Tagged: HAWC+ camera on SOFIA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:02 pm on March 5, 2019 Permalink | Reply
    Tags: "Galactic Wind Provides Clues to Evolution of Galaxies", "The space between galaxies is not empty" said Enrique Lopez-Rodriguez a Universities Space Research Association (USRA) scientist working on the SOFIA team. "It contains gas and dust - which are the s, Besides being a classic example of a starburst galaxy because it is forming an extraordinary number of new stars compared with most other galaxies Messier 82 also has strong winds blowing gas and dust, HAWC+ camera on SOFIA, , , Researchers found for the first time that the galactic wind flowing from the center of the Cigar Galaxy (M82) is aligned along a magnetic field and transports a very large mass of gas and dust - the e, Researchers using the airborne observatory SOFIA found definitively that the wind from the Cigar Galaxy not only transports a huge amount of gas and dust into the intergalactic medium but also drags t, SOFIA's newest instrument- the High-resolution Airborne Wideband Camera-Plus or HAWC+- uses far-infrared light to observe celestial dust grains which align along magnetic field lines. From these resul, The Cigar Galaxy (also known as M82) is famous for its extraordinary speed in making new stars with stars being born 10 times faster than in the Milky Way. Now data from the Stratospheric Observatory , These observations indicate that the powerful winds associated with the starburst phenomenon could be one of the mechanisms responsible for seeding material and injecting a magnetic field into the nea   

    From JPL-Caltech: “Galactic Wind Provides Clues to Evolution of Galaxies” 

    NASA JPL Banner

    From JPL-Caltech

    March 5, 2019
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    Written by Kassandra Bell and Arielle Moullet, USRA SOFIA Science Center

    1
    A composite image of the Cigar Galaxy (also called Messier 82), a starburst galaxy about 12 million light-years away in the constellation Ursa Major. The magnetic field detected by the High-resolution Airborne Wideband Camera-Plus instrument (known as HAWC+) on SOFIA (the Stratospheric Observatory for Infrared Astronomy), shown as streamlines, appears to follow the bipolar outflows (red) generated by the intense nuclear starburst. The image combines visible starlight (gray) and a tracing of hydrogen gas (red) observed from the Kitt Peak Observatory, with near-infrared and mid-infrared starlight and dust (yellow) observed by SOFIA and the Spitzer Space Telescope.

    NASA SOFIA High-resolution Airborne Wideband Camera-Plus HAWC+ Camera

    NASA/DLR SOFIA

    Kitt Peak National Observatory of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft)

    NASA/Spitzer Infrared Telescope

    The Cigar Galaxy (also known as M82) is famous for its extraordinary speed in making new stars, with stars being born 10 times faster than in the Milky Way. Now, data from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, have been used to study this galaxy in greater detail, revealing how material that affects the evolution of galaxies may get into intergalactic space.

    Researchers found, for the first time, that the galactic wind flowing from the center of the Cigar Galaxy (M82) is aligned along a magnetic field and transports a very large mass of gas and dust – the equivalent mass of 50 million to 60 million Suns.

    “The space between galaxies is not empty,” said Enrique Lopez-Rodriguez, a Universities Space Research Association (USRA) scientist working on the SOFIA team. “It contains gas and dust – which are the seed materials for stars and galaxies. Now, we have a better understanding of how this matter escaped from inside galaxies over time.”

    Besides being a classic example of a starburst galaxy, because it is forming an extraordinary number of new stars compared with most other galaxies, Messier 82 also has strong winds blowing gas and dust into intergalactic space. Astronomers have long theorized that these winds would also drag the galaxy’s magnetic field in the same direction, but despite numerous studies, there has been no observational proof of the concept.

    Researchers using the airborne observatory SOFIA found definitively that the wind from the Cigar Galaxy not only transports a huge amount of gas and dust into the intergalactic medium, but also drags the magnetic field so it is perpendicular to the galactic disc. In fact, the wind drags the magnetic field more than 2,000 light-years across – close to the width of the wind itself.

    “One of the main objectives of this research was to evaluate how efficiently the galactic wind can drag along the magnetic field,” said Lopez-Rodriguez. “We did not expect to find the magnetic field to be aligned with the wind over such a large area.”

    These observations indicate that the powerful winds associated with the starburst phenomenon could be one of the mechanisms responsible for seeding material and injecting a magnetic field into the nearby intergalactic medium. If similar processes took place in the early universe, they would have affected the fundamental evolution of the first galaxies.

    The results were published in December 2018 in The Astrophysical Journal Letters.

    SOFIA’s newest instrument, the High-resolution Airborne Wideband Camera-Plus, or HAWC+, uses far-infrared light to observe celestial dust grains, which align along magnetic field lines. From these results, astronomers can infer the shape and direction of the otherwise invisible magnetic field. Far-infrared light provides key information about magnetic fields because the signal is clean and not contaminated by emission from other physical mechanisms, such as scattered visible light.

    “Studying intergalactic magnetic fields – and learning how they evolve – is key to understanding how galaxies evolved over the history of the universe,” said Terry Jones, professor emeritus at the University of Minnesota, in Minneapolis, and lead researcher for this study. “With SOFIA’s HAWC+ instrument, we now have a new perspective on these magnetic fields.”

    The HAWC+ instrument was developed and delivered to NASA by a multi-institution team led by the Jet Propulsion Laboratory. JPL scientist and HAWC+ Principal Investigator Darren Dowell, along with JPL scientist Paul Goldsmith, were part of the research team using HAWC+ to study the Cigar Galaxy.

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA’s Armstrong Flight Research Center Hangar 703, in Palmdale, California.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 9:04 am on October 17, 2018 Permalink | Reply
    Tags: , , , Collimated jets, , Cygnus A, HAWC+ camera on SOFIA, Magnetic Fields May Be the Key to Black Hole Activity, ,   

    From NASA/DLR SOFIA: “Magnetic Fields May Be the Key to Black Hole Activity” 

    From NASA/DLR SOFIA

    NASA SOFIA Banner

    NASA SOFIA

    NASA SOFIA GREAT [German Receiver for Astronomy at Terahertz Frequencies]

    NASA SOFIA High-resolution Airborne Wideband Camera-Plus HAWC+ Camera

    NASA/SOFIA Forcast

    1
    Artist’s conception of the core of Cygnus A, including the dusty donut-shaped surroundings, called a torus, and jets launching from its center. Magnetic fields are illustrated trapping the dust in the torus. These magnetic fields could be helping power the black hole hidden in the galaxy’s core by confining the dust in the torus and keeping it close enough to be gobbled up by the hungry black hole.
    Credits: NASA/SOFIA/Lynette Cook

    Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their surroundings and launching jets at ultra-high speeds, while others are quiescent, even dormant. Why are some black holes feasting and others starving? Recent observations from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, are shedding light on this question.

    SOFIA data indicate that magnetic fields are trapping and confining dust near the center of the active galaxy, Cygnus A, and feeding material onto the supermassive black hole at its center.

    The unified model, which attempts to explain the different properties ­of active galaxies, states that the core is surrounded by a donut-shaped dust cloud, called a torus. How this obscuring structure is created and sustained has never been clear, but these new results from SOFIA indicate that magnetic fields may be responsible for keeping the dust close enough to be devoured by the hungry black hole. In fact, one of the fundamental differences between active galaxies like Cygnus A and their less active cousins, like our own Milky Way, may be the presence or absence of a strong magnetic field around the black hole.

    Although celestial magnetic fields are notoriously difficult to observe, astronomers have used polarized light — optical light from scattering and radio light from accelerating electrons — to study magnetic fields in galaxies. But optical wavelengths are too short and the radio wavelengths are too long to observe the torus directly. The infrared wavelengths observed by SOFIA are just right, allowing scientists, for the first time, to target and isolate the dusty torus.

    SOFIA’s new instrument, the High-resolution Airborne Wideband Camera-plus (HAWC+), is especially sensitive to the infrared emission from aligned dust grains. This has proven to be a powerful technique to study magnetic fields and test a fundamental prediction of the unified model: the role of the dusty torus in the active-galaxy phenomena.

    “It’s always exciting to discover something completely new,” noted Enrique Lopez-Rodriguez, a scientist at the SOFIA Science Center, and the lead author on the report of this new discovery. “These observations from HAWC+ are unique. They show us how infrared polarization can contribute to the study of galaxies.”

    2
    Two images of Cygnus A layered over each other to show the galaxy’s jets glowing with radio radiation (shown in red). Quiescent galaxies, like our own Milky Way, do not have jets like this, which may be related to magnetic fields. The yellow image shows background stars and the center of the galaxy shrouded in dust when observed with visible light. The area SOFIA observed is inside the small red dot in the center.
    Credits: Optical Image: NASA/STSiC Radio Image: NSF/NRAO/AUI/VLA

    NASA/ESA Hubble Telescope

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Recent observations of the heart of Cygnus A made with HAWC+ show infrared radiation dominated by a well-aligned dusty structure. Combining these results with archival data from the Herschel Space Observatory, the Hubble Space Telescope and the Gran Telescopio Canarias, the research team found that this powerful active galaxy, with its iconic large-scale jets, is able to confine the obscuring torus that feeds the supermassive black hole using a strong magnetic field.

    ESA/Herschel spacecraft active from 2009 to 2013

    Gran Telescopio Canarias at the Roque de los Muchachos Observatory on the island of La Palma, in the Canaries, Spain, sited on a volcanic peak 2,267 metres (7,438 ft) above sea level

    The results of this study were published in the July 10th issue of The Astrophysical Journal Letters.

    Cygnus A is in the perfect location to learn about the role magnetic fields play in confining the dusty torus and channeling material onto the supermassive black hole because it is the closest and most powerful active galaxy. More observations of different types of galaxies are necessary to get the full picture of how magnetic fields affect the evolution of the environment surrounding supermassive black holes. If, for example, HAWC+ reveals highly polarized infrared emission from the centers of active galaxies but not from quiescent galaxies, it would support the idea that magnetic fields regulate black hole feeding and reinforce astronomers’ confidence in the unified model of active galaxies.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SOFIA is a Boeing 747SP jetliner modified to carry a 100-inch diameter telescope. SOFIA is a joint project of NASA and the German Aerospace Center (DLR). The aircraft is based at and the program is managed from NASA Armstrong Flight Research Center’s facility in Palmdale, California. NASA’s Ames Research Center, manages the SOFIA science and mission operations in cooperation with the Universities Space Research Association (USRA) headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart.

    NASA image

    DLR Bloc

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: