From University of Toronto (CA) : “Groundbreakers: U of T’s Data Sciences Institute to help researchers find answers to their biggest questions” 

From University of Toronto (CA)

September 16, 2021
Berton Woodward

When University of Toronto astronomer Bryan Gaensler looks up at the night sky, he doesn’t just see stars – he sees data. Big data.

So big, in fact, that his current research tracking the baffling “fast radio bursts” (FRBs) that bombard Earth from across the universe requires the capture of more data per second than all of Canada’s internet traffic.

“This is probably the most exciting thing in astronomy right now, and it’s a complete mystery,” says Gaensler, director of U of T’s Dunlap Institute for Astronomy & Astrophysics and Canada Research Chair in Radio Astronomy. “Randomly, maybe once a minute, there’s this incredibly bright flash of radio waves – like a one-millisecond burst of static – from random directions all over the sky.

“We now know that they’re from very large distances, up to billions of light-years, so they must be incredibly powerful to be able to be seen this far away.”

U of T is a world leader in finding FRBs, using the multi-university CHIME radio telescope in British Columbia’s Okanagan region and a U of T supercomputer. Yet, despite the impressive technology, many daunting challenges remain.

“It’s a massive computational and processing problem that is holding us back,” he says. “We are recording more than the entire internet of Canada, every day, every second. And because there’s no hard drive big enough or fast enough to actually save that data, we end up throwing most of it away. We would obviously like to better handle the data, so that needs better equipment and better algorithms and just better ways of thinking about the data.”

With the creation of U of T’s Data Sciences Institute (DSI), Gaensler and his colleagues now have a new place to turn to for help. The institute, which is holding a launch event tomorrow, is designed to help the university’s wealth of academic experts in a variety of disciplines team up with statisticians, computer scientists, data engineers and other digital experts to create powerful research results that can solve a wide range of problems – from shedding light on interstellar mysteries to finding life-saving genetic therapies.

“The way forward is to bring together new teams of astronomers, computer scientists, artificial intelligence experts and statisticians who can come up with fresh approaches optimized to answer specific scientific questions that we currently don’t know how to address,” Gaensler says.

The Data Sciences Institute is just one of nearly two dozen Institutional Strategic Initiatives (ISI) launched by U of T to address complex, real-world challenges that cut across fields of expertise. Each initiative brings together a flexible, multidisciplinary team of researchers, students and partners from industry, government and the community to take on a “grand challenge.”

“We’re bringing together individuals at the intersection of traditional disciplinary fields and computational and data sciences,” says Lisa Strug, director of the Data Sciences Institute and a professor in the departments of statistical sciences and computer science in the Faculty of Arts & Science, and a senior scientist at the Hospital for Sick Children research institute.

She notes that U of T boasts world-leading experts in fields such as medicine, health, social sciences, astrophysics and the arts, and “some of the top departments in the world in the cognate areas of data science like statistics, mathematics, computer science and engineering.”

Data science techniques can be brought to bear on a near-infinite variety of academic questions – from climate change to transportation, planning to art history. In literature, Strug says, many works from previous centuries are now being digitized, allowing data-based analysis right down to, say, sentence structure.

“New fields of data science are emerging every day,” says Strug, who oversees data-intensive genomics research in complex diseases such as cystic fibrosis that has led to the promise of new drugs to treat the debilitating lung disease. “We have so much computational disciplinary strength we can leverage to define and advance these new fields.

“We want to make sure that faculty have access to the cutting-edge tools and methodology that enable them to push the frontiers of their field forward. They may be answering questions they wouldn’t have been able to ask before, without that data and without those tools.”

A key function of the DSI is the creation and funding of Collaborative Research Teams (CRTs) of professors and students from a variety of disciplines who can work together on important projects with stable support.

Gaensler, who already has statisticians on his team, says he’s looking to the CRTs to greatly expand the scope of his work.

“We have just done the low-hanging fruit,” he says. “There are many deeper problems that we haven’t even started on.”

Similarly, Laura Rosella, an associate professor at the Dalla Lana School of Public Health, says the collaborative teams will be a major asset for the university.

“We’re going to dedicate funding to these multi-disciplinary trainees and post-docs so we can start building a critical mass of people that can actually translate between these disciplines,” she says. “To solve problems, you need this connecting expertise.”

Rosella played a key role in how Ontario dealt with COVID-19 in the early part of 2021. By analyzing anonymous cellphone data along with health information, she and her interdisciplinary team were able to see where people were moving and congregating, and then predict in advance likely clusters of the disease that would appear up to two weeks later. Her work helped support the province’s highly successful strategy of targeting so-called “hotspots.”

“We’ve been able to work with diverse data sources in order to generate insights that are used for
high-level pandemic preparedness and planning, in ways that weren’t possible before,” says Rosella, who sits on Ontario’s COVID-19 Modelling Consensus Table. “And we’ve also brought in new angles to the data around the social determinants of health that have shone a light on the policy measures that are needed to truly address disparities in COVID rates.”

Rosella’s population risk tools also include one for diabetes, which health systems can use to estimate the future burden of the disease and guide future planning. This includes inputs about the built environment. For example, if people can walk to a new transit stop, Rosella says, the increased exercise may have an impact on diabetes or other diseases. Potentially, even satellite imaging data could be brought into the prediction mix, she says.

In addition to advancing research in a given field, the Data Sciences Institute is also seeking to advance equity.

That includes tackling societal inequalities uncovered by data research – including how socio-economic factors can determine who is more likely to get COVID-19 – and the way the research itself is being conducted.

For example, Strug says most genomics studies have focused on participants of European origin, even though the genetic risk factors for various diseases can differ between different ethnicities.

“We must make sure we develop and implement the models, tools and research designs – and bring diverse sources of data together – to ensure our understanding of disease risk is applicable to all,” Strug says.

Many algorithms, or the data they use to make predictions, contain unconscious bias that may skew results – which is why Strug says transparency is vital both to support equity and to ensure studies can be reproduced properly.

Gaensler says it’s critical to ensure diversity among researchers, too.

“My department looks very different from the faces that I see on the subway,” he says. “It’s not a random sampling of Canadian society – it’s very male, white and old, and that’s a problem we need to work on.”

Strug hopes the Data Sciences Institute will ultimately become a nucleus for researchers across the university – and beyond.

“There’s never been one entrance to the university to guide people, so it’s so important for us to be that front door,” she says.

“We will make every effort to stay abreast of the different fantastic things that are happening in data sciences and be able to direct people to the right place, as well as provide an inclusive, welcoming and inspiring academic home.”

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities (US) outside the United States, the other being McGill(CA).

The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

Early history

The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

World wars and post-war years

The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

Since 2000

In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


Since 1926 the University of Toronto has been a member of the Association of American Universities (US) a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.