study dark energy and hopefully deliver definitive answers in the coming decade. The fate of the universe is at stake.

    ESA/Euclid spacecraft depiction

    NASA/WFIRST

    In the meantime, everything, including phantom energy, is up for consideration, according to Dr. Riess.

    “In a list of possible solutions to the tension via new physics, mentioning weird dark energy like this would seem appropriate,” he wrote in an email. “Heck, at least their dark energy goes in the right direction to solve the tension. It could have gone the other way and made it worse!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 8:38 am on July 16, 2019 Permalink | Reply
    Tags: , , , , Hubble Constant, ,   

    From NASA/ESA Hubble Telescope: “New Hubble Constant Measurement Adds to Mystery of Universe’s Expansion Rate” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    July 16, 2019

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Louise Lerner
    University of Chicago, Chicago, Illinois
    773-702-8366
    louise@uchicago.edu

    1
    About This Image

    These galaxies are selected from a Hubble Space Telescope program to measure the expansion rate of the universe, called the Hubble constant. The value is calculated by comparing the galaxies’ distances to the apparent rate of recession away from Earth (due to the relativistic effects of expanding space).

    By comparing the apparent brightnesses of the galaxies’ red giant stars with nearby red giants, whose distances were measured with other methods, astronomers are able to determine how far away each of the host galaxies are. This is possible because red giants are reliable milepost markers because they all reach the same peak brightness in their late evolution. And, this can be used as a “standard candle” to calculate distance. Hubble’s exquisite sharpness and sensitivity allowed for red giants to be found in the stellar halos of the host galaxies.

    The red giants were searched for in the halos of the galaxies. The center row shows Hubble’s full field of view. The bottom row zooms even tighter into the Hubble fields. The red giants are identified by yellow circles. Credits: NASA, ESA, W. Freedman (University of Chicago), ESO, and the Digitized Sky Survey

    ________________________________________________________
    2
    About This Image: Credits: NASA, ESA, W. Freedman (University of Chicago), ESO, and the Digitized Sky Survey

    ________________________________________________________

    3

    Red Giant Stars Used as Milepost Markers

    Astronomers have made a new measurement of how fast the universe is expanding, using an entirely different kind of star than previous endeavors. The revised measurement, which comes from NASA’s Hubble Space Telescope, falls in the center of a hotly debated question in astrophysics that may lead to a new interpretation of the universe’s fundamental properties.

    Scientists have known for almost a century that the universe is expanding, meaning the distance between galaxies across the universe is becoming ever more vast every second. But exactly how fast space is stretching, a value known as the Hubble constant, has remained stubbornly elusive.

    Now, University of Chicago professor Wendy Freedman and colleagues have a new measurement for the rate of expansion in the modern universe, suggesting the space between galaxies is stretching faster than scientists would expect. Freedman’s is one of several recent studies that point to a nagging discrepancy between modern expansion measurements and predictions based on the universe as it was more than 13 billion years ago, as measured by the European Space Agency’s Planck satellite.

    ESA/Planck 2009 to 2013

    As more research points to a discrepancy between predictions and observations, scientists are considering whether they may need to come up with a new model for the underlying physics of the universe in order to explain it.

    “The Hubble constant is the cosmological parameter that sets the absolute scale, size and age of the universe; it is one of the most direct ways we have of quantifying how the universe evolves,” said Freedman. “The discrepancy that we saw before has not gone away, but this new evidence suggests that the jury is still out on whether there is an immediate and compelling reason to believe that there is something fundamentally flawed in our current model of the universe.”

    In a new paper accepted for publication in The Astrophysical Journal, Freedman and her team announced a new measurement of the Hubble constant using a kind of star known as a red giant. Their new observations, made using Hubble, indicate that the expansion rate for the nearby universe is just under 70 kilometers per second per megaparsec (km/sec/Mpc). One parsec is equivalent to 3.26 light-years distance.

    This measurement is slightly smaller than the value of 74 km/sec/Mpc recently reported by the Hubble SH0ES (Supernovae H0 for the Equation of State) team using Cepheid variables, which are stars that pulse at regular intervals that correspond to their peak brightness. This team, led by Adam Riess of the Johns Hopkins University and Space Telescope Science Institute, Baltimore, Maryland, recently reported refining their observations to the highest precision to date for their Cepheid distance measurement technique.

    How to Measure Expansion

    A central challenge in measuring the universe’s expansion rate is that it is very difficult to accurately calculate distances to distant objects.

    In 2001, Freedman led a team that used distant stars to make a landmark measurement of the Hubble constant. The Hubble Space Telescope Key Project team measured the value using Cepheid variables as distance markers. Their program concluded that the value of the Hubble constant for our universe was 72 km/sec/Mpc.

    But more recently, scientists took a very different approach: building a model based on the rippling structure of light left over from the big bang, which is called the Cosmic Microwave Background [CMB].

    CMB per ESA/Planck

    The Planck measurements allow scientists to predict how the early universe would likely have evolved into the expansion rate astronomers can measure today. Scientists calculated a value of 67.4 km/sec/Mpc, in significant disagreement with the rate of 74.0 km/sec/Mpc measured with Cepheid stars.

    Astronomers have looked for anything that might be causing the mismatch. “Naturally, questions arise as to whether the discrepancy is coming from some aspect that astronomers don’t yet understand about the stars we’re measuring, or whether our cosmological model of the universe is still incomplete,” Freedman said. “Or maybe both need to be improved upon.”

    Freedman’s team sought to check their results by establishing a new and entirely independent path to the Hubble constant using an entirely different kind of star.

    Certain stars end their lives as a very luminous kind of star called a red giant, a stage of evolution that our own Sun will experience billions of years from now. At a certain point, the star undergoes a catastrophic event called a helium flash, in which the temperature rises to about 100 million degrees and the structure of the star is rearranged, which ultimately dramatically decreases its luminosity. Astronomers can measure the apparent brightness of the red giant stars at this stage in different galaxies, and they can use this as a way to tell their distance.

    The Hubble constant is calculated by comparing distance values to the apparent recessional velocity of the target galaxies — that is, how fast galaxies seem to be moving away. The team’s calculations give a Hubble constant of 69.8 km/sec/Mpc — straddling the values derived by the Planck and Riess teams.

    “Our initial thought was that if there’s a problem to be resolved between the Cepheids and the Cosmic Microwave Background, then the red giant method can be the tie-breaker,” said Freedman.

    But the results do not appear to strongly favor one answer over the other say the researchers, although they align more closely with the Planck results.

    NASA’s upcoming mission, the Wide Field Infrared Survey Telescope (WFIRST), scheduled to launch in the mid-2020s, will enable astronomers to better explore the value of the Hubble constant across cosmic time.

    NASA/WFIRST

    WFIRST, with its Hubble-like resolution and 100 times greater view of the sky, will provide a wealth of new Type Ia supernovae, Cepheid variables, and red giant stars to fundamentally improve distance measurements to galaxies near and far.

    More links at the full article.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 11:47 am on July 9, 2019 Permalink | Reply
    Tags: , , , , H0LiCOW collaboration an international team of cosmologists who study the bending of light from distant quasars around massive galaxy clusters to measure the Hubble constant in a third way., Hubble Constant, SH0ES collaboration led by Adam Riess at Johns Hopkins University observes younger objects like variable stars (stars with a changing level of brightness) and supernovae., The first method uses measurements of the Cosmic Microwave Background [CMB] from the Planck satellite, The LIGO and VIRGO collaborations are attempting to measure the Hubble constant yet another way: with gravitational waves.   

    From Symmetry: “The 9 percent difference” 

    Symmetry Mag
    From Symmetry

    07/09/19
    Jessica Atlee

    1
    Illustration by Sandbox Studio, Chicago with Corinne Mucha

    A discrepancy between different measurements of the Hubble constant makes scientists question whether something is amiss in our understanding of the universe.

    Few numbers have gotten under astronomers’ skin like the Hubble constant. In fact, experts have debated the value of this single parameter for 90 years, and for good reason.

    The Hubble constant (H0) is named for astronomer Edwin Hubble. And astronomers use this value to make a variety of cosmological estimations, most critically the expansion rate and age of the universe.

    If astronomers can measure this single value with great precision, they’ll be one step closer to solving some of the other grand astronomical mysteries of our age. There’s just one problem: The measurements they’ve taken don’t agree.

    The SH0ES collaboration (for Supernova H0 for the Equation of State), led by Adam Riess at Johns Hopkins University, has made its most precise measurement of the Hubble constant yet. But their value is 9% larger than what’s widely accepted in the astronomical community.

    And the chance of that 9% discrepancy being a fluke, as a result of pure statistical error, is unlikely—just 1 in 100,000. Which raises the question: Who is right?

    “The stakes really couldn’t be higher,” says Brian Keating, the director of the Simons Observatory collaboration, one of multiple teams hoping to improve the measurement of the Hubble constant, among other goals. “This is one of the oldest debates in cosmology: How old the universe is is directly related to the inverse of the Hubble constant. So … if you accept a higher value of the Hubble constant, it predicts a younger universe by almost a billion years.”

    Disagreements over the Hubble constant aren’t new. When Edwin Hubble published his measurement of the expansion of the universe in 1929, he got the expansion part right. But he predicted an expansion rate that’s seven times larger than what is widely accepted today. Nearly a century later, the tension around this value is still very real.

    “We have so much tension and anxiety in the field that the thing that would help us the most is a good psychotherapist,” Keating says with a laugh.

    In recent years, astronomers have gotten closer than ever to measuring a value that’s precise to within one to two percent. But as their measurements improve, slight differences that hadn’t mattered in the past have become significant.

    Right now astronomers widely accept a Hubble constant of 67.4 kilometers per second per megaparsec. (That means the average galaxy that is 10 megaparsecs from Earth is moving away from us at a speed of 674 km/s.) But the SH0ES team reports a value of 74.03 km/s/Mpc. The difference is enough to leave many astronomers wondering if we understand our universe as well as we thought.

    The two teams measure the Hubble constant in different ways. The first method uses measurements of the Cosmic Microwave Background [CMB] from the Planck satellite.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    This tells astronomers how fast the universe was expanding 380,000 years after the Big Bang. From that, they predict how fast the universe should be expanding today, more than 13 billion years later.

    The SH0ES team, on the other hand, observes younger objects, like variable stars (stars with a changing level of brightness) and supernovae. First, they calculate the distance those objects are from Earth. Then they calculate how quickly those objects are moving away using the Doppler shift, which lets them measure the Hubble constant.

    In principle, these two different methods should produce the same Hubble constant value. The fact that they don’t could suggest there’s something slightly wrong with the model of the universe astronomers use to predict the Hubble constant from the CMB. Adam Riess describes it like this:

    “It’s like if you had a toddler who is 2 and you measure their height. You could use your understanding of how people grow—people tend to double their height between age 2 and their final adult height—so you use that rule,” says Riess. “And then you could actually measure how tall that adult is when they reach full height. And you’d be pretty amazed if they were a foot taller than they’re expected to be. And that’s the situation we’re in.”

    One way to resolve this discrepancy is to collect more measurements for comparison. And that’s exactly what many collaborations are doing. One is the H0LiCOW collaboration (for H0 Lenses in COSMOGRAIL’s Wellspring), an international team of cosmologists who study the bending of light from distant quasars around massive galaxy clusters to measure the Hubble constant in a third way.

    “And they get the same answer that we get,” Riess says. “Those two approaches have nothing to do with each other, and that raises our confidence that it’s not just a simple error in one of these steps.”

    The LIGO and VIRGO collaborations are attempting to measure the Hubble constant yet another way: with gravitational waves.


    Their early results determine a value of about 70 km/s/Mpc—basically splitting the difference between the SH0ES and Planck estimates, but with a larger level of uncertainty.

    So who is right remains to be seen. But another question on some astronomers’ minds is whether or not this discrepancy is simply human error.

    “If I were to put my money on it, I would say someone is underestimating their systematic error bars and maybe the tension is not as bad as it seems to be,” says Arka Banerjee, a physics postdoc at Stanford University who has everything to gain from a more accurate Hubble constant, whatever the value, in his research into particles called neutrinos.

    Neutrinos have vanishingly small masses, and the measure of those masses is a major unanswered question in neutrino physics. The Hubble constant can be used to put limits on this mass—and could help scientists determine whether there is a hidden type of neutrino they have yet to discover.

    Systematic errors are a big challenge when it comes to measuring the Hubble constant, Banerjee says. And right now, the two teams with the smallest statistical errors are the two that don’t agree: Planck and SH0ES.

    Ultimately, it’s a waiting game to see when collaborations like Simons Observatory, H0LiCOW, LIGO and others can reach the same level of precision—and what they measure in the process.

    “I don’t think it’s going to be a situation where we go, ‘Oh everything in physics is wrong!’” Riess says. “It’s a 9% difference over the whole history of the universe. To be clear, I think our basic understanding of things is right, but there’s some wrinkle here.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 10:07 am on April 25, 2019 Permalink | Reply
    Tags: "Mystery of the Universe's Expansion Rate Widens with New Hubble Data", Astronomers have already hypothesized that dark energy existed during the first seconds after the big bang and pushed matter throughout space starting the initial expansion., , , , Cepheid variables in the Large Magellanic Cloud, , , Dark energy may also be the reason for the universe's accelerated expansion today., DASH (Drift And Shift) using Hubble as a "point-and-shoot" camera, , Hubble Constant, , Proposed by astronomers at Johns Hopkins the theory is dubbed "early dark energy" and suggests that the universe evolved like a three-act play., , The new estimate of the Hubble constant is 74 kilometers (46 miles) per second per megaparsec., The new theory suggests that there was a third dark-energy episode not long after the big bang which expanded the universe faster than astronomers had predicted., The true explanation is still a mystery.   

    From NASA/ESA Hubble Telescope: “Mystery of the Universe’s Expansion Rate Widens with New Hubble Data” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    Apr 25, 2019

    Adam Riess
    Space Telescope Science Institute, Baltimore, Maryland
    and Johns Hopkins University, Baltimore, Maryland
    410-338-6707
    ariess@stsci.edu

    Donna Weaver
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493
    dweaver@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    1
    Large Magellanic Cloud (DSS View) with Star Cluster Overlay (Hubble). STScI.
    New physics may be needed to rectify the universe’s past and present behavior.

    2
    Three Steps to the Hubble Constant. STScI.

    4
    Three steps to the Hubble constant | ESA/Hubble

    ________________________________________________________________
    There is something wrong with our universe. Or, more specifically, it is outpacing all expectations for its present rate of expansion.

    Something is amiss in astronomers’ efforts to measure the past and predict the present, according to a discrepancy between the two main techniques for measuring the universe’s expansion rate – a key to understanding its history and physical parameters.

    The inconsistency is between the Hubble Space Telescope measurements of today’s expansion rate of the universe (by looking at stellar milepost markers) and the expansion rate as measured by the European Space Agency’s Planck satellite. Planck observes the conditions of the early universe just 380,000 years after the big bang.

    ESA/Planck 2009 to 2013

    For years, astronomers have been assuming this discrepancy would go away due to some instrumental or observational fluke. Instead, as Hubble astronomers continue to “tighten the bolts” on the accuracy of their measurements, the discordant values remain stubbornly at odds.

    The chances of the disagreement being just a fluke have skyrocketed from 1 in 3,000 to 1 in 100,000.

    Theorists must find an explanation for the disparity that could rattle ideas about the very underpinnings of the universe.
    ________________________________________________________________

    Astronomers using NASA’s Hubble Space Telescope say they have crossed an important threshold in revealing a discrepancy between the two key techniques for measuring the universe’s expansion rate. The recent study strengthens the case that new theories may be needed to explain the forces that have shaped the cosmos.

    A brief recap: The universe is getting bigger every second. The space between galaxies is stretching, like dough rising in the oven. But how fast is the universe expanding? As Hubble and other telescopes seek to answer this question, they have run into an intriguing difference between what scientists predict and what they observe.

    Hubble measurements suggest a faster expansion rate in the modern universe than expected, based on how the universe appeared more than 13 billion years ago. These measurements of the early universe come from the European Space Agency’s Planck satellite. This discrepancy has been identified in scientific papers over the last several years, but it has been unclear whether differences in measurement techniques are to blame, or whether the difference could result from unlucky measurements.

    The latest Hubble data lower the possibility that the discrepancy is only a fluke to 1 in 100,000. This is a significant gain from an earlier estimate, less than a year ago, of a chance of 1 in 3,000.

    These most precise Hubble measurements to date bolster the idea that new physics may be needed to explain the mismatch.

    “The Hubble tension between the early and late universe may be the most exciting development in cosmology in decades,” said lead researcher and Nobel laureate Adam Riess of the Space Telescope Science Institute (STScI) and Johns Hopkins University, in Baltimore, Maryland. “This mismatch has been growing and has now reached a point that is really impossible to dismiss as a fluke. This disparity could not plausibly occur just by chance.”

    Tightening the bolts on the ‘cosmic distance ladder’

    Scientists use a “cosmic distance ladder” to determine how far away things are in the universe.

    Cosmic Distance Ladder, skynetblogs

    Standard Candles to measure age and distance of the universe from supernovae NASA

    This method depends on making accurate measurements of distances to nearby galaxies and then moving to galaxies farther and farther away, using their stars as milepost markers. Astronomers use these values, along with other measurements of the galaxies’ light that reddens as it passes through a stretching universe, to calculate how fast the cosmos expands with time, a value known as the Hubble constant.

    Riess and his SH0ES (Supernovae H0 for the Equation of State) team have been on a quest since 2005 to refine those distance measurements with Hubble and fine-tune the Hubble constant.

    In this new study, astronomers used Hubble to observe 70 pulsating stars called Cepheid variables in the Large Magellanic Cloud. The observations helped the astronomers “rebuild” the distance ladder by improving the comparison between those Cepheids and their more distant cousins in the galactic hosts of supernovas. Riess’s team reduced the uncertainty in their Hubble constant value to 1.9% from an earlier estimate of 2.2%.

    As the team’s measurements have become more precise, their calculation of the Hubble constant has remained at odds with the expected value derived from observations of the early universe’s expansion. Those measurements were made by Planck, which maps the cosmic microwave background [CMB], a relic afterglow from 380,000 years after the big bang.

    CMB per ESA/Planck

    The measurements have been thoroughly vetted, so astronomers cannot currently dismiss the gap between the two results as due to an error in any single measurement or method. Both values have been tested multiple ways.

    “This is not just two experiments disagreeing,” Riess explained. “We are measuring something fundamentally different. One is a measurement of how fast the universe is expanding today, as we see it. The other is a prediction based on the physics of the early universe and on measurements of how fast it ought to be expanding. If these values don’t agree, there becomes a very strong likelihood that we’re missing something in the cosmological model that connects the two eras.”

    How the new study was done

    Astronomers have been using Cepheid variables as cosmic yardsticks to gauge nearby intergalactic distances for more than a century. But trying to harvest a bunch of these stars was so time-consuming as to be nearly unachievable. So, the team employed a clever new method, called DASH (Drift And Shift), using Hubble as a “point-and-shoot” camera to snap quick images of the extremely bright pulsating stars, which eliminates the time-consuming need for precise pointing.

    “When Hubble uses precise pointing by locking onto guide stars, it can only observe one Cepheid per each 90-minute Hubble orbit around Earth. So, it would be very costly for the telescope to observe each Cepheid,” explained team member Stefano Casertano, also of STScI and Johns Hopkins. “Instead, we searched for groups of Cepheids close enough to each other that we could move between them without recalibrating the telescope pointing. These Cepheids are so bright, we only need to observe them for two seconds. This technique is allowing us to observe a dozen Cepheids for the duration of one orbit. So, we stay on gyroscope control and keep ‘DASHing’ around very fast.”

    The Hubble astronomers then combined their result with another set of observations, made by the Araucaria Project, a collaboration between astronomers from institutions in Chile, the U.S., and Europe. This group made distance measurements to the Large Magellanic Cloud by observing the dimming of light as one star passes in front of its partner in eclipsing binary-star systems.

    The combined measurements helped the SH0ES Team refine the Cepheids’ true brightness. With this more accurate result, the team could then “tighten the bolts” of the rest of the distance ladder that extends deeper into space.

    The new estimate of the Hubble constant is 74 kilometers (46 miles) per second per megaparsec. This means that for every 3.3 million light-years farther away a galaxy is from us, it appears to be moving 74 kilometers (46 miles) per second faster, as a result of the expansion of the universe. The number indicates that the universe is expanding at a 9% faster rate than the prediction of 67 kilometers (41.6 miles) per second per megaparsec, which comes from Planck’s observations of the early universe, coupled with our present understanding of the universe.

    So, what could explain this discrepancy?

    One explanation for the mismatch involves an unexpected appearance of dark energy in the young universe, which is thought to now comprise 70% of the universe’s contents. Proposed by astronomers at Johns Hopkins, the theory is dubbed “early dark energy,” and suggests that the universe evolved like a three-act play.

    Astronomers have already hypothesized that dark energy existed during the first seconds after the big bang and pushed matter throughout space, starting the initial expansion. Dark energy may also be the reason for the universe’s accelerated expansion today. The new theory suggests that there was a third dark-energy episode not long after the big bang, which expanded the universe faster than astronomers had predicted. The existence of this “early dark energy” could account for the tension between the two Hubble constant values, Riess said.

    Another idea is that the universe contains a new subatomic particle that travels close to the speed of light. Such speedy particles are collectively called “dark radiation” and include previously known particles like neutrinos, which are created in nuclear reactions and radioactive decays.

    Yet another attractive possibility is that dark matter (an invisible form of matter not made up of protons, neutrons, and electrons) interacts more strongly with normal matter or radiation than previously assumed.

    But the true explanation is still a mystery.

    Riess doesn’t have an answer to this vexing problem, but his team will continue to use Hubble to reduce the uncertainties in the Hubble constant. Their goal is to decrease the uncertainty to 1%, which should help astronomers identify the cause of the discrepancy.

    The team’s results have been accepted for publication in The Astrophysical Journal.

    See the full HubbleSite article here .
    See the ESA/Hubble article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 2:34 pm on April 2, 2019 Permalink | Reply
    Tags: , , , , , , , , Hubble Constant, ,   

    From University of Chicago: “How to use gravitational waves to measure the expansion of the universe” 

    U Chicago bloc

    From University of Chicago

    Mar 28, 2019
    Louise Lerner


    Prof. Daniel Holz discusses a new way to calculate the Hubble constant, a crucial number that measures the expansion rate of the universe and holds answers to questions about the universe’s size, age and history. Video by UChicago Creative

    Ripples in spacetime lead to new way to determine size and age of universe.

    On the morning of Aug. 17, 2017, after traveling for more than a hundred million years, the aftershocks from a massive collision in a galaxy far, far away finally reached Earth.

    These ripples in the fabric of spacetime, called gravitational waves, tripped alarms at two ultra-sensitive detectors called LIGO, sending texts flying and scientists scrambling.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    One of the scientists was Prof. Daniel Holz at the University of Chicago. The discovery had provided him the information he needed to make a groundbreaking new measurement of one of the most important numbers in astrophysics: the Hubble constant, which is the rate at which the universe is expanding.

    The Hubble constant holds the answers to big questions about the universe, like its size, age and history, but the two main ways to determine its value have produced significantly different results. Now there was a third way, which could resolve one of the most pressing questions in astronomy—or it could solidify the creeping suspicion, held by many in the field, that there is something substantial missing from our model of the universe.

    “In a flash, we had a brand-new, completely independent way to make a measurement of one of the most profound quantities in physics,” said Holz. “That day I’ll remember all my life.”

    As LIGO and its European counterpart VIRGO turn back on on April 1, Holz and other scientists are preparing for more data that could shed light on some of the universe’s biggest questions.

    Universal questions

    We’ve known the universe is expanding for a long time (ever since eminent astronomer and UChicago alum Edwin Hubble made the first measurement of the expansion in 1929, in fact),

    Edwin Hubble looking through a 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding

    but in 1998, scientists were stunned to discover that the rate of expansion is not slowing as the universe ages, but actually accelerating over time. In the following decades, as they tried to precisely determine the rate, it has become apparent that different methods for measuring the rate produce different answers.

    One of the two methods measures the brightness of supernovae–exploding stars– in distant galaxies;

    Standard Candles to measure age and distance of the universe from supernovae NASA

    the other looks at tiny fluctuations in the cosmic microwave background [CMB], the faint light left over from the Big Bang.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    Scientists have been working for two decades to boost the accuracy and precision for each measurement, and to rule out any effects which might be compromising the results; but the two values still stubbornly disagree by almost 10 percent.

    2
    A neutron star collision causes detectable ripples in the fabric of spacetime, which are called gravitational waves. Photo courtesy of Aurore Simonnet

    Because the supernova method looks at relatively nearby objects, and the cosmic microwave background is much more ancient, it’s possible that both methods are right—and that something profound about the universe has changed since the beginning of time.

    “We don’t know if one or both of the other methods have some kind of systematic error, or if they actually reflect a fundamental truth about the universe that is missing from our current models,” said Holz. “Either is possible.”

    Holz saw the possibility for a third, completely independent way to measure the Hubble constant—but it would depend on a combination of luck and extreme feats of engineering.

    The ‘standard siren’

    In 2005, Holz wrote a paper [NJP] with Scott Hughes of Massachusetts Institute of Technology suggesting that it would be possible to calculate the Hubble constant through a combination of gravitational waves and light. They called these sources “standard sirens,” a nod to “standard candles”, which refers to the supernovae used to make the Hubble constant measurement.

    But first it would take years to develop technology that could pick up something as ephemeral as ripples in the fabric of spacetime. That’s LIGO: a set of enormous, extremely sensitive detectors that are tuned to pick up the gravitational waves that are emitted when something big happens somewhere in the universe.

    The Aug. 17, 2017 waves came from two neutron stars, which had spiraled around and around each other in a faraway galaxy before finally slamming together at close to the speed of light. The collision sent gravitational waves rippling across the universe and also released a burst of light, which was picked up by telescopes on and around Earth.

    Neutron star collision-Robin Dienel-The Carnegie Institution for Science

    3
    Prof. Daniel Holz writes out the formula for the Hubble constant, which measures the rate at which the universe is expanding.

    That burst of light was what sent the scientific world into a tizzy. LIGO had picked up gravitational wave readings before, but all the previous ones were from collisions of two black holes, which can’t be seen with conventional telescopes.

    But they could see the light from the colliding neutron stars, and the combination of waves and light unlocked a treasure trove of scientific riches. Among them were the two pieces of information Holz needed to make his calculation of the Hubble constant.

    How does the method work?

    To make this measurement of the Hubble constant, you need to know how fast an object—like a newly collided pair of neutron stars—is receding away from Earth, and how far away it was to begin with. The equation is surprisingly simple. It looks like this: The Hubble constant is the velocity of the object divided by the distance to the object, or H=v/d.

    Somewhat counterintuitively, the easiest part to calculate is how fast the object is moving. Thanks to the bright afterglow given off by the collision, astronomers could point telescopes at the sky and pinpoint the galaxy where the neutron stars collided. Then they can take advantage of a phenomenon called redshift: As a faraway object moves away from us, the color of the light it’s giving off shifts slightly towards the red end of the spectrum. By measuring the color of the galaxy’s light, they can use this reddening to estimate how fast the galaxy is moving away from us. This is a century-old trick for astronomers.

    The more difficult part is getting an accurate measure of the distance to the object. This is where gravitational waves come in. The signal the LIGO detectors pick up gets interpreted as a curve, like this:

    4
    The signal picked up by the LIGO detector in Louisiana, as it caught the waves from two neutron stars colliding far away in space, forms a distinctive curve. Courtesy of LIGO

    The shape of the signal tells scientists how big the two stars were and how much energy the collision gave off. By comparing that with how strong the waves were when they reached Earth, they could infer how far away the stars must have been.

    The initial value from just this one standard siren came out to be 70 kilometers per second per megaparsec. That’s right in between the other two methods, which find about 73 (from the supernova method) and 67 (from the cosmic microwave background).

    Of course, that initial standard siren measurement is only from one data point, and large uncertainties remain. But the LIGO detectors are turning back on after an upgrade to boost their sensitivity. Nobody knows how often neutron stars collide, but Holz (along with former student Hsin-Yu Chen and current student Maya Fishbach) wrote a paper estimating that the gravitational wave method may provide a revolutionary, extremely precise measurement of the Hubble constant within five years.

    “As time goes on, we’ll observe more and more of these binary neutron star mergers, and use them as standard sirens to steadily improve our estimate of the Hubble constant. Depending on where our value falls, we might confirm one method or the other. Or we might find an entirely different value,” Holz said. “No matter what we find, it’s gonna be interesting—and will be an important step in learning more about our universe.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 11:09 am on January 23, 2019 Permalink | Reply
    Tags: , , , , H0liCOW collaboration, Hubble Constant, Quasar SDSS J1206+4332, Seeing double could help resolve dispute about how fast the universe is expanding,   

    From UCLA Newsroom: “Seeing double could help resolve dispute about how fast the universe is expanding” 


    From UCLA Newsroom

    January 22, 2019
    Christopher Crockett

    1
    A Hubble Space Telescope picture of a doubly imaged quasar. NASA Hubble Space Telescope, Tommaso Treu/UCLA, and Birrer et al.

    The question of how quickly the universe is expanding has been bugging astronomers for almost a century. Different studies keep coming up with different answers — which has some researchers wondering if they’ve overlooked a key mechanism in the machinery that drives the cosmos.

    Now, by pioneering a new way to measure how quickly the cosmos is expanding, a team led by UCLA astronomers has taken a step toward resolving the debate. The group’s research is published today in Monthly Notices of the Royal Astronomical Society.

    At the heart of the dispute is the Hubble constant, a number that relates distances to the redshifts of galaxies — the amount that light is stretched as it travels to Earth through the expanding universe. Estimates for the Hubble constant range from about 67 to 73 kilometers per second per megaparsec, meaning that two points in space 1 megaparsec apart (the equivalent of 3.26 million light-years) are racing away from each other at a speed between 67 and 73 kilometers per second.

    “The Hubble constant anchors the physical scale of the universe,” said Simon Birrer, a UCLA postdoctoral scholar and lead author of the study. Without a precise value for the Hubble constant, astronomers can’t accurately determine the sizes of remote galaxies, the age of the universe or the expansion history of the cosmos.

    Most methods for deriving the Hubble constant have two ingredients: a distance to some source of light and that light source’s redshift. Looking for a light source that had not been used in other scientists’ calculations, Birrer and colleagues turned to quasars, fountains of radiation that are powered by gargantuan black holes. And for their research, the scientists chose one specific subset of quasars — those whose light has been bent by the gravity of an intervening galaxy, which produces two side-by-side images of the quasar on the sky.

    Light from the two images takes different routes to Earth. When the quasar’s brightness fluctuates, the two images flicker one after another, rather than at the same time. The delay in time between those two flickers, along with information about the meddling galaxy’s gravitational field, can be used to trace the light’s journey and deduce the distances from Earth to both the quasar and the foreground galaxy. Knowing the redshifts of the quasar and galaxy enabled the scientists to estimate how quickly the universe is expanding.

    The UCLA team, as part of the international H0liCOW collaboration, had previously applied the technique to study quadruply imaged quasars, in which four images of a quasar appear around a foreground galaxy. But quadruple images are not nearly as common — double-image quasars are thought to be about five times as abundant as the quadruple ones.

    To demonstrate the technique, the UCLA-led team studied a doubly imaged quasar known as SDSS J1206+4332; they relied on data from the Hubble Space Telescope, the Gemini and W.M. Keck observatories, and from the Cosmological Monitoring of Gravitational Lenses, or COSMOGRAIL, network — a program managed by Switzerland’s Ecole Polytechnique Federale de Lausanne that is aimed at determining the Hubble constant.

    NASA/ESA Hubble Telescope

    Gemini/North telescope at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level,

    2

    Tommaso Treu, a UCLA professor of physics and astronomy and the paper’s senior author, said the researchers took images of the quasar every day for several years to precisely measure the time delay between the images. Then, to get the best estimate possible of the Hubble constant, they combined the data gathered on that quasar with data that had previously been gathered by their H0liCOW collaboration on three quadruply imaged quasars.

    “The beauty of this measurement is that it’s highly complementary to and independent of others,” Treu said.

    The UCLA-led team came up with an estimate for the Hubble constant of about 72.5 kilometers per second per megaparsec, a figure in line with what other scientists had determined in research that used distances to supernovas — exploding stars in remote galaxies — as the key measurement. However, both estimates are about 8 percent higher than one that relies on a faint glow from all over the sky called the cosmic microwave background, a relic from 380,000 years after the Big Bang, when light traveled freely through space for the first time.

    “If there is an actual difference between those values, it means the universe is a little more complicated,” Treu said.

    On the other hand, Treu said, it could also be that one measurement — or all three — are wrong.

    The researchers are now looking for more quasars to improve the precision of their Hubble constant measurement. Treu said one of the most important lessons of the new paper is that doubly imaged quasars give scientists many more useful light sources for their Hubble constant calculations. For now, though, the UCLA-led team is focusing its research on 40 quadruply imaged quasars, because of their potential to provide even more useful information than doubly imaged ones.

    Sixteen other researchers from 13 institutions in seven countries contributed to the paper; the research was supported in part by grants from NASA, the National Science Foundation and the Packard Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: