Tagged: H.E.S.S. Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:07 am on October 8, 2016 Permalink | Reply
    Tags: , , , H.E.S.S., High energy neutrinos, , ,   

    From IceCube: “Neutrinos and gamma rays, a partnership to explore the extreme universe” 

    IceCube South Pole Neutrino Observatory

    07 Oct 2016
    Sílvia Bravo

    Solving the mystery of the origin of cosmic rays will not happen with a “one-experiment show.” High-energy neutrinos might be produced by galactic supernova remnants or by active galactic nuclei as well as other potential sources that are being sought. And, if our models are right, gamma rays at lower energies could also help identify neutrino sources and, thus, cosmic-ray sources. It’s sort of a “catch one, get them all” opportunity.

    IceCube’s collaborative efforts with gamma-ray, X-ray, and optical telescopes started long ago. Now, the IceCube, MAGIC and VERITAS collaborations present updates to their follow-up programs that will allow the gamma-ray community to collect data from specific sources during periods when IceCube detects a higher number of neutrinos.

    MAGIC Cherenkov gamma ray telescope  on the Canary island of La Palma, Spain
    MAGIC Cherenkov gamma ray telescope on the Canary island of La Palma, Spain


    Details of the very high energy gamma-ray follow-up program have been submitted to the Journal of Instrumentation.

    Image: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

    From efforts begun by its predecessor AMANDA, IceCube initiated a gamma-ray follow-up program with MAGIC for sources of electromagnetic radiation emissions with large time variations. If we can identify periods of increased neutrino emission, then we can look for gamma-ray emission later on from the same direction.

    For short transient sources, such as gamma-ray bursts and core-collapse supernovas, X-ray and optical wavelength telescopes might also detect the associated electromagnetic radiation. In this case, follow-up observations are much more time sensitive, with electromagnetic radiation expected only a few hours after neutrino emission from a GRB or a few weeks after a core-collapse supernova.

    Updates to this transient follow-up system will use a multistep high-energy neutrino selection to send alerts to gamma-ray telescopes, such as MAGIC and VERITAS, if clusters of neutrinos are observed from a predefined list of potential sources. The combined observation of an increased neutrino and gamma-ray flux could point us to the first source of astrophysical neutrinos. Also, the information provided by both cosmic messengers will improve our understanding of the physical processes that power those sources.

    The initial selection used simple cuts on a number of variables to discriminate between neutrinos and the atmospheric muon background. IceCube, MAGIC, and VERITAS are currently testing a new event selection that uses learning machines and other sophisticated discrimination algorithms to take into account the geometry and time evolution of the hit pattern in IceCube events. Preliminary studies show that this advanced event selection has a sensitivity comparable to offline point-source samples, with a 30-40% sensitivity increase in the Northern Hemisphere with respect to the old selection. The new technique does not rely only on catalogues of sources and allows observing neutrino flares in the Southern Hemisphere. Thus, those alerts will also be forwarded to the H.E.S.S. collaboration, expanding the gamma-ray follow-up program to the entire sky.

    HESS Cherenko Array, located on the Cranz family farm, Göllschau, in Namibia, near the Gamsberg
    HESS Cherenko Array, located on the Cranz family farm, Göllschau, in Namibia, near the Gamsberg

    During the last few years, IceCube has sent several alerts to VERITAS and MAGIC that have not yet resulted in any significant correlation between neutrino and gamma-ray emission. For some of those, however, the source was not in the reach of the gamma-ray telescopes, either because it was out of the field of view or due to poor weather conditions. Follow-up studies have allowed setting new limits on high-energy gamma-ray emission.

    With the increased sensitivity in the Northern Hemisphere and new alerts to telescopes in the Southern Hemisphere, the discovery potential of these joint searches for neutrino and gamma-ray sources is greatly enhanced. Stay tuned for new results!

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ICECUBE neutrino detector

    IceCube neutrino detector interior

    IceCube is a particle detector at the South Pole that records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. In addition, exploring the background of neutrinos produced in the atmosphere, IceCube studies the neutrinos themselves; their energies far exceed those produced by accelerator beams. IceCube is the world’s largest neutrino detector, encompassing a cubic kilometer of ice.

  • richardmitnick 8:31 pm on March 16, 2016 Permalink | Reply
    Tags: , , , H.E.S.S.   

    From DESY: “Researchers locate particle accelerator of unprecedented energy in the centre of our galaxy” 


    No writer credit found

    Scientists of the H.E.S.S. Observatory have identified an area around the black hole in the centre of the Milky Way that emits intense gamma radiation of extremely high energy. The source of the radiation is an astrophysical accelerator speeding up protons to energies of up to one peta electronvolts (PeV) – more than 100 times higher than the largest and most powerful man-made particle accelerator, the Large Hadron Collider LHC at CERN. The scientists have now published their detailed analysis of recent H.E.S.S. data in the scientific journal Nature. The analysis shows the first identification of a source of cosmic rays with peta-electronvolt energy within the Milky Way: it is very likely the supermassive black hole [Sag A*] at the centre of our galaxy itself.

    Sag A prime
    SAG A*

    For more than 10 years, H.E.S.S. (High Energy Stereoscopic System), a gamma ray telescope in Namibia which is operated by 150 scientists from 12 countries, has mapped the centre of the Milky Way in highest energy gamma rays.

    HESS Cherenko Array
    H.E.S.S. Array

    The gamma rays observed by the researchers are produced by so-called cosmic radiation – high-energy protons, electrons and atomic nuclei, which are accelerated in different places of the universe. Scientists have wondered about the astrophysical sources of this cosmic radiation since its discovery more than a century ago. The problem is that the particles are electrically charged and are therefore deflected in interstellar magnetic fields from their straight path. For this reason, their flight does not point back to its place of production. However, the particles of cosmic radiation often encounter interstellar gas or photons close to their source, producing high-energy gamma rays which reach the earth on a straight path. These gamma rays are used by the scientists of H.E.S.S. Observatory to make the sources of cosmic rays in the sky visible.

    When gamma rays hit the Earth´s atmosphere, they produce short bluish flashes of light that can be detected by large mirror telescopes with fast light sensors at night. With this technique, more than 100 sources of high-energy gamma rays have been discovered in the sky over the past decades. Currently, H.E.S.S. is the most sensitive tool for their detection.

    It is known that cosmic radiation with energies up to about 100 tera electronvolts (TeV) is generated in the Milky Way. However theoretical arguments and the direct measurement of the cosmic radiation suggest that these particles should be accelerated in our galaxy up to energies of at least one peta electronvolt (PeV). In recent years, many extragalactic sources have been discovered that accelerate cosmic rays to multi-TeV energies, but the search for accelerators of the highest-energy cosmic rays in our galaxy remains unsuccessful so far.

    Detailed observations of the centre of the Milky Way, which were carried out with the H.E.S.S. telescopes during the past 10 years, now provide the first answers. “We have located an astrophysical accelerator accelerating protons to energies of up to one peta electronvolts, and that continuously over at least 1000 years,” says Prof. Christian Stegmann, head of DESY in Zeuthen and former spokesperson of the H.E.S.S. Collaboration.

    Already during the first years of observation since 2002 H.E.S.S. had detected a strong compact source and an extended band of diffuse highest-energy gamma rays in the galactic centre. Evidence of this diffuse radiation, which covers an area of about 500 light years across, was already a clear indication of a source of cosmic rays in this region; proof of the source itself remained unfulfilled for the researchers. A significantly larger amount of observational data together with advances in analytical techniques have made it now possible to measure for the first time both the spatial distribution as well as the energy of the cosmic rays.

    Although the central region of our Milky Way hosts many objects that can generate high-energy cosmic rays, for instance a supernova remnant, a pulsar wind nebulae and a compact star clusters, the measurement of gamma rays from the galactic centre provides strong evidence that the supermassive black hole at the galactic centre itself accelerates protons to an energy of up to one PeV.

    Supernova remnant Crab nebula
    Crab supernova remnant

    “Our data show that the observed glow of gamma rays around the galactic centre is symmetrical,” says H.E.S.S. researcher Stefan Klepser from Zeuthen. “The gamma rays are of a high energy and concentrated towards the centre, which suggests that they must be the echo of a huge particle accelerator which is located in the centre of this glow.” Prof. Stegmann adds that “several possible acceleration regions can be considered, either in the immediate vicinity of the black hole, or further away, where a fraction of the material falling into the black hole is ejected back into the environment, potentially initiating the acceleration of particles.“

    However, the analysis of the measurements also shows that this source alone cannot account for the total flux of cosmic rays detected on Earth. “If, however, our central black hole has been more active in the past”, the researchers argue, “then it might actually be responsible for the entire bulk of today´s galactic cosmic rays”. If their assumption is correct, the 100-year-old mystery of the origin of cosmic rays would be solved.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition


    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

  • richardmitnick 12:45 pm on January 23, 2015 Permalink | Reply
    Tags: , , , , H.E.S.S.   

    From phys.org: “Three extremely luminous gamma-ray sources discovered in Milky Way’s satellite galaxy” 


    Jan 23, 2015
    Thomas Zoufal

    Optical image of the Milky Way and a multi-wavelength (optical, Hα) zoom into the Large Magellanic Cloud with superimposed H.E.S.S. sky maps. Credit: Milky Way image: © H.E.S.S. Collaboration, optical: SkyView, A. Mellinger

    Once again, the High Energy Stereoscopic System, H.E.S.S., has demonstrated its excellent capabilities. In the Large Magellanic Cloud, it discovered most luminous very high-energy gamma-ray sources: three objects of different type, namely the most powerful pulsar wind nebula, the most powerful supernova remnant, and a shell of 270 light years in diameter blown by multiple stars, and supernovae – a so-called superbubble.

    High Energy Stereoscopic System

    The Large Magellanic Cloud

    This is the first time that stellar-type gamma-ray sources are detected in an external galaxy, at these gamma-ray energies. The superbubble represents a new source class in very high-energy gamma rays.

    Very high-energy gamma rays are the best tracers of cosmic accelerators such as supernova remnants and pulsar wind nebulae – end-products of massive stars. There, charged particles are accelerated to extreme velocities. When these particles encounter light or gas in and around the cosmic accelerators, they emit gamma rays. Very high-energy gamma rays can be measured on Earth by observing the Cherenkov light emitted from the particle showers produced by incident gamma rays high up in the atmosphere using large telescopes with fast cameras.

    The Large Magellanic Cloud (LMC) is a dwarf satellite galaxy of our Milky Way, located about 170.000 light years away and showing us its face. New, massive stars are formed at a high rate in the LMC, and it harbors numerous massive stellar clusters. The LMC’s supernova rate relative to its stellar mass is five times that of our Galaxy. The youngest supernova remnant in the local group of galaxies, SN 1987A, is also a member of the LMC. Therefore, the H.E.S.S. scientists dedicated significant observation to searching for very high-energy gamma rays from this cosmic object.

    Local Group

    SN1987a before and after by David Malin Anglo-Australian Telescope

    For a total of 210 hours, the High Energy Stereoscopic System (H.E.S.S.) has observed the largest star-forming region within the LMC called Tarantula Nebula. For the first time in a galaxy outside the Milky Way, individual sources of very high-energy gamma rays could be resolved: three extremely energetic objects of different type.

    This first light image of the TRAPPIST national telescope at La Silla shows the Tarantula Nebula, located in the Large Magellanic Cloud (LMC) — one of the galaxies closest to us. Also known as 30 Doradus or NGC 2070, the nebula owes its name to the arrangement of bright patches that somewhat resembles the legs of a tarantula. Taking the name of one of the biggest spiders on Earth is very fitting in view of the gigantic proportions of this celestial nebula — it measures nearly 1000 light-years across! Its proximity, the favourable inclination of the LMC, and the absence of intervening dust make this nebula one of the best laboratories to help understand the formation of massive stars better. The image was made from data obtained through three filters (B, V and R) and the field of view is about 20 arcminutes across.

    The so-called superbubble 30 Dor C is the largest known X-ray-emitting shell and appears to have been created by several supernovae and strong stellar winds. Superbubbles are broadly discussed as (complementary or alternative to individual supernova remnants) factories where the galactic cosmic rays are produced. The H.E.S.S. results demonstrate that the bubble is a source of, and filled by, highly energetic particles. The superbubble represents a new class of sources in the very high-energy regime.

    Pulsars are highly magnetized, fast rotating neutron stars that emit a wind of ultra-relativistic particles forming a nebula. The most famous one is the Crab Nebula, one of the brightest sources in the high-energy gamma-ray sky.

    This is a mosaic image, one of the largest ever taken by NASA’s Hubble Space Telescope of the Crab Nebula, a six-light-year-wide expanding remnant of a star’s supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did, almost certainly, Native Americans.

    NASA Hubble Telescope
    NASA/ESA Hubble

    The orange filaments are the tattered remains of the star and consist mostly of hydrogen. The rapidly spinning neutron star embedded in the center of the nebula is the dynamo powering the nebula’s eerie interior bluish glow. The blue light comes from electrons whirling at nearly the speed of light around magnetic field lines from the neutron star. The neutron star, like a lighthouse, ejects twin beams of radiation that appear to pulse 30 times a second due to the neutron star’s rotation. A neutron star is the crushed ultra-dense core of the exploded star.

    The Crab Nebula derived its name from its appearance in a drawing made by Irish astronomer Lord William Parsons, 3rd Earl of Rosse in 1844, using a 36-inch telescope. When viewed by Hubble, as well as by large ground-based telescopes such as the European Southern Observatory’s Very Large Telescope, the Crab Nebula takes on a more detailed appearance that yields clues into the spectacular demise of a star, 6,500 light-years away.

    ESO VLT Interferometer
    ESO/ VLT

    The newly composed image was assembled from 24 individual Wide Field and Planetary Camera 23 exposures taken in October 1999, January 2000, and December 2000. The colors in the image indicate the different elements that were expelled during the explosion. Blue in the filaments in the outer part of the nebula represents neutral oxygen, green is singly-ionized sulfur, and red indicates doubly-ionized oxygen.

    NASA Hubble WFPC2
    WFPC2 (no longer in service)

    The pulsar PSR J0537−6910 driving the wind nebula N 157B discovered by the H.E.S.S. telescopes in the LMC is in many respects a twin of the very powerful Crab pulsar in our own Galaxy. However, its pulsar wind nebula N 157B outshines the Crab Nebula by an order of magnitude, in very high-energy gamma rays. Reasons are the lower magnetic field in N 157B and the intense starlight from neighboring star-forming regions, which both promote the generation of high-energy gamma rays.

    The supernova remnant N 132D, known as a bright object in the radio and infrared bands, appears to be one of the oldest – and strongest – supernova remnants still glowing in very high-energy gamma rays. Between 2500 and 6000 years old – an age where models predict that the supernova explosion front has slowed down and it ought no longer be efficiently accelerating particles – it still outshines the strongest supernova remnants in our Galaxy. The observations confirm suspicions raised by other H.E.S.S. observations, that supernova remnants can be much more luminous than thought before.

    Observed at the limits of detectability, and partially overlapping with each other, these new sources challenged the H.E.S.S. scientists. The discoveries were only possible due to the development of advanced methods of interpreting the Cherenkov images captured by the telescopes, improving in particular the precision with which gamma-ray directions can be determined.

    “Both the pulsar wind nebula and the supernova remnant, detected in the Large Magellanic Cloud by H.E.S.S., are more energetic than their most powerful relatives in the Milky Way. Obviously, the high star formation rate of the LMC causes it to breed very extreme objects”, summarizes Chia Chun Lu, a student who analyzed the LMC data as her thesis project. “Surprisingly, however, the young supernova remnant SN 1987A did not show up, in contrast to theoretical predictions. But we’ll continue the search for it,” adds her advisor Werner Hofmann, director at the MPI for Nuclear Physics in Heidelberg and for many years H.E.S.S. spokesperson.

    Indeed, the new H.E.S.S. II 28 m telescope will boost performance of the H.E.S.S. telescope system, and in the more distant future the planned Cherenkov Telescope Array (CTA) will provide even deeper and higher-resolution gamma-ray images of the LMC – in the plans for science with CTA, the satellite galaxy is already identified as a “Key Science Project” deserving special attention.

    Cherenkov Telescope Array

    The H.E.S.S. Telescopes

    The collaboration: The High Energy Stereoscopic System (H.E.S.S.) team consists of scientists from Germany, France, the United Kingdom, Namibia, South Africa, Ireland, Armenia, Poland, Australia, Austria, the Netherlands and Sweden, supported by their respective funding agencies and institutions.

    The instrument: The results were obtained using the High Energy Stereoscopic System (H.E.S.S.) telescopes in Namibia, in South-West Africa. This system of four 13 m diameter telescopes – recently complemented with the huge 28 m H.E.S.S. II telescope – is one of the most sensitive detectors of very high-energy gamma rays. These are absorbed in the atmosphere, where they create a short-lived shower of particles. The H.E.S.S. telescopes detect the faint, short flashes of bluish light which these particles emit (named Cherenkov light, lasting a few billionths of a second), collecting the light with big mirrors which reflect onto extremely sensitive cameras. Each image gives the position on the sky of a single gamma-ray photon, and the amount of light collected gives the energy of the initial gamma ray. Building up the images photon by photon allows H.E.S.S. to create maps of astronomical objects as they appear in gamma rays.

    The H.E.S.S. telescopes have been operating since late 2002; in September 2012 H.E.S.S. celebrated the first decade of operation, by which time the telescopes had recorded 9415 hours of observations, and detected 6361 million air shower events. H.E.S.S. has discovered the majority of the about 150 known cosmic objects emitting very high-energy gamma rays. In 2006, the H.E.S.S. team was awarded the Descartes Prize of the European Commission, in 2010 the Rossi Prize of the American Astronomical Society. A study performed in 2009 listed H.E.S.S. among the top 10 observatories worldwide.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

  • richardmitnick 8:28 am on April 7, 2013 Permalink | Reply
    Tags: , , , , , H.E.S.S.   

    From H.E.S.S.: “Disentangling TeV emission in complex regions: the Scutum arm tangent 

    HESS Cherenko Array

    April 2013
    No Writer Credit

    “With increasing statistics of data and improved analysis methods, many of the extended H.E.S.S. gamma ray sources can be resolved into finer structures or even multiple sources. A nice example is a study of the region of Scutum arm tangent. The Scutum arm is one of the spiral arms of our Galaxy, and from the solar system one looks along the tangent of arm, at Galactic Longitude around 30 deg., with sources located along the arm piling up…


    Composite image of the source C region of HESS J1843-033: in red the radio image (from the VLA survey) showing a radio-galaxy candidate and a small fraction of a putative supernova remnant shell at the left, in blue the Chandra image, showing the diffuse emission coincident with the northern lobe, which is likely to be a pulsar wind nebula because of its morphology and spectrum.

    Applying analysis techniques to optimize angular resolution, the extended gamma-ray emission of the source HESS J1843-033 can be resolved into three significant gamma ray sources labeled source A, B, C. Source A is an extended source, source B is consistent with a point source, and source C is marginally extended. Below source B another faint hotspot starts to emerge.

    Top: The Scutum arm tangent as seen in the H.E.S.S. Galactic Plane Survey (in Galactic coordinates). Bottom: Zoom into the HESS J1843-033 region, using a gamma-ray analysis optimized for best angular resolution, and applying minimal smoothing of the image (image in RA-Dec coordinates, rotated compared to the survey image). The three sources have significances in excess of 8 sigma (source C), and 10 sigma (sources A, B). Source A is extended with a size of 0.15 degr., source B is consistent with a point source, and source C is marginally extended.”

    See the full article with much more data here.

    The High Energy Stereoscopic System

    H.E.S.S. is a system of Imaging Atmospheric Cherenkov Telescopes that investigates cosmic gamma rays in the energy range from 10s of GeV to 10s of TeV. The name H.E.S.S. stands for High Energy Stereoscopic System, and is also intended to pay homage to Victor Hess , who received the Nobel Prize in Physics in 1936 for his discovery of cosmic radiation. The instrument allows scientists to explore gamma-ray sources with intensities at a level of a few thousandths of the flux of the Crab nebula (the brightest steady source of gamma rays in the sky). H.E.S.S. is located in Namibia, near the Gamsberg mountain, an area well known for its excellent optical quality. The first of the four telescopes of Phase I of the H.E.S.S. project went into operation in Summer 2002; all four were operational in December 2003, and were officially inaugurated on September 28, 2004. A much larger fifth telescope – H.E.S.S. II – is operational since July 2012, extending the energy coverage towards lower energies and further improving sensitivity.

    Crab nebula

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 10:18 am on December 14, 2012 Permalink | Reply
    Tags: , , , , , H.E.S.S.   

    From CERN COURIER: HESS II is officially inaugurated The world’s largest Cherenkov telescope 

    Nov 27, 2012

    HESS II, located in the Khomas Highlands of Namibia, was officially inaugurated on 28 September, two months after it saw first light (CERN Courier October 2012 p39). Werner Hofmann of the Max Planck Institute for Nuclear Physics, Heidelberg, and spokesperson of the HESS collaboration, opened the ceremony with a brief presentation on HESS II, which was followed by messages from representatives of key collaborating institutes and agencies. HESS II has a 28-meter mirror and weighs in at almost 600 tons. Originally, H.E.S.S. had four telescopes, each with a mirror just under 12 meters in diameter


    HESS Cherenko Array

    H.E.S.S. is a system of Imaging Atmospheric Cherenkov Telescopes that investigates cosmic gamma rays in the energy range from 10s of GeV to 10s of TeV. The name H.E.S.S. stands for High Energy Stereoscopic System, and is also intended to pay homage to Victor Hess , who received the Nobel Prize in Physics in 1936 for his discovery of cosmic radiation. The instrument allows scientists to explore gamma-ray sources with intensities at a level of a few thousandths of the flux of the Crab nebula (the brightest steady source of gamma rays in the sky). H.E.S.S. is located in Namibia, near the Gamsberg mountain, an area well known for its excellent optical quality. The first of the four telescopes of Phase I of the H.E.S.S. project went into operation in Summer 2002; all four were operational in December 2003, and were officially inaugurated on September 28, 2004. A much larger fifth telescope – H.E.S.S. II – is operational since July 2012, extending the energy coverage towards lower energies and further improving sensitivity.

    The H.E.S.S. observatory is operated by the collaboration of more than 170 scientists, from 32 scientific institutions and 12 different countries: Namibia and South Africa, Germany, France, the UK, Ireland, Austria, Poland, the Czech Republic, Sweden, Armenia, and Australia. To date, the H.E.S.S. Collaboration has published over 100 articles in high-impact scientific journals, including the top-ranked Nature and Science journals.”

    See the full article here.

    ScienceSprings is powered by MAINGEAR computers

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: