From The National Science Foundation: “Were galaxies different in the early universe?”
From The National Science Foundation
3.13.23
Research improves search for cosmic dawn radiation and tests theories of galaxy formation.

Dark Energy Camera Enables Astronomers a Glimpse at the Cosmic Dawn. Credit: The National Astronomical Observatory of Japan (国立天文台](JP).
The Milky Way above HERA. HERA sits in a region where radios, cellphones and gas-powered cars are prohibited.
Credit: Dara Storer.

The University of California-Berkeley Hydrogen Epoch of Reionization Array (HERA) SARAO SKA in the South African Karoo desert South Africa.

The University of California-Berkeley Hydrogen Epoch of Reionization Array (HERA) SARAO SKA in the South African Karoo desert South Africa.
An array of 350 radio telescopes in the Karoo desert of South Africa is getting closer to detecting “cosmic dawn,” the era after the Big Bang when stars first ignited and galaxies began to bloom.
In a paper published in The Astrophysical Journal [below], the Hydrogen Epoch of Reionization Array, or HERA, team reports that it has doubled the sensitivity of the array, which was already the most sensitive radio telescope in the world dedicated to exploring this unique period in the history of the universe.
The HERA collaboration is led by University of California-Berkeley scientists and includes others across North America, Europe and South Africa. The construction of the array is funded in part by the U.S. National Science Foundation.
While the researchers have yet to detect radio emissions from the end of the cosmic dark ages their results provide clues to the composition of stars and galaxies in the early universe. The data show that the earliest stars which may have formed around 200 million years after the Big Bang contained few other elements than hydrogen and helium.
That’s different than the composition of today’s stars, which have a variety of so-called metals, the astronomical term for elements ranging from lithium to uranium that are heavier than helium. The finding is consistent with the current model of how stars and stellar explosions produced most of the other elements.
“This is moving toward a potentially revolutionary technique in cosmology,” said Joshua Dillon, a scientist at UC Berkeley and lead author of the paper.
HERA seeks to detect radiation from the neutral hydrogen that filled the space between early stars and galaxies and determine when that hydrogen became ionized and stopped emitting or absorbing radio waves.
When the radio dishes are fully online and calibrated-likely this fall-the team hopes to construct a 3D map of the bubbles of ionized and neutral hydrogen as they evolved from about 200 million to 1 billion years after the Big Bang. The map could tell us how early stars and galaxies differed from those of today and how the universe as a whole looked in its adolescence.
The fact that the HERA team has not yet detected these bubbles of ionized hydrogen in the cold hydrogen of the cosmic dark age rules out some theories of how stars evolved in the early universe.
“Early galaxies had to have been different than the galaxies we observe today for us not to have seen a signal,” said Aaron Parsons, principal investigator for HERA and a UC Berkeley astronomer. “In particular, their X-ray characteristics had to have changed. Otherwise, we would have detected the signal we’re looking for.”
Additional NSF support for the research came through a number of grants: Illuminating our Early Universe with HERA; HERA: Unveiling the Cosmic Dawn; Data Analysis Techniques for the Epoch of Reionization and Beyond; and XSEDE 2.0: Integrating, Enabling and Enhancing National Cyberinfrastructure with Expanding Community Involvement, which supported XSEDE, Extreme Science and Engineering Discovery Environment, providing advanced computational resources. Computations contributing to the discovery were performed on the NSF-supported Bridges-2 system at the Pittsburgh Supercomputing Center, applying services available through the XSEDE project.
The Astrophysical Journal
See the science paper for instructive material with images.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, The National Science Foundation is the major source of federal backing.
We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.
The National Science Foundation ‘s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that The National Science Foundation is “where discoveries begin.”
Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, The National Science Foundation -funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.
The National Science Foundation also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.
Another essential element in The National Science Foundation ‘s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.
No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. The National Science Foundation is proud to be a major part of that process.
Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:
Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
Award graduate fellowships in the sciences and in engineering.
Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.
At present, The National Science Foundation has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.
The National Science Foundation is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.
Within The National Science Foundation ‘s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of The National Science Foundation are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.
Each year, The National Science Foundation supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that The National Science Foundation support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.
As described in our strategic plan, The National Science Foundation is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. The National Science Foundation is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.
Unlike many other federal agencies, The National Science Foundation does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.
The National Science Foundation ‘s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” The National Science Foundation was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.
Dozens of companies are gearing up to produce nanoscale products. The National Science Foundation is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.
At the same time, we are looking for the next frontier.
The National Science Foundation ‘s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. The National Science Foundation operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.
The National Science Foundation funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.
Proposals may be submitted in response to the various funding opportunities that are announced on the The National Science Foundation website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms The National Science Foundation uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, The National Science Foundation receives more than 42,000 proposals per year.
To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. The National Science Foundation selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.
The reviewer’s job is to decide which projects are of the very highest caliber. The National Science Foundation ‘s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.
The National Science Foundation program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at The National Science Foundation ‘s division level. A principal investigator (PI) whose proposal for The National Science Foundation support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant The National Science Foundation program officer or division director.
If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to The National Science Foundation’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.
Reply