Tagged: HR 8799 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:05 pm on November 23, 2018 Permalink | Reply
    Tags: , , , , HR 8799, , KPIC, Water Has Been Detected in The Atmosphere of a Planet 179 Light Years Away   

    From Keck Observatory via Science Alert: “Water Has Been Detected in The Atmosphere of a Planet 179 Light Years Away” 

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft) above sea level, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland


    From Keck Observatory

    via

    Science Alert

    23 NOV 2018
    EVAN GOUGH

    Gathering detailed information on exoplanets is extremely difficult. The light from their host star overwhelms the light from the exoplanet, making it difficult for telescopes to see them.

    But now a team using cutting-edge technology at the Keck Observatory has taken a big leap in exoplanet observation and has detected water in the atmosphere of a planet 179 light years away.

    The solar system at the heart of this features a star called HR 8799, and its planets: HR 8799 b, c, d, and e. The system is 179 light years away in the constellation Pegasus.

    The star itself is a 30 million year old main sequence star. It’s notable for a number of reasons, including its own odd stellar properties.

    But it’s been noteworthy for another important reason.

    In 2008, scientists announced that they had directly observed three exoplanets around the star – HR 8799b, c, and d – using the Keck and Gemini telescopes. Then in 2010 they announced the discovery of a fourth planet, HR 8799 e.

    2
    The HR 8799 system contains the first exoplanet to be directly imaged. (NRC-HIA/C. MAROIS/W. M. KECK OBSERVATORY)

    This newest announcement builds on the earlier work from 2008, and the astronomers behind this study call the latest announcement a ‘stepping stone’ on the way to better and better images of exoplanets.

    The new observations are of HR 8799 c, first observed in 2008. It’s a young giant gas planet about 7 times the mass of Jupiter that orbits its star every 200 years.

    These new direct imaged observations confirm the presence of water in the atmosphere, and confirm the lack of methane.

    These new observations arise from a potent combination of two telescope technologies at Keck. The first is adaptive optics.

    Keck Adaptive Optics

    Adaptive optics counteract the blurring effects of the Earth’s atmosphere. The second is a spectrometer on the Keck 2 telescope called the Near-Infrared Cryogenic Echelle Spectrograph (NIRSPEC), a high-resolution spectrometer that works in infrared light.

    Keck Nirspec on Keck 2

    3
    Exoplanet HR 8799c is about 7 times the size of Jupiter. (W. M. KECK OBSERVATORY/ADAM MAKARENKO/C. ALVAREZ)

    “This type of technology is exactly what we want to use in the future to look for signs of life on an Earth-like planet. We aren’t there yet but we are marching ahead,” says Dimitri Mawet, an associate professor of astronomy at Caltech and a research scientist at JPL, which Caltech manages for NASA, and co-author of the study that presented these findings.

    The new findings were published in The Astronomical Journal. The lead author is Ji Wang, formerly a postdoctoral scholar at Caltech and now an assistant professor at Ohio State University.

    So far, astronomers have directly-imaged more than a dozen exoplanets. The HR 8799 system is the first multi-planet system to have been directly-imaged. But the images are only the first step in this study.

    Once taken, the images can be analyzed for the chemical composition in their atmospheres. This is where spectroscopy comes in. In this case, the refined abilities of NIRSPEC were key.

    NIRSPEC is an instrument on the Keck 2 telescope that operates in the infrared L-band. The L-band is a type of infrared light with a wavelength of around 3.5 micrometers, and a region of the spectrum with many detailed chemical fingerprints.

    “The L-band has gone largely overlooked before because the sky is brighter at this wavelength,” says Mawet. “If you were an alien with eyes tuned to the L-band, you’d see an extremely bright sky. It’s hard to see exoplanets through this veil.”

    By combining L-band spectography with adaptive optics, they overcame the difficulties of observing a planet who’s light is almost drowned out by its star. They were able to make the most precise measurements yet of the planet, confirming the presence of water and the absence of methane.

    “Right now, with Keck, we can already learn about the physics and dynamics of these giant exotic planets, which are nothing like our own solar system planets,” says Wang.

    “We are now more certain about the lack of methane in this planet.”

    “This may be due to mixing in the planet’s atmosphere. The methane, which we would expect to be there on the surface, could be diluted if the process of convection is bringing up deeper layers of the planet that don’t have methane,” Wang added

    Mawet’s team is already preparing for the next and newest instrument at the Keck Observatory. It’s called the KPIC, (Keck Planet Imager and Characterizer).

    Keck Planet Imager and Characterizer

    KPIC will use adaptive optics and spectroscopy, but to even better effect. With KPIC, astronomers will be able to image planets that are even fainter, and closer to their star than HR 8799c is.

    And the future is even brighter for exoplanet imaging. The technology behind adaptive optics and spectroscopy that helped image this planet will be put into use on our future telescopes.

    “KPIC is a springboard to our future Thirty Meter Telescope instrument,” says Mawet.

    “For now, we are learning a great deal about the myriad ways in which planets in our universe form.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 1:27 pm on January 24, 2017 Permalink | Reply
    Tags: A Four Planet System in Orbit Directly Imaged and Remarkable, , , , , HR 8799   

    From Many Worlds: “A Four Planet System in Orbit, Directly Imaged and Remarkable” 

    NASA NExSS bloc

    NASA NExSS

    Many Worlds

    Many Words icon

    Now on Facebook: http://facebook.com/nexssmanyworlds/

    2017-01-24
    Marc Kaufman

    The star HR 8799 has already played a pioneering role in the evolution of direct imaging of exoplanets. In 2008, the Marois group announced discovery of three of the four HR 8799 planets using direct imaging for the first time. On the same day that a different team announced the direct imaging of a planet orbiting the star Fomalhaut.

    1
    This false-color composite image traces the motion of the planet Fomalhaut b, a world captured by direct imaging. (NASA, ESA, and P. Kalas, University of California, Berkeley and SETI Institute)

    2
    This is an up to date image of the HR8799 planetary system from the December 2010 press release. To be used on the HR8799 page. From W. M. Keck Observatory

    Keck Observatory, Mauna Kea, Hawaii, USA
    Keck Observatory, Mauna Kea, Hawaii, USA

    HR 8799 is 129 light years away in the constellation of Pegasus. By coincidence, it is quite close to the star 51 Pegasi, where the first exoplanet was detected in 1995. It is less than 60 million years old, Wang said, and is almost five times brighter than the sun.

    Much can be learned from the motion of the planets, however long it may take for them to circle their sun. Based on the Keck observations, astronomers have concluded that the four planets orbit in roughly Keplerian motion around the star — almost circular, but not entirely.

    The planets are quite far from each other, which is to be expected due to their enormous size. Because of those large separations, Wang said astronomers will be watching to see if the system is stable or if some of the planets may be ejected from the system.

    Although the first three HR 8799 planets were officially discovered in 2008, researchers learned afterwards that the planets had actually already been observed. The “precovery” had been made in 1998 by the NICMOS instrument on the Hubble Space Telescope, but was teased out only after a newly developed image-processing technique was installed.

    The forth HR 8799 planet was found after further observations in 2009–2010. That planet orbits inside the first three planets, but is still fifteen times the distance from its sun than Earth to our sun. (The team working with Marois included Quinn Konopacky of the University of California, San Diego, Bruce Macintosh of Stanford University and Travis Barman of the University of Arizona.)

    James Graham is leader of the Berkeley NExSS group, and he was struck by some of the connections between what has been found around HR 8799 and what exists in our own solar system.

    For instance, he said that “it’s delightful that these recently discovered planets exhibit the same type of harmony exhibited by the Galilean moons, Io, Europa, and Ganymede (1:2:4) and illustrating some of the connections between our own solar system and those orbiting other stars. ”

    The outer planet orbits inside a dusty disk like our Kuiper Belt. It is one of the most massive disks known around any star within 300 light years of Earth, and there is room in the inner system for rocky planets.

    Both Wang and Marois are also on the team operating the Gemini Planet Imager, a cutting-edge addition to the Gemini South telescope in Atacama Desert of Chile.

    NOAO Gemini Planet Imager on Gemini South
    NOAO Gemini Planet Imager on Gemini South

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    The GPI includes a next-generation adaptive optics instrument that allows for much clearer seeing through the Earth’s atmosphere by correcting for turbulence. The result is better direct imaging. A key goal of the GPI project is to image large extrasolar planets orbiting at distances from their host stars similar to, or greater than, between Jupiter and our sun.

    It was initially thought (and hoped) that the plant might transit in front of Beta Pictoris, providing a unique opportunity to learn the radius of the planet and thus understand the size of the atmosphere. Unfortunately, the geometry of the planet’s orbit doesn’t quite line up in a way that would have the planet pass in front of the star from our point of view.

    However, although the planet doesn’t transit, what is called its Hill sphere does. The Hill sphere is the region surrounding the planet where its gravitational influence dominates over the gravitational influence of the star. As a result, the remnants of the disk left over from planet formation, planetary rings and moons could transit the star later this year and may be detectable.

    Those smaller bodies are unlikely to be the subject of any evocative movie animations, but direct imaging will be bringing many more of them to us in the days ahead.

    “The Beta Pic animation looked so cool that we’ve wanted to do more,” Wang said, explaining why the HR 8799 movie was made. “We wanted to make one that was even more impactful for the audience and could begin to show what one of these systems looks like.”

    I think they succeeded.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:15 pm on May 17, 2016 Permalink | Reply
    Tags: , , , HR 8799, ,   

    From ALMA: “Cometary Belt around Distant Multi-Planet System Hints at Hidden or Wandering Planets” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array

    ALMA

    17 May 2016
    Valeria Foncea

    Education and Public Outreach Officer

    Joint ALMA Observatory

    Santiago, Chile

    Tel: +56 2 467 6258

    Cell: +56 9 75871963
    Email: valeria.foncea@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    1
    ALMA image of dusty cometary ring around HR 8799, the only star where multiple planets have been imaged. The new data suggest the planets either migrated or another undiscovered planet is present. The zoom-in portion of the image, taken with ESO’s Very Large Telescope, shows the location of the known planets in this system in relation to a graphical representation of the central star. Credit: Booth et al., ALMA (NRAO/ESO/NAOJ); A. Zurlo, et al
    ___________________________________________________________

    Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have made the first high-resolution image of the cometary belt (a region analogous to our own Kuiper belt) around HR 8799, the only star where multiple planets have been imaged directly.

    Kuiper Belt. Minor Planet Center
    Kuiper Belt. Minor Planet Center

    The shape of this dusty disk, particularly its inner edge, is surprisingly inconsistent with the orbits of the planets, suggesting that either they changed position over time or there is at least one more planet in the system yet to be discovered.

    “This data really allow us to see the inner edge of this disk for the first time,” explains Mark Booth from Pontificia Universidad Católica de Chile and lead author of the study. “By studying the interactions between the planets and the disk, this new observation shows that either the planets that we see have had different orbits in the past or there is at least one more planet in the system that is too small to have been detected.”

    The disk, which fills a region 150 to 420 times the Sun-Earth distance, is produced by the ongoing collisions of cometary bodies in the outer reaches of this star system. ALMA was able to image the emission from millimeter-size debris in the disk; according to the researchers, the small size of these dust grains suggests that the planets in the system are larger than Jupiter. Previous observations with other telescopes at shorter wavelengths did not detect this discrepancy in the disk. It is not clear if this difference is due to the low resolution of the previous observations or because different wavelengths are sensitive to different grain sizes, which would be distributed slightly differently.

    HR 8799 is a young star approximately 1.5 times the mass of the Sun located 129 light-years from Earth in the direction of the constellation Pegasus.

    “This is the very first time that a multi-planet system with orbiting dust is imaged, allowing for direct comparison with the formation and dynamics of our own Solar System,” explains Antonio Hales, co-author of the study from the National Radio Astronomy Observatory in Charlottesville, Virginia.

    Additional information

    These results were published in the Monthly Notices of the Royal Astronomical Society titled Resolving the Planetesimal Belt of HR 8799 with ALMA by Booth et al., May 2016.
    Preprint: http://arxiv.org/abs/1603.04853

    The research team was composed by Mark Booth ([1], [2]), Andrés Jordán ([1], [3]), Simón Casassus ([2], [4]), Antonio S. Hales ([5], [6]), William R. F. Dent ([5]), Virginie Faramaz ([1]), Luca Matrà ([7], [8]), Denis Barkats ([9]), Rafael Brahm ([1], [3]) Jorge Cuadra ([1], [2]).

    [1] Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
    [2] Millennium Nucleus “Protoplanetary Disks”
    [3] Millennium Institute of Astrophysics, Vicuña Mackenna 4860, Santiago, Chile
    [4] Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
    [5] Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago, Chile
    [6] National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia, 22903-2475, USA
    [7] Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
    [8] European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile
    [9] Harvard University, 60 Garden Street, Cambridge, MA 02138, USA

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small

    ESO 50

    NAOJ

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: