Tagged: Ground based Radio Astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:48 pm on November 28, 2022 Permalink | Reply
    Tags: "Astronomers develop novel way to ‘see’ first stars through fog of early Universe", "REACH": Radio Experiment for the Analysis of Cosmic Hydrogen, "Seeing" through the fog of the early Universe and detect light from the first stars and galaxies., , , , Because of gravity the elements eventually came together and the conditions were right for nuclear fusion which is what formed the first stars., , Ground based Radio Astronomy, Observing the birth of the first stars and galaxies has been a goal of astronomers for decades., The signal that astronomers aim to detect is expected to be approximately one hundred thousand times weaker than other radio signals coming also from the sky., ,   

    From The University of Cambridge (UK) Cavendish Laboratory – Department of Physics : “Astronomers develop novel way to ‘see’ first stars through fog of early Universe” 

    From The University of Cambridge (UK) Cavendish Laboratory – Department of Physics

    U Cambridge bloc

    7.21.22 [Just found this.]
    Jacqueline Garget
    External Affairs and Communications team
    The University of Cambridge (UK)
    jg533@cam.ac.uk

    1
    Artist’s impression of stars springing up out of the darkness. Credit: NASA/JPL-Caltech.

    A team of astronomers has developed a method that will allow them to ‘see’ through the fog of the early Universe and detect light from the first stars and galaxies.

    The researchers, led by the University of Cambridge, have developed a methodology that will allow them to observe and study the first stars through the clouds of hydrogen that filled the Universe about 378,000 years after the Big Bang.

    Observing the birth of the first stars and galaxies has been a goal of astronomers for decades, as it will help explain how the Universe evolved from the emptiness after the Big Bang to the complex realm of celestial objects we observe today, 13.8 billion years later.

    The Square Kilometre Array (SKA) – a next-generation telescope due to be completed by the end of the decade – will likely be able to make images of the earliest light in the Universe, but for current telescopes the challenge is to detect the cosmological signal of the stars through the thick hydrogen clouds.







    The signal that astronomers aim to detect is expected to be approximately one hundred thousand times weaker than other radio signals coming also from the sky – for example, radio signals originating in our own galaxy.

    Using a radio telescope itself introduces distortions to the signal received, which can completely obscure the cosmological signal of interest. This is considered an extreme observational challenge in modern radio cosmology. Such instrument-related distortions are commonly blamed as the major bottleneck in this type of observation.

    Now the Cambridge-led team has developed a methodology to see through the primordial clouds and other sky noise signals, avoiding the detrimental effect of the distortions introduced by the radio telescope. Their methodology, part of the REACH (Radio Experiment for the Analysis of Cosmic Hydrogen) experiment, will allow astronomers to observe the earliest stars through their interaction with the hydrogen clouds, in the same way we would infer a landscape by looking at shadows in the fog.

    Their method will improve the quality and reliability of observations from radio telescopes looking at this unexplored key time in the development of the Universe. The first observations from REACH are expected later this year.

    The results are reported today in the journal Nature Astronomy [below].

    “At the time when the first stars formed, the Universe was mostly empty and composed mostly of hydrogen and helium,” said Dr Eloy de Lera Acedo from Cambridge’s Cavendish Laboratory, the paper’s lead author.

    He added: “Because of gravity, the elements eventually came together and the conditions were right for nuclear fusion, which is what formed the first stars. But they were surrounded by clouds of so-called neutral hydrogen, which absorb light really well, so it’s hard to detect or observe the light behind the clouds directly.”

    In 2018, another research group (running the ‘Experiment to Detect the Global Epoch of Reionization Signature’ – or EDGES) published a result that hinted at a possible detection of this earliest light, but astronomers have been unable to repeat the result – leading them to believe that the original result may have been due to interference from the telescope being used.

    “The original result would require new physics to explain it, due to the temperature of the hydrogen gas, which should be much cooler than our current understanding of the Universe would allow. Alternatively, an unexplained higher temperature of the background radiation – typically assumed to be the well-known Cosmic Microwave Background – could be the cause” said de Lera Acedo.

    He added: “If we can confirm that the signal found in that earlier experiment really was from the first stars, the implications would be huge.”

    In order to study this period in the Universe’s development, often referred to as the Cosmic Dawn, astronomers study the 21-centimetre line – an electromagnetic radiation signature from hydrogen in the early Universe.

    Dark Energy Camera Enables Astronomers a Glimpse at the Cosmic Dawn. Credit: The National Astronomical Observatory of Japan (国立天文台](JP).

    They look for a radio signal that measures the contrast between the radiation from the hydrogen and the radiation behind the hydrogen fog.

    The methodology developed by de Lera Acedo and his colleagues uses Bayesian statistics to detect a cosmological signal in the presence of interference from the telescope and general noise from the sky, so that the signals can be separated.

    To do this, state-of-the-art techniques and technologies from different fields have been required.

    The researchers used simulations to mimic a real observation using multiple antennas, which improves the reliability of the data – earlier observations have relied on a single antenna.

    “Our method jointly analyses data from multiple antennas and across a wider frequency band than equivalent current instruments. This approach will give us the necessary information for our Bayesian data analysis,” said de Lera Acedo.

    He added: “In essence, we forgot about traditional design strategies and instead focused on designing a telescope suited to the way we plan to analyze the data – something like an inverse design. This could help us measure things from the Cosmic Dawn and into the epoch of reionization, when hydrogen in the Universe was reionized.”

    Epoch of Reionization and first stars. Credit: California Institute of Technology.

    The telescope’s construction is currently being finalized at the Karoo radio reserve in South Africa, a location chosen for its excellent conditions for radio observations of the sky. It is far away from human-made radio frequency interference, for example television and FM radio signals.

    The REACH team of over 30 researchers is multidisciplinary and distributed worldwide, with experts in fields such as theoretical and observational cosmology, antenna design, radio frequency instrumentation, numerical modelling, digital processing, big data and Bayesian statistics. REACH is co-led by the University of Stellenbosch in South Africa.

    Professor de Villiers, co-lead of the project at the University of Stellenbosch in South Africa said: “Although the antenna technology used for this instrument is rather simple, the harsh and remote deployment environment, and the strict tolerances required in the manufacturing, make this a very challenging project to work on.”

    He added: “We are extremely excited to see how well the system will perform, and have full confidence we’ll make that elusive detection.”

    The Big Bang and very early times of the Universe are well understood epochs, thanks to studies of the Cosmic Microwave Background (CMB) radiation.

    Even better understood is the late and widespread evolution of stars and other celestial objects. But the time of formation of the first light in the Cosmos is a fundamental missing piece in the puzzle of the history of the Universe.

    The research was supported by the Kavli Institute for Cosmology in Cambridge (UK), the National Research Foundation (South Africa), the Cambridge-Africa ALBORADA trust (UK) and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

    Science paper:
    Nature Astronomy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    2

    The Cavendish Laboratory is the Department of Physics at the University of Cambridge, and is part of the School of Physical Sciences. The laboratory was opened in 1874 on the New Museums Site as a laboratory for experimental physics and is named after the British chemist and physicist Henry Cavendish. The laboratory has had a huge influence on research in the disciplines of physics and biology.

    As of 2019, 30 Cavendish researchers have won Nobel Prizes. Notable discoveries to have occurred at the Cavendish Laboratory include the discovery of the electron, neutron, and structure of DNA.

    The Cavendish Laboratory was initially located on the New Museums Site, Free School Lane, in the centre of Cambridge. It is named after British chemist and physicist Henry Cavendish for contributions to science and his relative William Cavendish, 7th Duke of Devonshire, who served as chancellor of the university and donated funds for the construction of the laboratory.

    Professor James Clerk Maxwell, the developer of electromagnetic theory, was a founder of the laboratory and the first Cavendish Professor of Physics. The Duke of Devonshire had given to Maxwell, as head of the laboratory, the manuscripts of Henry Cavendish’s unpublished Electrical Works. The editing and publishing of these was Maxwell’s main scientific work while he was at the laboratory. Cavendish’s work aroused Maxwell’s intense admiration and he decided to call the Laboratory (formerly known as the Devonshire Laboratory) the Cavendish Laboratory and thus to commemorate both the Duke and Henry Cavendish.

    Physics

    Several important early physics discoveries were made here, including the discovery of the electron by J.J. Thomson (1897); the Townsend discharge by John Sealy Townsend and the development of the cloud chamber by C.T.R. Wilson.

    Ernest Rutherford became Director of the Cavendish Laboratory in 1919. Under his leadership the neutron was discovered by James Chadwick in 1932, and in the same year the first experiment to split the nucleus in a fully controlled manner was performed by students working under his direction; John Cockcroft and Ernest Walton.

    Physical chemistry

    Physical Chemistry (originally the department of Colloid Science led by Eric Rideal) had left the old Cavendish site, subsequently locating as the Department of Physical Chemistry (under RG Norrish) in the then new chemistry building with the Department of Chemistry (led by Lord Todd) in Lensfield Road: both chemistry departments merged in the 1980s.

    Nuclear physics

    In World War II the laboratory carried out research for the MAUD Committee, part of the British Tube Alloys project of research into the atomic bomb. Researchers included Nicholas Kemmer, Alan Nunn May, Anthony French, Samuel Curran and the French scientists including Lew Kowarski and Hans von Halban. Several transferred to Canada in 1943; the Montreal Laboratory and some later to the Chalk River Laboratories. The production of plutonium and neptunium by bombarding uranium-238 with neutrons was predicted in 1940 by two teams working independently: Egon Bretscher and Norman Feather at the Cavendish and Edwin M. McMillan and Philip Abelson at Berkeley Radiation Laboratory at The University of California-Berkeley.

    Biology

    The Cavendish Laboratory has had an important influence on biology, mainly through the application of X-ray crystallography to the study of structures of biological molecules. Francis Crick already worked in the Medical Research Council Unit, headed by Max Perutz and housed in the Cavendish Laboratory, when James Watson came from the United States and they made a breakthrough in discovering the structure of DNA. For their work while in the Cavendish Laboratory, they were jointly awarded the Nobel Prize in Physiology or Medicine in 1962, together with Maurice Wilkins of King’s College London (UK), himself a graduate of St. John’s College, Cambridge.

    The discovery was made on 28 February 1953; the first Watson/Crick paper appeared in Nature on 25 April 1953. Sir Lawrence Bragg, the director of the Cavendish Laboratory, where Watson and Crick worked, gave a talk at Guy’s Hospital Medical School in London on Thursday 14 May 1953 which resulted in an article by Ritchie Calder in The News Chronicle of London, on Friday 15 May 1953, entitled Why You Are You. Nearer Secret of Life. The news reached readers of The New York Times the next day; Victor K. McElheny, in researching his biography, Watson and DNA: Making a Scientific Revolution, found a clipping of a six-paragraph New York Times article written from London and dated 16 May 1953 with the headline Form of `Life Unit’ in Cell Is Scanned. The article ran in an early edition and was then pulled to make space for news deemed more important. (The New York Times subsequently ran a longer article on 12 June 1953). The Cambridge University undergraduate newspaper Varsity also ran its own short article on the discovery on Saturday 30 May 1953. Bragg’s original announcement of the discovery at a Solvay Conference on proteins in Belgium on 8 April 1953 went unreported by the British press.

    Sydney Brenner, Jack Dunitz, Dorothy Hodgkin, Leslie Orgel, and Beryl M. Oughton, were some of the first people in April 1953 to see the model of the structure of DNA, constructed by Crick and Watson; at the time they were working at The University of Oxford (UK)’s Chemistry Department. All were impressed by the new DNA model, especially Brenner who subsequently worked with Crick at Cambridge in the Cavendish Laboratory and the new Laboratory of Molecular Biology. According to the late Dr. Beryl Oughton, later Rimmer, they all travelled together in two cars once Dorothy Hodgkin announced to them that they were off to Cambridge to see the model of the structure of DNA. Orgel also later worked with Crick at The Salk Institute for Biological Studies.

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford (UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organized into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organized around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020, 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

    History

    By the late 12th century, the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However, it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence, it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However, Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalized the organizational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence, the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

     
  • richardmitnick 4:54 pm on November 26, 2022 Permalink | Reply
    Tags: , , , , Ground based Radio Astronomy, New observations show the deepest parts of the quasar's plasma jet in a project led by MIT Haystack Observatory., , The Haystack Observatory,   

    From The Haystack Observatory At The Massachusetts Institute of Technology: “International team observes innermost structure of quasar jet” 

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    From The Haystack Observatory

    At

    The Massachusetts Institute of Technology

    11.22.22
    Nancy Wolfe Kotary | MIT Haystack Observatory

    New observations show the deepest parts of the quasar’s plasma jet in a project led by MIT Haystack Observatory.

    1
    Three views of the 3C 273 jet from the deepest to farthest ends. At left is the deepest look yet into the plasma jet of the quasar. The jet extends hundreds of thousands of light-years beyond the host galaxy, as seen in the image at right, taken by the Hubble Space Telescope. Scientists use radio images at different scales to measure the shape of the entire jet. The arrays used are the Global Millimeter VLBI Array joined by the Atacama Large Millimeter / submillimeter Array and the High Sensitivity Array.

    High Sensitivity Array-GBT/VLA/EB

    Credits: Image: Hiroki Okino and Kazunori Akiyama; GMVA+ALMA and HSA images: Okino et al.; HST Image: ESA/Hubble & NASA.

    2
    These new views and data will allow scientists to further study how quasar jets are collimated, or narrowed. Kazunori Akiyama, a research scientist at MIT Haystack Observatory, says: “The results pose a new question: How does the jet collimation happen so consistently across such varied black hole systems?” Credits: Image: Hiroki Okino and Kazunori Akiyama; GMVA+ALMA and HSA images: Okino et al.; HST Image: ESA/Hubble & NASA.

    At the heart of nearly every galaxy lurks a supermassive black hole. But not all supermassive black holes are alike: there are many types. Quasars, or quasi-stellar objects, are one of the brightest and most active types of supermassive black holes.

    An international group of scientists has published new observations of the first quasar ever identified, known as 3C 273 and located in the Virgo constellation, that show the innermost, deepest parts of the quasar’s prominent plasma jet. 

    Active supermassive black holes emit narrow, incredibly powerful jets of plasma that escape at nearly the speed of light. These jets have been studied over many decades, yet their formation process is still a mystery to astronomers and astrophysicists. An unresolved issue has been how and where the jets are collimated, or concentrated into a narrow beam, which allows them to extend to extreme distances beyond their host galaxy and even affect galactic evolution. These new observations are thus far the deepest into the heart of a black hole, where the plasma flow is collimated into a narrow beam.

    This new study, published today in The Astrophysical Journal [below], includes observations of the 3C 273 jet at the highest angular resolution to date, obtaining data for the innermost portion of the jet, close to the central black hole. The ground-breaking work was made possible by using a closely coordinated set of radio antennas around the globe, a combination of the Global Millimeter VLBI Array (GMVA) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. Coordinated observations were also made with the High Sensitivity Array to study 3C 273 on different scales, in order to also measure the global shape of the jet. The data in this study were collected in 2017, around the same time that the Event Horizon Telescope (EHT) observations revealed the first images of a black hole.

    The image of the 3C 273 jet gives scientists the very first view of the innermost part of the jet in a quasar, where the collimation occurs. The team further found that the angle of the plasma stream flowing from the black hole is tightened up over a very long distance. This narrowing part of the jet continues incredibly far, well beyond the area where the black hole’s gravity rules.

    “It is striking to see that the shape of the powerful stream is slowly formed over a long distance in an extremely active quasar. This has also been discovered nearby in much fainter and less active supermassive black holes,” says Kazunori Akiyama, research scientist at MIT Haystack Observatory and project lead. “The results pose a new question: How does the jet collimation happen so consistently across such varied black hole systems?”

    “3C 273 has been studied for decades as the ideal closest laboratory for quasar jets,” says Hiroki Okino, lead author of this paper and a PhD student at the University of Tokyo and National Astronomical Observatory of Japan. “However, even though the quasar is a close neighbor, until recently, we didn’t have an eye sharp enough to see where this narrow powerful flow of plasma is shaped.”

    The new, incredibly sharp images of the 3C 273 jet were made possible by the inclusion of the ALMA array. The GMVA and ALMA were connected across continents using a technique called very long baseline interferometry (VLBI) to obtain highly detailed information about distant astronomical sources. The remarkable VLBI capability of ALMA was enabled by the ALMA Phasing Project (APP) team. The international APP team, led by MIT Haystack Observatory, developed the hardware and software to turn ALMA, an array of 66 telescopes, into the world’s most sensitive astronomical interferometry station. Collecting data at these wavelengths greatly increases the resolution and sensitivity of the array. This capability was fundamental to the EHT’s black hole imaging work as well. 

    “The ability to use ALMA as part of global VLBI networks has been a complete game-changer for black hole science,” says Lynn Matthews, MIT Haystack Observatory principal research scientist and commissioning scientist for the APP. “It enabled us to obtain the first-ever images of supermassive black holes, and now it is helping us to see for the first time incredible new details about how black holes power their jets.”

    This study opens the door to further exploration of jet collimation processes in other types of black holes. Data obtained at higher frequencies, such as 230 and 345 GHz with the EHT, will allow scientists to observe even finer details within quasars and other black holes. 

    “This discovery sheds new light on jet collimation in the quasar jets,” says Keiichi Asada, associate research fellow at the Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA) in Taiwan. “The sharper eyes of the EHT will enable access to similar regions in more distant quasar jets. We hope to be able to make progress on our new ‘homework’ from this study, which may allow us to finally answer the hundred-year-old problem of how jets are collimated.”

    The GMVA observes at the 3mm wavelength, using the following stations for this research in April 2017: eight antennas of Very Long Baseline Array (VLBA), the Effelsberg 100m Radio Telescope of the Max-Planck-Institut für Radioastronomie (MPIfR), the IRAM 30m Telescope, the 20m telescope of the Onsala Space Observatory, and the 40m Radio Telescope of Yebes Observatory. The data were correlated at the DiFX VLBI correlator at the MPIfR in Bonn, Germany.

    ALMA is a partnership of European Southern Observatory (ESO, representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

    APP partner organizations include MIT Haystack Observatory, USA; Max-Planck-Institut für Radioastronomie (MPIfR), Germany; University of Concepción, Chile; National Astronomical Observatory of Japan (NAOJ), Japan; National Radio Astronomy Observatory (NRAO), USA; Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taiwan; Onsala Space Observatory, Sweden; Harvard-Smithsonian Center for Astrophysics (CfA), USA; and the University of Valencia, Spain. Funding for the APP was provided by the National Science Foundation Major Research Instrumentation Program, the ALMA North America Development Program, and international cost-sharing partners.

    The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the U.S. National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

    At the heart of nearly every galaxy lurks a supermassive black hole. But not all supermassive black holes are alike: there are many types. Quasars, or quasi-stellar objects, are one of the brightest and most active types of supermassive black holes.

    An international group of scientists has published new observations of the first quasar ever identified, known as 3C 273 and located in the Virgo constellation, that show the innermost, deepest parts of the quasar’s prominent plasma jet. 

    Active supermassive black holes emit narrow, incredibly powerful jets of plasma that escape at nearly the speed of light. These jets have been studied over many decades, yet their formation process is still a mystery to astronomers and astrophysicists. An unresolved issue has been how and where the jets are collimated, or concentrated into a narrow beam, which allows them to extend to extreme distances beyond their host galaxy and even affect galactic evolution. These new observations are thus far the deepest into the heart of a black hole, where the plasma flow is collimated into a narrow beam.

    This new study, published today in The Astrophysical Journal [below], includes observations of the 3C 273 jet at the highest angular resolution to date, obtaining data for the innermost portion of the jet, close to the central black hole. The ground-breaking work was made possible by using a closely coordinated set of radio antennas around the globe, a combination of the Global Millimeter VLBI Array (GMVA) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. Coordinated observations were also made with the High Sensitivity Array to study 3C 273 on different scales, in order to also measure the global shape of the jet. The data in this study were collected in 2017, around the same time that the Event Horizon Telescope (EHT) observations revealed the first images of a black hole.

    The image of the 3C 273 jet gives scientists the very first view of the innermost part of the jet in a quasar, where the collimation occurs. The team further found that the angle of the plasma stream flowing from the black hole is tightened up over a very long distance. This narrowing part of the jet continues incredibly far, well beyond the area where the black hole’s gravity rules.

    “It is striking to see that the shape of the powerful stream is slowly formed over a long distance in an extremely active quasar. This has also been discovered nearby in much fainter and less active supermassive black holes,” says Kazunori Akiyama, research scientist at MIT Haystack Observatory and project lead. “The results pose a new question: How does the jet collimation happen so consistently across such varied black hole systems?”

    “3C 273 has been studied for decades as the ideal closest laboratory for quasar jets,” says Hiroki Okino, lead author of this paper and a PhD student at the University of Tokyo and National Astronomical Observatory of Japan. “However, even though the quasar is a close neighbor, until recently, we didn’t have an eye sharp enough to see where this narrow powerful flow of plasma is shaped.”

    The new, incredibly sharp images of the 3C 273 jet were made possible by the inclusion of the ALMA array. The GMVA and ALMA were connected across continents using a technique called very long baseline interferometry (VLBI) to obtain highly detailed information about distant astronomical sources. The remarkable VLBI capability of ALMA was enabled by the ALMA Phasing Project (APP) team. The international APP team, led by MIT Haystack Observatory, developed the hardware and software to turn ALMA, an array of 66 telescopes, into the world’s most sensitive astronomical interferometry station. Collecting data at these wavelengths greatly increases the resolution and sensitivity of the array. This capability was fundamental to the EHT’s black hole imaging work as well. 

    “The ability to use ALMA as part of global VLBI networks has been a complete game-changer for black hole science,” says Lynn Matthews, MIT Haystack Observatory principal research scientist and commissioning scientist for the APP. “It enabled us to obtain the first-ever images of supermassive black holes, and now it is helping us to see for the first time incredible new details about how black holes power their jets.”

    This study opens the door to further exploration of jet collimation processes in other types of black holes. Data obtained at higher frequencies, such as 230 and 345 GHz with the EHT, will allow scientists to observe even finer details within quasars and other black holes. 

    “This discovery sheds new light on jet collimation in the quasar jets,” says Keiichi Asada, associate research fellow at the Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA) in Taiwan. “The sharper eyes of the EHT will enable access to similar regions in more distant quasar jets. We hope to be able to make progress on our new ‘homework’ from this study, which may allow us to finally answer the hundred-year-old problem of how jets are collimated.”

    The GMVA observes at the 3mm wavelength, using the following stations for this research in April 2017: eight antennas of Very Long Baseline Array (VLBA), the Effelsberg 100m Radio Telescope of the Max-Planck-Institut für Radioastronomie (MPIfR), the IRAM 30m Telescope, the 20m telescope of the Onsala Space Observatory, and the 40m Radio Telescope of Yebes Observatory. The data were correlated at the DiFX VLBI correlator at the MPIfR in Bonn, Germany.

    ALMA is a partnership of European Southern Observatory (ESO, representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

    APP partner organizations include MIT Haystack Observatory, USA; Max-Planck-Institut für Radioastronomie (MPIfR), Germany; University of Concepción, Chile; National Astronomical Observatory of Japan (NAOJ), Japan; National Radio Astronomy Observatory (NRAO), USA; Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taiwan; Onsala Space Observatory, Sweden; Harvard-Smithsonian Center for Astrophysics (CfA), USA; and the University of Valencia, Spain. Funding for the APP was provided by the National Science Foundation Major Research Instrumentation Program, the ALMA North America Development Program, and international cost-sharing partners.

    The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the U.S. National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

    Science paper:
    The Astrophysical Journal
    See the science paper for instructive material with images.

    See the full article here .

    See also the full blog post and article from NAOJ here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Haystack Observatory is a multidisciplinary radio science center, ionospheric observatory, and astronomical microwave observatory owned by Massachusetts Institute of Technology (MIT). It is located in Westford, Massachusetts, approximately 45 kilometers (28 mi) northwest of Boston. Haystack was initially built by MIT’s Lincoln Laboratory for the United States Air Force and was known as Haystack Microwave Research Facility. Construction began in 1960, and the antenna began operating in 1964. In 1970 the facility was transferred to MIT, which then formed the Northeast Radio Observatory Corporation (NEROC) with a number of other universities to operate the site as the Haystack Observatory. As of January 2012, a total of nine institutions participated in NEROC.

    The Haystack Observatory site is also the location of the Millstone Hill Geospace Facility, an atmospheric sciences research center. Lincoln Laboratory continues to use the site, which it calls the Lincoln Space Surveillance Complex (LSSC). The George R. Wallace Astrophysical Observatory of MIT’s Department of Earth, Atmospheric, and Planetary Sciences is located south of the Haystack dome and east of the Westford dome. The Amateur Telescope Makers of Boston has its clubhouse on the MIT property.

    Haystack Vallis on Mercury is named after this observatory.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst . In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 2:38 pm on November 19, 2022 Permalink | Reply
    Tags: "The Georgia State University’s CHARA Array Detects Elusive and Dusty Inner Region of Distant Galaxy", , , , , , Ground based Radio Astronomy, , The galaxy called NGC 4151., The Georgia State University   

    From The Georgia State University: “The Georgia State University’s CHARA Array Detects Elusive and Dusty Inner Region of Distant Galaxy” 

    11.18.22
    Noelle Toumey Reetz
    Communications Manager
    Office of the Vice President for Research and Economic Development
    ntoumey1@gsu.edu

    An international team of scientists has achieved the milestone of directly observing the long-sought, innermost dusty ring around a supermassive black hole, at a right angle to its emerging jet. Such a structure was thought to exist in the nucleus of galaxies but had been difficult to observe directly because intervening material obscured our line of sight.

    Now the inner disk is detected using the highest spatial resolution in the infrared wavelengths ever done for an extragalactic object. The new discovery was just published in The Astrophysical Journal [below].

    “This is a very exciting step forward to view the inner region of a distant galaxy with such fine detail,” said Gail Schaefer, Associate Director of the Center for High Angular Resolution Astronomy (CHARA) Array.

    1
    The galaxy called NGC 4151. Credits: CHARA [above], Hubble, Keck.

    A supermassive black hole is thought to exist at the center of every large galaxy. As material in the surrounding region gets pulled toward the center, the gas forms a hot and bright disk-like structure. In some cases, a jet emerges from the vicinity of the black hole in a direction at a right angle to the disk. However, this flat structure, which is essentially the ‘engine’ of this active supermassive black hole system, has never been directly seen because it’s too small to be captured by conventional telescopes.

    One way to approach this key structure is to directly see an outer ‘dusty ring’ — interstellar gas contains dust grains, tiny solid particles made of heavy elements, which can only survive in the outer region where temperature is low enough (< ~1500K – otherwise metals evaporate). The heated dust emits thermal infrared radiation, and thus would look like an outer ring around the black hole, if the central system indeed has a flat structure. The detection of its structure would be a key step to delineate how the central engine works.

    Attempts to see this structure from edge-on directions are difficult, because the system is obscured by the same dust acting as an absorber of light. Instead, in the new investigation the team focused on a system with a face-on view, the brightest such object in the nearby universe. However, the detection needed very high spatial resolution in the infrared wavelengths, and at the same time, a large array of telescopes that is laid out suitably to observe objects at different orientations.

    The Georgia State University CHARA Array interferometer at the Mount Wilson Observatory in California is the only facility which meets both of these requirements. The CHARA Array actually has the sharpest eyes in the world in infrared wavelengths.[?]

    With the CHARA Array, the team finally detected the dusty ring, at a right angle to the emerging jet in the center of the galaxy called NGC 4151.

    “We’ve been hoping to see this structure in a bare nucleus object for a long, long time,” says Makoto Kishimoto, principal investigator of the project at Kyoto Sangyo University.

    A big boost was that each telescope has recently added a new system called “adaptive optics”.

    Matt Anderson, a postdoctoral researcher at the CHARA Array who played a critical role in conducting the observations, says “This greatly increased the injection rate of the light, compensating for the relatively small collecting mirror to observe the extragalactic target, which is much fainter than the stellar targets typically observed in our Galaxy.”

    Over the last nearly 40 years, researchers in the field believed that this dusty ring is a key to understanding different characteristics of accreting supermassive blackhole systems. The properties we observe depend on whether we have an obscured, edge-on view or clear, face-on view of the nucleus of the active galaxy. The detection of this ring-like structure validates this model.

    Furthermore, the detection probably is not just an indication of a flat structure. Additional studies have been showing that the structure seen at slightly longer infrared wavelengths, corresponding to an even larger outer region, seems elongated along the jet, and not at a right angle to it. This has been interpreted as an indication for a dusty wind being blown out toward the jet direction. The present finding that the inner structure looks flat and perpendicular to the jet, is an important link to the windy structure and its interaction with the rest of the galaxy surrounding the active black hole system.

    These groundbreaking observations measured the size and orientation of the dusty disk. The team is working to get an even more detailed image of the central region by building a new instrument at the CHARA Array that can see deeper into space and resolve finer scale structure of the source.

    The project is a result of a collaboration with an external team of scientists led by Makoto Kishimoto at the Kyoto Sangyo University in Japan who was awarded open access time at the Array through the National Optical-Infrared Astronomy Research Laboratory (NOIRLab). Scientists at Georgia State University’s CHARA Array include Matthew Anderson, Theo ten Brummelaar, Christopher Farrington, Laszlo Sturmann, Judit Sturmann, Gail Schaefer, and Nic Scott. The CHARA Array is funded by the U.S. National Science Foundation and Georgia State’s College of Arts and Sciences and the Office of the Vice President for Research and Economic Development.

    Additional Contact information:

    Makoto Kishimoto, lead author
    Kyoto Sangyo University; mak@cc.kyoto-su.ac.jp

    Matt Anderson, Georgia State University CHARA Array; manderson67@gsu.edu

    Theo ten Brummelaar, Georgia State University CHARA Array; theo@gsu.edu

    Gail Schaefer, Georgia State University CHARA Array; gschaefer@gsu.edu

    Science paper:
    The Astrophysical Journal
    See the science paper for instructive material with images.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Georgia State University is a public research university in Atlanta, Georgia. Founded in 1913, it is one of the University System of Georgia’s four research universities. It is also the largest institution of higher education by enrollment based in Georgia and is in the top 10 in the nation in number of students with a diverse majority-minority student population of around 54,000 students, including approximately 33,000 undergraduate and graduate students at the main campus downtown.

    The Georgia State University is classified among “R1: Doctoral Universities – Very High Research Activity”. The university’s over $200 million in research expenditures for the 2018 fiscal year ranked first in the nation among universities without an engineering, medical, or agricultural school for the third year in a row. The university is the most comprehensive public institution in Georgia, offering more than 250 degree programs in over 100 fields of study spread across 10 academic colleges and schools. The Georgia State University has two libraries: University Library, which is split between Library North and Library South on the main campus and also divided among the Perimeter College campuses, and Law Library, which is located on the main campus. Together, both libraries contain over 13 million holdings and serve as federal document depositories. Georgia State has a $2.5 billion economic impact in Georgia.

    The Georgia State University’s intercollegiate athletics teams, The Georgia State Panthers, compete in NCAA Division I’s Sun Belt Conference, with the exception of Georgia State’s beach volleyball team, which competes in C-USA. Georgia State is a founding member of the Sun Belt Conference.

     
  • richardmitnick 9:41 pm on November 2, 2022 Permalink | Reply
    Tags: "LOFAR antennas unveil giant glow of radio emission surrounding cluster of galaxies", , , , Ground based Radio Astronomy, , The galaxy cluster Abell 2255   

    From Leiden University [Universiteit Leiden] (NL) : “LOFAR antennas unveil giant glow of radio emission surrounding cluster of galaxies” 

    From Leiden University [Universiteit Leiden] (NL)

    11.2.22

    1
    Composite image of the galaxy cluster Abell 2255. Blue are X-ray data from ROSAT. These show hot gas between the galaxies. Yellow and purple are radio data from LOFAR. The purple glow is radio emission surrounding the entire cluster. The yellow streaks are fast-moving particles in the cluster’s magnetic fields. The background image was taken with the SSDS. The image is about 18 million by 18 million light years in size. From Earth, the image covers a region of the sky the size of four full moons. Credit: ROSAT/LOFAR/SDSS/Botteon, et al.


    ___________________________________________________________________
    Apache Point Observatory
    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft). ___________________________________________________________________

    A Dutch-Italian-German team of astronomers has observed a huge glow of radio emission around a cluster of thousands of galaxies. They combined data from thousands of LOFAR antennas that were focused for 18 nights on an area the size of four full moons.

    This is the first time astronomers have been able to capture radio emission from such a large area for such a long time and in such detail. They publish their findings in the journal Science Advances [below].

    The astronomers studied Abell 2255. That is a cluster of thousands of galaxies about a billion light years from Earth in the direction of the constellation of Draco. The new images are 25 times sharper and have 60 times less noise than images taken with a precursor of LOFAR. The team had to develop new techniques to process the large volume of data.

    Turbulence and shocks

    ‘Based on the new images and our calculations, we think that the radio emission from Abell 2255 has been generated during the formation of the cluster,’ says research leader Andrea Botteon (Leiden University and Università di Bologna / INAF, Italy). He adds that it’s the first time that astronomers studied these processes very far away from the cluster centre. ‘In our theory, we assume that the particles are accelerated by the enormous turbulence and shocks produced during the formation of the cluster. In turn, these motions can also amplify the magnetic fields.’

    In the future, the researchers want to target the LOFAR telescopes and yet-to-be-built telescopes such as the Square Kilometer Array for longer periods of time at other clusters of galaxies. In addition, they intend to observe Abell 2255 in more detail. By doing so, they hope to learn more about the so-called cosmic web that interconnects clusters of galaxies.

    Science paper:
    Science Advances

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Universiteit Leiden Heijmans onderhoudt.

    Leiden University [Universiteit Leiden] (NL) is a public research university in Leiden, Netherlands. Founded in 1575 by William, Prince of Orange as a reward to the town of Leiden for its defense against Spanish attacks during the Eighty Years’ War, it is the oldest institution of higher education in the Netherlands.

    Known for its historic foundations and emphasis on the social sciences, the university came into particular prominence during the Dutch Golden Age, when scholars from around Europe were attracted to the Dutch Republic due to its climate of intellectual tolerance and Leiden’s international reputation. During this time, Leiden became the home to individuals such as René Descartes, Rembrandt, Christiaan Huygens, Hugo Grotius, Baruch Spinoza and Baron d’Holbach.

    The university has seven academic faculties and over fifty subject departments while housing more than 40 national and international research institutes. Its historical primary campus consists of buildings scattered across the college town of Leiden, while a second campus located in The Hague houses a liberal arts college and several of its faculties. It is a member of The Coimbra Group Universities(EU), The Europaeum, and a founding member of The League of European Research Universities (EU).

    Leiden University consistently ranks among the top 100 universities in the world by major ranking tables. It was placed top 50 worldwide in thirteen fields of study in the 2020 QS World University Rankings: classics & ancient history, politics, archaeology, anthropology, history, pharmacology, law, public policy, public administration, religious studies, arts & humanities, linguistics, modern languages and sociology.

    The school has produced twenty-one Spinoza Prize Laureates and sixteen Nobel Laureates, including Enrico Fermi and Albert Einstein. It is closely associated with the Dutch Royal Family, with Queen Juliana, Queen Beatrix and King Willem-Alexander being alumni. Ten prime ministers of the Netherlands were also Leiden University alumni. Internationally, it is associated with nine foreign leaders, among them John Quincy Adams (the 6th President of the United States), two NATO Secretaries General, a President of the International Court of Justice, and a Prime Minister of the United Kingdom.

    In 1575, the emerging Dutch Republic did not have any universities in its northern heartland. The only other university in the Habsburg Netherlands was the University of Leuven [Universiteit Leuven](BE) in southern Leuven, firmly under Spanish control. The scientific renaissance had begun to highlight the importance of academic study, so Prince William founded the first Dutch university in Leiden, to give the Northern Netherlands an institution that could educate its citizens for religious purposes, but also to give the country and its government educated men in other fields. It is said the choice fell on Leiden as a reward for the heroic defence of Leiden against Spanish attacks in the previous year. Ironically, the name of Philip II of Spain, William’s adversary, appears on the official foundation certificate, as he was still the de jure count of Holland. Philip II replied by forbidding any subject to study in Leiden. Originally located in the convent of St Barbara, the university moved to the Faliede Bagijn Church in 1577 (now the location of the University museum) and in 1581 to the convent of the White Nuns, a site which it still occupies, though the original building was destroyed by fire in 1616.

    The presence within half a century of the date of its foundation of such scholars as Justus Lipsius; Joseph Scaliger; Franciscus Gomarus; Hugo Grotius; Jacobus Arminius; Daniel Heinsius; and Gerhard Johann Vossius rapidly made Leiden university into a highly regarded institution that attracted students from across Europe in the 17th century. Renowned philosopher Baruch Spinoza was based close to Leiden during this period and interacted with numerous scholars at the university. The learning and reputation of Jacobus Gronovius; Herman Boerhaave; Tiberius Hemsterhuis; and David Ruhnken, among others, enabled Leiden to maintain its reputation for excellence down to the end of the 18th century.

    At the end of the nineteenth century, Leiden University again became one of Europe’s leading universities. In 1896 the Zeeman effect was discovered there by Pieter Zeeman and shortly afterwards given a classical explanation by Hendrik Antoon Lorentz. At the world’s first university low-temperature laboratory, professor Heike Kamerlingh Onnes achieved temperatures of only one degree above absolute zero of −273 degrees Celsius. In 1908 he was also the first to succeed in liquifying helium and can be credited with the discovery of the superconductivity in metals.

    The University Library, which has more than 5.2 million books and fifty thousand journals, also has a number of internationally renowned special collections of western and oriental manuscripts, printed books, archives, prints, drawings, photographs, maps, and atlases. It houses the largest collections worldwide on Indonesia and the Caribbean. The research activities of the Scaliger Institute focus on these special collections and concentrate particularly on the various aspects of the transmission of knowledge and ideas through texts and images from antiquity to the present day.

    In 2005 the manuscript of Einstein on the quantum theory of the monatomic ideal gas (the Einstein-Bose condensation) was discovered in one of Leiden’s libraries.

    The portraits of many famous professors since the earliest days hang in the university aula, one of the most memorable places, as Niebuhr called it, in the history of science.

    In 2012 Leiden entered into a strategic alliance with Delft University of Technology [Technische Universiteit Delft](NL) and Erasmus University Rotterdam [Erasmus Universiteit Rotterdam](NL)in order for the universities to increase the quality of their research and teaching. The university is also the unofficial home of the Bilderberg Group, a meeting of high-level political and economic figures from North America and Europe.

    The university has no central campus; its buildings are spread over the city. Some buildings, like the Gravensteen, are very old, while buildings like Lipsius and Gorlaeus are much more modern.

    Among the institutions affiliated with the university are The KITLV or Royal Netherlands Institute of Southeast Asian and Caribbean Studies [Koninklijk Instituut voor Taal-, Land- en Volkenkunde] (NL) (founded in 1851); the observatory 1633; the natural history museum; with a very complete anatomical cabinet; the Rijksmuseum van Oudheden (National Museum of Antiquities) with specially valuable Egyptian and Indian departments; a museum of Dutch antiquities from the earliest times; and three ethnographical museums, of which the nucleus was Philipp Franz von Siebold’s Japanese collections. The anatomical and pathological laboratories of the university are modern, and the museums of geology and mineralogy have been restored.

    The Hortus Botanicus (botanical garden) is the oldest botanical garden in the Netherlands, and one of the oldest in the world. Plants from all over the world have been carefully cultivated here by experts for more than four centuries. The Clusius garden (a reconstruction), the 18th century Orangery with its monumental tub plants, the rare collection of historical trees hundreds of years old, the Japanese Siebold Memorial Museum symbolising the historical link between East and West, the tropical greenhouses with their world class plant collections, and the central square and Conservatory exhibiting exotic plants from South Africa and southern Europe.

     
  • richardmitnick 12:46 pm on October 27, 2022 Permalink | Reply
    Tags: "VLA Finds Cosmic Rays Driving Galaxy’s Winds", Astronomers concluded that the numerous supernova explosions and supernova remnants in Messier 33’s giant complexes of prolific star formation made such cosmic ray-driven winds more likely., Astronomers using the NSF’s Karl G. Jansky Very Large Array (VLA) have discovered an important new clue about how galaxies put the brakes on vigorous episodes of star formation., , , , Ground based Radio Astronomy, , The VLA observations indicated that cosmic rays in Messier 33 are escaping the regions where they are born making them able to drive more extensive winds.   

    From The National Radio Astronomy Observatory: “VLA Finds Cosmic Rays Driving Galaxy’s Winds” 

    NRAO Banner

    From The National Radio Astronomy Observatory

    10.25.22
    Media Contact:
    Dave Finley, Public Information Officer
    (505) 241-9210
    dfinley@nrao.edu

    1
    Credit: Institute for Research in Fundamental Sciences- IPM & European Southern Observatory (ESO)

    Astronomers using the National Science Foundation’s Karl G. Jansky Very Large Array (VLA)[below] have discovered an important new clue about how galaxies put the brakes on vigorous episodes of star formation. Their new study of the neighboring galaxy Messier 33 indicates that fast-moving cosmic ray electrons can drive winds that blow away the gas needed to form new stars.

    Such winds are responsible for slowing the rate of star formation as galaxies evolve over time. However, shock waves from supernova explosions and energetic, black hole-powered jets of material coming from galactic cores have been considered the primary drivers of those winds. Cosmic rays were thought to be minor contributors, particularly in galaxies like Messier 33 that have regions of prolific star formation.

    “We have seen galactic winds driven by cosmic rays in our own Milky Way and the Andromeda galaxy, which have much weaker rates of star formation, but not before in a galaxy such as Messier 33,” said Fatemah Tabatabaei, of the Institute for Research in Fundamental Sciences in Iran.

    Tabatabaei and an international team of scientists made detailed, multi-wavelength VLA observations of Messier 33, a spiral galaxy nearly 3 million light-years away and part of the Local Group of galaxies that includes the Milky Way. They also used data from previous observations with the VLA, the Effelsberg radio telescope in Germany, and millimeter-wave, visible-light, and infrared telescopes.

    Stars much more massive than our Sun speed through their life cycles, ultimately exploding as supernovae. The explosive shock waves can accelerate particles to nearly the speed of light, creating cosmic rays. Enough of these cosmic rays can build pressure that drives winds carrying away the gas needed to continue forming stars.

    “The VLA observations indicated that cosmic rays in Messier 33 are escaping the regions where they are born, making them able to drive more extensive winds,” said William Cotton, of the National Radio Astronomy Observatory.

    Based on their observations, the astronomers concluded that the numerous supernova explosions and supernova remnants in Messier 33’s giant complexes of prolific star formation made such cosmic ray-driven winds more likely.

    “This means that cosmic rays probably are a more general cause of galactic winds, particularly at earlier times in the universe’s history, when star formation was happening at a much higher rate,” Tabatabaei said. She added, “This mechanism thus becomes a more important factor in understanding the evolution of galaxies over time.”

    Tabatabaei, Cotton and their colleagues are reporting their findings in the 25 October issue of the MNRAS.
    See the science paper for detailed material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Radio Astronomy Observatory is a facility of The National Science Foundation, operated under cooperative agreement by The Associated Universities, Inc.


    National Radio Astronomy Observatory Karl G Jansky Very Large Array located in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, ~50 miles (80 km) west of Socorro. The VLA comprises twenty-eight 25-meter radio telescopes.

    ngVLA, to be located near the location of the NRAO Karl G. Jansky Very Large Array site on the plains of San Agustin, fifty miles west of Socorro, NM, at an elevation of 6970 ft (2124 m) with additional mid-baseline stations currently spread over greater New Mexico, Arizona, Texas, and Mexico.

    National Radio Astronomy Observatory Very Long Baseline Array.

    The European Southern Observatory [La Observatorio Europeo Austral][Observatoire européen austral][Europäische Südsternwarte](EU)(CL))/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres.

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 12:09 pm on October 27, 2022 Permalink | Reply
    Tags: "Unbiased Search for High-z Heavily Obscured AGNs with ngVLA", , , , Ground based Radio Astronomy, The growth history of supermassive black holes (SMBHs) is a very hot topic.,   

    From The National Radio Astronomy Observatory: “Unbiased Search for High-z Heavily Obscured AGNs with ngVLA” 

    NRAO Banner

    From The National Radio Astronomy Observatory

    10.27.22
    Taiki Kawamuro & Claudio Ricci (Universidad Diego Portales)

    1
    Detection limits for AGNs with NH = 10^24 cm^-2 over a range of redshifts. For z > 1 objects, short observations with the ngVLA are superior to Athena. For long observations the two facilities are comparable. However, Athena could miss AGNs with NH > 10^24 cm^-2.

    The growth history of supermassive black holes (SMBHs) is a very hot topic, and for its understanding, a census of active galactic nuclei (AGNs), i.e., the growth phase of SMBHs, is fundamental. But rapidly growing SMBHs may be covered by thick layers of gas and dust. To avoid missing this crucial growth period, observations at wavelengths with high penetrating power, such as those in the hard X-ray band, have often been used. But even in that band, heavily obscured systems with column densities NH above the Compton-thick level of 10^24 cm^-2 can still be easily missed.

    In Kawamuro et al. (2022) [The Astrophysical Journal (below)], we found that observations at millimeter wavelengths with high spatial resolution (≲ 100 pc) may be useful to detect even the most obscured AGN. We analyzed ALMA Band 6 data with sub-arcsec resolution for 98 hard-X-ray-selected AGNs at z 1, while its spatial resolution will probe scales ≲ 100 pc. To better understand this potential, we simulated observations of Compton-thick AGNs with column densities of 10^24 cm^-2 with ALMA [below], ngVLA, Chandra, and Athena.

    We then calculated the AGN luminosities detectable over a range of redshifts (see figure). The result indicates that for observations of one hour, the ngVLA can detect z > 1 objects up to an order of magnitude fainter than Athena. For observations of 100 hours, those two facilities are comparable at the Compton-thick level. But the ngVLA is expected to detect the more heavily obscured AGNs that Athena may miss. Thus, the ngVLA will be an important observatory to identify obscured AGNs at z > 1.

    Since 2015 the acronym ngVLA has appeared in 850+ publications indexed in the SAO/NASA Astrophysics Data System. This article continues a regular feature intended to showcase some of those publications. We are especially interested in showcasing work done by early-career researchers. The collection of showcase articles can be viewed online. Anyone wishing to volunteer to author a feature should contact Joan Wrobel [jwrobel@nrao.edu].

    Science paper:
    The Astrophysical Journal
    See the science paper for detailed material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Radio Astronomy Observatory is a facility of The National Science Foundation, operated under cooperative agreement by The Associated Universities, Inc.


    National Radio Astronomy Observatory Karl G Jansky Very Large Array located in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, ~50 miles (80 km) west of Socorro. The VLA comprises twenty-eight 25-meter radio telescopes.

    ngVLA, to be located near the location of the NRAO Karl G. Jansky Very Large Array site on the plains of San Agustin, fifty miles west of Socorro, NM, at an elevation of 6970 ft (2124 m) with additional mid-baseline stations currently spread over greater New Mexico, Arizona, Texas, and Mexico.

    National Radio Astronomy Observatory Very Long Baseline Array.

    The European Southern Observatory [La Observatorio Europeo Austral][Observatoire européen austral][Europäische Südsternwarte](EU)(CL))/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres.

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 12:57 pm on October 26, 2022 Permalink | Reply
    Tags: "LOFAR detects gigantic radio sources in the universe", An international research team led by the Observatory of Universität Hamburg has using LOFAR discovered four radio sources of up to ten million light years in size: megahalos., , , , Ground based Radio Astronomy,   

    From The Netherlands Institute for Radio Astronomy (ASTRON) (NL) : “LOFAR detects gigantic radio sources in the universe” 

    ASTRON bloc

    From The Netherlands Institute for Radio Astronomy (ASTRON) (NL)

    10.19.22

    An international research team, led by the Observatory of Universität Hamburg has, using LOFAR, discovered four radio sources of up to ten million light years in size: megahalos.

    1
    Artistic representation of the large-scale structure of the Universe above the core of the LOFAR telescope [below]. The inset shows a zoom into a galaxy cluster where a megahalo is observed (orange emission, from LOFAR observations).

    Seen from a great distance, the universe is not evenly distributed; it actually resembles a net-like structure, somewhat similar to the way neurons are connected to one another in the brain. At the nodes of this so-called cosmic web hundreds, sometimes even thousands of galaxies are crowded together into galaxy clusters. Sometimes, two galaxy clusters collide with each other and merge into a single cluster. In the process, they release enormous amounts of energy, so large that they are the most powerful events happening in our Universe after the Big Bang. During these collisions, tiny, charged particles are accelerated to near-lightspeed, emitting radio waves that can be detected with radio telescopes.

    Using the Low Frequency Array (LOFAR) [below], scientists have now discovered four galaxy clusters where a faint radio emission envelopes the entire clusters even reaching their outskirts. Dr. Virginia Cuciti led the international research team: “Megahalos extend up to ten million light years) in size, which means that they cover a volume that is about 30 times larger than the volume of the radio sources known so far in galaxy clusters. This implies that with megahalos we can now observe the peripheral regions of galaxy clusters which were previously almost inaccessible.”

    2
    Computer simulation of the large-scale structure of the Universe. The inset shows a zoom into a galaxy cluster where a megahalo is observed (orange emission, from LOFAR observations).

    Cuciti’s team used LOFAR Two-metre Sky Survey (LoTSS) observations of these four galaxy clusters. While analyzing the data of one of the clusters, she and her teammates saw some significant hints of radio emission on exceptionally large scales, Cuciti says. “So, we decided to re-inspect all the images of a sample of 310 clusters that we were studying with the aim of looking for similar emission. When we discovered that three other clusters of this sample showed emission on similar scales and with similar characteristics, it became clear that we discovered a new type of cosmic phenomenon that opens the possibility to explore the external region of galaxy clusters through radio observations.”

    This discovery could not have been made without LOFAR, Cuciti says. “It is not by chance that megahalos have been discovered with LOFAR. They are very large, and their emission is very faint. Moreover, the synchrotron spectrum of megahalos is steep, which basically means that they are brighter at low radio frequency, therefore a sensitive radio telescope operating at low radio frequency, such as LOFAR, is the ideal instrument to detect them.”

    But even then, it was not easy, co-author and astronomer at ASTRON Timothy Shimwell says: “Even in the very sensitive and wide area LOFAR surveys dataset these objects were very hard to find because they are so faint and a very careful analysis of large quantities of data was required to identify them.”

    3
    A region of the LOFAR core seen from above. The two antenna types of LOFAR are visible.

    With LOFAR currently undergoing an upgrade to LOFAR2.0, making it an even more sensitive instrument, even more valuable information can be found about megahalos. Cuciti: “With more sensitive observations we could be able to detect megahalos in a much larger number of clusters. This is actually one of the most interesting aspects of this work, because it means that, if megahalos are present in a large fraction of clusters, if not all of them, we are opening a new field of research, a new way to systematically explore the periphery of galaxy clusters with radio observations. The LOFAR 2.0 upgrade will increase the sensitivity of LOFAR, especially in the LBA (at 50 MHz), and will therefore allow us to answer to the question: how many clusters host megahalos?”

    Science paper:
    Nature
    See the science paper for detailed material with images.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ASTRON is the ASTRON- The Netherlands Institute for Radio Astronomy [Nederlands Instituut voor Radioastronomie] (NL). Its main office is in Dwingeloo in the Dwingelderveld National Park in the province of Drenthe. ASTRON is part of Netherlands Organization for Scientific Research (NWO).

    ASTRON’s main mission is to make discoveries in radio astronomy happen, via the development of new and innovative technologies, the operation of world-class radio astronomy facilities, and the pursuit of fundamental astronomical research. Engineers and astronomers at ASTRON have an outstanding international reputation for novel technology development, and fundamental research in galactic and extra-galactic astronomy. Its main funding comes from NWO.

    ASTRON’s programme has three principal elements:

    The operation of front line observing facilities, including especially the Westerbork Synthesis Radio Telescope and LOFAR,
    The pursuit of fundamental astronomical research using ASTRON facilities, together with a broad range of other telescopes around the world and space-borne instruments (e.g. Sptizer, HST etc.)
    A strong technology development programme, encompassing both innovative instrumentation for existing telescopes and the new technologies needed for future facilities.

    In addition, ASTRON is active in the international science policy arena and is one of the leaders in the international SKA project. The Square Kilometre Array will be the world’s largest and most sensitive radio telescope with a total collecting area of approximately one square kilometre. The SKA will be built in Southern Africa and in Australia. It is a global enterprise bringing together 11 countries from the 5 continents.

    Radio telescopes

    ASTRON operates the Westerbork Synthesis Radio Telescope (WSRT), one of the largest radio telescopes in the world. The WSRT and the International LOFAR Telescope (ILT) are dedicated to explore the universe at radio frequencies ranging from 10 MHz to 8 GHz.

    Westerbork Synthesis Radio Telescope, an aperture synthesis interferometer near World War II Nazi detention and transit camp Westerbork, north of the village of Westerbork, Midden-Drenthe, in the northeastern Netherlands.

    In addition to its use as a stand-alone radio telescope, the Westerbork array participates in the European Very Long Baseline Interferometry Network (EVN) of radio telescopes.

    ASTRON is the host institute for the Joint Institute for VLBI in Europe (JIVE).

    European Very Long Baseline Interferometry Network

    Its primary task is to operate the EVN MkIV VLBI Data Processor (correlator). JIVE also provides a high-level of support to astronomers and the Telescope Network. ASTRON also hosts the NOVA Optical/ Infrared instrumentation group.

    LOFAR is a radio telescope composed of an international network of antenna stations and is designed to observe the universe at frequencies between 10 and 250 MHz. Operated by ASTRON (NL), the network includes stations in the Netherlands, Germany, Sweden, the U.K., France, Poland and Ireland.

    ASTRON Institute for Radio Astronomy (NL) LOFAR Radio Antenna Bank (NL)

     
  • richardmitnick 10:19 am on October 26, 2022 Permalink | Reply
    Tags: , , Ground based Radio Astronomy, Millimeter radio astronomy, The Northern Extended Millimeter Array (NOEMA)   

    From CNRS-The National Center for Scientific Research [Centre national de la recherche scientifique] (FR) : “The European radio telescope NOEMA reaches full power” 

    From CNRS-The National Center for Scientific Research [Centre national de la recherche scientifique] (FR)

    9.30.22
    Contacts
    Karl Schuster
    Director of IRAM
    +33 4 76 82 49 08
    schuster@iram.fr

    François Maginiot
    CNRS Press Officer
    +33 1 44 96 43 09
    francois.maginiot@cnrs.fr

    1
    Five of the NOEMA telescope’s 12 radio dishes. (Image credit: Jeff Pachoud/AFP via Getty Images)

    The NOEMA radio telescope, located on the Plateau de Bure in the French Alps, has now reached its full capacity, becoming the most powerful millimetre radio telescope in the Northern Hemisphere. It is the product of a collaboration between the CNRS, the Max-Planck-Gesellschaft (MPG, Germany) and the Instituto Geográfico Nacional (IGN, Spain). Built and operated by the Institut de Radioastronomie Millimétrique (IRAM) and already the source of major discoveries, NOEMA is now poised to make unprecedented observations.

    Eight years after its first antenna was inaugurated in 2014, this major project is now complete. NOEMA [1] has twelve 15-metre antennas that can be moved along tracks for a distance of up to 1.7 kilometres, making it a powerful new tool for astronomical research. Its resolving power as well as the sensitivity of its array enable scientists to collect light that has travelled for up to 13 billion years before reaching Earth.

    NOEMA is the culmination of over 40 years of European scientific collaboration. Established in 1979 by the CNRS in France and the MPG in Germany, and joined in 1990 by Spain’s IGN, IRAM is a world leader in the field of millimetre radio astronomy [2]. NOEMA is now its flagship instrument and the most powerful millimetre radio telescope in the northern hemisphere.

    NOEMA’s antennas are equipped with very high sensitivity receivers that operate at the quantum limits using a technique called interferometry: the antennas are all pointed towards the same region of space and the signals they receive are then combined by means of a supercomputer. This gives them a resolving power similar to that of a single huge telescope with a diameter covering the entire array.

    By altering the configuration of the antennas, astronomers can ‘zoom in’ on a celestial object to observe its details. The different configurations can extend over a distance ranging from a few hundred metres to 1.7 km, enabling the array to work rather like a camera equipped with a zoom lens. The more extended the configuration, the more powerful is the zoom: NOEMA’s maximum spatial resolution is so high that it would be able to detect a mobile phone at a distance of over 500 kilometres.

    Equipped with pioneering technologies, it is one of the few radio observatories in the world that can carry out what scientists call multiline observations, i.e. the ability to detect a large number of molecular and atomic signatures simultaneously. These new observation capabilities, combined with high sensitivity and very high spectral and spatial resolution, make NOEMA a unique instrument for investigating the complexity of interstellar matter and of the building blocks of the Universe.

    NOEMA provides scientists from France, Germany and Spain with preferential access and the opportunity to carry out unparalleled research. In all, IRAM supports over 5,000 scientists from all over the world. NOEMA enables them to study the Universe’s cold matter, which is at only a few degrees above absolute zero. Its antennas can be used to analyze the formation, composition and dynamics of entire galaxies, of stars in formation and at the end of their lives, and of comets and the environment of black holes, with the aim of solving the most fundamental questions in modern astronomy.

    NOEMA has already made major discoveries and produced some sensational findings. For example, it has observed the most distant galaxy known to date, which formed shortly after the Big Bang. Only recently, it measured the temperature of the cosmic background radiation at a very early stage of the Universe, a world first that should help to identify and better constrain the effects of dark energy. This year, NOEMA also discovered the first known example of a rapidly growing black hole in the dusty core of a starburst galaxy, with an age similar to that of the oldest known super-massive black hole in the Universe. The observatory is also responsible for the most recent discoveries of molecules in discs around young stars, which are major breeding grounds of planets.

    In addition, NOEMA is a member of the Event Horizon Telescope (EHT) consortium, which in 2019 published the first image of a black hole, and then in early 2022 that of the black hole at the centre of our own Galaxy.

    The locations of the radio dishes of the Event Horizon Telescope array in 2019. Since then new telescopes have been added. Credit: NRAO.

    NOEMA carried out its first observations for the consortium in 2021 and then again in 2022. With its twelve extremely sensitive antennas, it provides the EHT global array with unmatched spatial resolution and sensitivity. Together with IRAM’s second radio observatory, the 30-metre telescope, NOEMA will enable the EHT to produce animations with even greater detail.

    Both facilities are of critical importance for the EHT collaboration, and for the study and understanding of the physics of black holes.

    The observatory was inaugurated on 30 September 2022 in the presence of Antoine Petit, President and CEO of the CNRS, Martin Stratmann, President of the MPG, Rafael Bachiller, Director of the Observatorio Astronómico Nacional of the IGN, Karl Schuster, Director of IRAM, Stéphane Guilloteau, Chairman of the IRAM Steering Committee, and Reinhard Genzel, 2020 Nobel Prize in Physics and member of the IRAM Steering Committee.

    3
    The spiral galaxy IC342 in the constellation of Camelopardalis. NOEMA revealed the presence of molecular gas throughout the multiple spirals and filaments, providing evidence that the galaxy is dotted with intense bursts of star formation.
    © IRAM/VLA/Mayall/DSS2/A. Schruba.

    Notes

    [1] NOrthern Extended Millimeter Array. The number of NOEMA antennas was increased from six in 2014 to twelve in 2022. The length of the tracks they move on has also been extended from 760 metres to 1.7 kilometres in order to allow them to be placed further apart from one another.
    [2] Millimetre radio astronomy studies light with wavelengths in the millimetre range. Every celestial object emits different types of light depending on its age, composition and temperature. In order to obtain a complete image of an object, modern astronomy combines observations at different wavelengths, all of which are complementary to each other.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    CNRS (FR) campus via Glassdoor

    CNRS-The National Center for Scientific Research [Centre national de la recherche scientifique](FR) is the French state research organization and is the largest fundamental science agency in Europe.

    In 2016, it employed 31,637 staff, including 11,137 tenured researchers, 13,415 engineers and technical staff, and 7,085 contractual workers. It is headquartered in Paris and has administrative offices in Brussels; Beijing; Tokyo; Singapore; Washington D.C.; Bonn; Moscow; Tunis; Johannesburg; Santiago de Chile; Israel; and New Delhi.

    The CNRS was ranked No. 3 in 2015 and No. 4 in 2017 by the Nature Index, which measures the largest contributors to papers published in 82 leading journals.

    The CNRS operates on the basis of research units, which are of two kinds: “proper units” (UPRs) are operated solely by the CNRS, and “joint units” (UMRs – French: Unité mixte de recherche) are run in association with other institutions, such as universities or INSERM. Members of joint research units may be either CNRS researchers or university employees (maîtres de conférences or professeurs). Each research unit has a numeric code attached and is typically headed by a university professor or a CNRS research director. A research unit may be subdivided into research groups (“équipes”). The CNRS also has support units, which may, for instance, supply administrative, computing, library, or engineering services.

    In 2016, the CNRS had 952 joint research units, 32 proper research units, 135 service units, and 36 international units.

    The CNRS is divided into 10 national institutes:

    Institute of Chemistry (INC)
    Institute of Ecology and Environment (INEE)
    Institute of Physics (INP)
    Institute of Nuclear and Particle Physics (IN2P3)
    Institute of Biological Sciences (INSB)
    Institute for Humanities and Social Sciences (INSHS)
    Institute for Computer Sciences (INS2I)
    Institute for Engineering and Systems Sciences (INSIS)
    Institute for Mathematical Sciences (INSMI)
    Institute for Earth Sciences and Astronomy (INSU)

    The National Committee for Scientific Research, which is in charge of the recruitment and evaluation of researchers, is divided into 47 sections (e.g. section 41 is mathematics, section 7 is computer science and control, and so on). Research groups are affiliated with one primary institute and an optional secondary institute; the researchers themselves belong to one section. For administrative purposes, the CNRS is divided into 18 regional divisions (including four for the Paris region).

    Some selected CNRS laboratories

    APC laboratory
    Centre d’Immunologie de Marseille-Luminy
    Centre d’Etude Spatiale des Rayonnements
    Centre européen de calcul atomique et moléculaire
    Centre de Recherche et de Documentation sur l’Océanie
    CINTRA (joint research lab)
    Institut de l’information scientifique et technique
    Institut de recherche en informatique et systèmes aléatoires
    Institut d’astrophysique de Paris
    Institut de biologie moléculaire et cellulaire
    Institut Jean Nicod
    Laboratoire de Phonétique et Phonologie
    Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
    Laboratory for Analysis and Architecture of Systems
    Laboratoire d’Informatique de Paris 6
    Laboratoire d’informatique pour la mécanique et les sciences de l’ingénieur
    Observatoire océanologique de Banyuls-sur-Mer
    SOLEIL
    Mistrals

     
  • richardmitnick 1:35 pm on October 22, 2022 Permalink | Reply
    Tags: "FAST Discovers Largest Atomic Gas Structure Around a Galaxy Group", , , , Ground based Radio Astronomy, New observations show that large-scale diffuse low density gas (with a column identity less than 10^18cm^-2) exists far away from the center of the group., Observation and exploration of atomic gas in and around galaxies is crucial to the study of galaxy formation and evolution models., Stephan's Quintet has continued revealing puzzles related to the complex web of galaxy-galaxy and galaxy-intragroup medium interactions in the group.,   

    From The Chinese Academy of Sciences [中国科学院](CN): “FAST Discovers Largest Atomic Gas Structure Around a Galaxy Group” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    10.21.22
    XU Ang
    National Astronomical Observatories
    annxu@nao.cas.cn

    Atomic gas is the basic material that all galaxies are formed from. The evolution of galaxies is mostly a procedure of accreting atomic gas from the intergalactic medium and then converting it into stars.

    For this reason, observation and exploration of atomic gas in and around galaxies is crucial to the study of galaxy formation and evolution models. The most direct method of exploring atomic gas is through observation of the 21-cm fine structure line emission of atomic hydrogen in the radio waveband.

    Recently, using the Five-hundred-meter Aperture Spherical Telescope (FAST) 19-beam receiver, an international team led by XU Cong, a researcher from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), carried out deep mapping observations of 21-cm line emission in a region around the famous compact group of galaxies “Stephan’s Quintet,” and discovered a very large atomic gas structure with a length of about 2 million light years (about 20 times the size of the Milky Way).

    Their findings were published in Nature [below] on Oct. 19, 2022.

    FAST is currently the largest and most sensitive single-dish radio telescope in the world, and its 19-beam receiver is the largest L-band multibeam feed array for 21-cm line observations. The full commissioning of the FAST 19-beam receiver opened a new window on atomic gas in the Universe, particularly for low density diffuse gas far away from galaxies.

    “This is the largest atomic gas structure ever found around a galaxy group,” said XU. The observations reached a sensitivity of 1σ=4.2×1016 cm-2 per channel (Δv=20 km s-1; angular-resolution=4′), making them currently the most sensitive observations of atomic hydrogen 21-cm line emission at this angular resolution.

    Ever since its discovery by the French astronomer Edouard Stephan in 1877, Stephan’s Quintet has continued revealing puzzles related to the complex web of galaxy-galaxy and galaxy-intragroup medium interactions in the group.

    The new observations show that large-scale, diffuse, low density gas (with a column identity less than 1018cm-2) exists far away from the center of the group, and it is likely that the gas has been there for ~1 giga years. The observations challenge the current theory of galaxy-group formation/evolution because it is not clear how the low-density atomic gas can survive ionization by the intergalactic UV background on such a long time scale.

    3
    A map of the atomic hydrogen (HI) 21-cm line emission (shown as the red haze) in the vicinity of Stephan’s Quintet, a famous compact group of galaxies discovered in 1887, overlaid on a deep optical color image. (Image by NASA, ESA, CSA, and STScI)

    Science paper:
    Nature
    See the science paper for detailed material with images.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 1:25 pm on September 30, 2022 Permalink | Reply
    Tags: , , , , , Ground based Radio Astronomy   

    From CNRS-The National Center for Scientific Research [Centre national de la recherche scientifique] (FR) : “The European radio telescope NOEMA reaches full power” 

    From CNRS-The National Center for Scientific Research [Centre national de la recherche scientifique] (FR)

    9.30.22

    Karl Schuster
    Director of IRAM
    +33 4 76 82 49 08
    schuster@iram.fr

    François Maginiot
    CNRS Press Officer
    +33 1 44 96 43 09
    francois.maginiot@cnrs.fr

    The NOEMA radio telescope, located on the Plateau de Bure in the French Alps, has now reached its full capacity, becoming the most powerful millimetre radio telescope in the Northern Hemisphere. It is the product of a collaboration between the CNRS, the Max-Planck-Gesellschaft (MPG, Germany) and the Instituto Geográfico Nacional (IGN, Spain). Built and operated by the Institut de Radioastronomie Millimétrique (IRAM) and already the source of major discoveries, NOEMA is now poised to make unprecedented observations.

    Eight years after its first antenna was inaugurated in 2014, this major project is now complete. NOEMA1 has twelve 15-metre antennas that can be moved along tracks for a distance of up to 1.7 kilometres, making it a powerful new tool for astronomical research. Its resolving power as well as the sensitivity of its array enable scientists to collect light that has travelled for up to 13 billion years before reaching Earth.

    NOEMA is the culmination of over 40 years of European scientific collaboration. Established in 1979 by the CNRS in France and the MPG in Germany, and joined in 1990 by Spain’s IGN, IRAM is a world leader in the field of millimetre radio astronomy2 . NOEMA is now its flagship instrument and the most powerful millimetre radio telescope in the northern hemisphere.

    NOEMA’s antennas are equipped with very high sensitivity receivers that operate at the quantum limits using a technique called interferometry: the antennas are all pointed towards the same region of space and the signals they receive are then combined by means of a supercomputer. This gives them a resolving power similar to that of a single huge telescope with a diameter covering the entire array.

    By altering the configuration of the antennas, astronomers can ‘zoom in’ on a celestial object to observe its details. The different configurations can extend over a distance ranging from a few hundred metres to 1.7 km, enabling the array to work rather like a camera equipped with a zoom lens. The more extended the configuration, the more powerful is the zoom: NOEMA’s maximum spatial resolution is so high that it would be able to detect a mobile phone at a distance of over 500 kilometres.

    Equipped with pioneering technologies, it is one of the few radio observatories in the world that can carry out what scientists call multiline observations, i.e. the ability to detect a large number of molecular and atomic signatures simultaneously. These new observation capabilities, combined with high sensitivity and very high spectral and spatial resolution, make NOEMA a unique instrument for investigating the complexity of interstellar matter and of the building blocks of the Universe.

    NOEMA provides scientists from France, Germany and Spain with preferential access and the opportunity to carry out unparalleled research. In all, IRAM supports over 5,000 scientists from all over the world. NOEMA enables them to study the Universe’s cold matter, which is at only a few degrees above absolute zero. Its antennas can be used to analyse the formation, composition and dynamics of entire galaxies, of stars in formation and at the end of their lives, and of comets and the environment of black holes, with the aim of solving the most fundamental questions in modern astronomy.

    NOEMA has already made major discoveries and produced some sensational findings. For example, it has observed the most distant galaxy known to date, which formed shortly after the Big Bang.Only recently, it measured the temperature of the cosmic background radiation at a very early stage of the Universe, a world first that should help to identify and better constrain the effects of dark energy. This year, NOEMA also discovered the first known example of a rapidly growing black hole in the dusty core of a starburst galaxy, with an age similar to that of the oldest known super-massive black hole in the Universe. The observatory is also responsible for the most recent discoveries of molecules in discs around young stars, which are major breeding grounds of planets.

    In addition, NOEMA is a member of the Event Horizon Telescope (EHT) consortium, which in 2019 published the first image of a black hole, and then in early 2022 that of the black hole at the centre of our own Galaxy.

    NOEMA carried out its first observations for the consortium in 2021 and then again in 2022. With its twelve extremely sensitive antennas, it provides the EHT global array with unmatched spatial resolution and sensitivity. Together with IRAM’s second radio observatory, the 30-metre telescope located on Pico Veleta in Spain’s Sierra Nevada, NOEMA will enable the EHT to produce animations with even greater detail.

    Both facilities are of critical importance for the EHT collaboration, and for the study and understanding of the physics of black holes.

    The observatory will be inaugurated on 30 September 2022 in the presence of Antoine Petit, President and CEO of the CNRS, Martin Stratmann, President of the MPG, Rafael Bachiller, Director of the Observatorio Astronómico Nacional of the IGN, Karl Schuster, Director of IRAM, Stéphane Guilloteau, Chairman of the IRAM Steering Committee, and Reinhard Genzel, 2020 Nobel Prize in Physics and member of the IRAM Steering Committee.

    1
    The spiral galaxy IC342 in the constellation of Camelopardalis. NOEMA revealed the presence of molecular gas throughout the multiple spirals and filaments, providing evidence that the galaxy is dotted with intense bursts of star formation.
    © IRAM/VLA/Mayall/DSS2/A. Schruba

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    CNRS (FR) campus via Glassdoor

    CNRS-The National Center for Scientific Research [Centre national de la recherche scientifique](FR) is the French state research organisation and is the largest fundamental science agency in Europe.

    In 2016, it employed 31,637 staff, including 11,137 tenured researchers, 13,415 engineers and technical staff, and 7,085 contractual workers. It is headquartered in Paris and has administrative offices in Brussels; Beijing; Tokyo; Singapore; Washington D.C.; Bonn; Moscow; Tunis; Johannesburg; Santiago de Chile; Israel; and New Delhi.

    The CNRS was ranked No. 3 in 2015 and No. 4 in 2017 by the Nature Index, which measures the largest contributors to papers published in 82 leading journals.

    The CNRS operates on the basis of research units, which are of two kinds: “proper units” (UPRs) are operated solely by the CNRS, and “joint units” (UMRs – French: Unité mixte de recherche)[9] are run in association with other institutions, such as universities or INSERM. Members of joint research units may be either CNRS researchers or university employees (maîtres de conférences or professeurs). Each research unit has a numeric code attached and is typically headed by a university professor or a CNRS research director. A research unit may be subdivided into research groups (“équipes”). The CNRS also has support units, which may, for instance, supply administrative, computing, library, or engineering services.

    In 2016, the CNRS had 952 joint research units, 32 proper research units, 135 service units, and 36 international units.

    The CNRS is divided into 10 national institutes:

    Institute of Chemistry (INC)
    Institute of Ecology and Environment (INEE)
    Institute of Physics (INP)
    Institute of Nuclear and Particle Physics (IN2P3)
    Institute of Biological Sciences (INSB)
    Institute for Humanities and Social Sciences (INSHS)
    Institute for Computer Sciences (INS2I)
    Institute for Engineering and Systems Sciences (INSIS)
    Institute for Mathematical Sciences (INSMI)
    Institute for Earth Sciences and Astronomy (INSU)

    The National Committee for Scientific Research, which is in charge of the recruitment and evaluation of researchers, is divided into 47 sections (e.g. section 41 is mathematics, section 7 is computer science and control, and so on).Research groups are affiliated with one primary institute and an optional secondary institute; the researchers themselves belong to one section. For administrative purposes, the CNRS is divided into 18 regional divisions (including four for the Paris region).

    Some selected CNRS laboratories

    APC laboratory
    Centre d’Immunologie de Marseille-Luminy
    Centre d’Etude Spatiale des Rayonnements
    Centre européen de calcul atomique et moléculaire
    Centre de Recherche et de Documentation sur l’Océanie
    CINTRA (joint research lab)
    Institut de l’information scientifique et technique
    Institut de recherche en informatique et systèmes aléatoires
    Institut d’astrophysique de Paris
    Institut de biologie moléculaire et cellulaire
    Institut Jean Nicod
    Laboratoire de Phonétique et Phonologie
    Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
    Laboratory for Analysis and Architecture of Systems
    Laboratoire d’Informatique de Paris 6
    Laboratoire d’informatique pour la mécanique et les sciences de l’ingénieur
    Observatoire océanologique de Banyuls-sur-Mer
    SOLEIL
    Mistrals

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: