Tagged: Ground based Millimeter/submillimeter astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:40 pm on June 30, 2022 Permalink | Reply
    Tags: "Capturing the Onset of Galaxy Rotation in the Early Universe", , , , , Galaxy MACS1149-JD1 forming and spinning up to speed in the early universe., Ground based Millimeter/submillimeter astronomy   

    From ALMA (CL): “Capturing the Onset of Galaxy Rotation in the Early Universe” 

    From ALMA (CL)

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Junko Ueda
    Public Information Officer
    NAOJ
    Email: junko.ueda@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL) http://www.almaobservatory.org/

    European Southern Observatory(EU) http://www.eso.org/public/

    National Astronomical Observatory of Japan(JP) http://www.nao.ac.jp/en/

    National Radio Astronomy Observatory(US) https://public.nrao.edu/
    Full identification of an astronomical asset will be presented once in the first instance of that asset.

    1
    Conceptual image of MACS1149-JD1 forming and spinning up to speed in the early universe. Credit: ALMA (ESO/NAOJ/NRAO)

    An international research team led by Tsuyoshi Tokuoka, a graduate student at Waseda University in Japan, has observed signs of rotation in a galaxy, which existed in the early universe, only 500 million years after the Big Bang. This galaxy is by far the earliest galaxy with a signature of galaxy rotation. Its rotational speed is only 50 kilometers per second, compared to 220 kilometers per second for the Milky Way, indicating that the galaxy is still at an initial stage of developing a rotational motion. This finding would lead to a better understanding of the galaxy formation in the early universe.

    As telescopes have become more advanced and powerful, astronomers have been able to detect more and more distant galaxies. Due to the expansion of the universe, these galaxies are receding away from us. This causes their emissions to be redshifted (shifted towards longer wavelengths). Interestingly, we can estimate how fast a galaxy is moving and, in turn, when it was formed based on how redshifted the emission appears. ALMA is particularly well-suited for observing such redshifts in galaxy emission.

    An international research team has observed using ALMA redshifted emissions of a distant galaxy, MACS1149-JD1, or JD1 for short, which has led them to some interesting conclusions. “Beyond finding high-redshift, namely very distant, galaxies, studying their internal motion of gas and stars provides motivation for understanding the process of galaxy formation in the earliest possible universe,” explained Richard S. Ellis, a professor at University College London.

    Galaxy formation begins with the accumulation of gas and proceeds with forming stars from that gas. With time, star formation progresses from the center outward, a galactic disk develops, and the galaxy acquires a particular shape. As star formation continues, newer stars form in the rotating disk while older stars remain in the central part. It is possible to determine the evolutionary stage of the galaxy by studying the age of the stellar objects and the motion of the stars and gas.

    The team successfully measured small differences in the “redshift” from position to position inside the galaxy, showing that JD1 satisfied the criterion for a galaxy dominated by rotation. The calculated rotational speed was about 50 kilometers per second, compared to the rotational speed of the Milky Way disk of 220 kilometers per second. The team also measured the diameter of JD1 at only 3,000 light-years, which is much smaller than that of the Milky Way at 100,000 light-years across.

    The galaxy the team observed is by far the most distant source yet found that has a rotating disk. Together with similar measurements of nearer systems in the research literature, this has allowed the team to delineate the gradual development of rotating galaxies over more than 95% of our cosmic history.

    Furthermore, the mass estimated from the rotational speed was in line with the stellar mass estimated previously from the spectral signature, and came predominantly from that of “mature” stars that formed about 300 million years ago. “This shows that the stellar population in JD1 formed at an even earlier epoch of the cosmic age,” said Takuya Hashimoto, an assistant professor at Univesity of Tsukuba.

    “The rotational speed of JD1 is much slower than those found in galaxies in later epochs and the Milky Way, and JD1 is likely at an initial stage of developing a rotational motion,” said Akio Inoue, a professor at Waseda University. With the recently launched James Webb Space Telescope, the team now plans to identify the locations of young and older stars in the galaxy to refine their scenario for its formation.

    Additional information

    These research results were published in The Astrophysical Journal Letters.

    This research was supported by NAOJ ALMA Scientific Research Grant Numbers 2020-16B.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA) (CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO) (EU), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) (CA) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the centimetre-wavelength Very Large Array (VLA) site in New Mexico, United States.

    The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

    The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

    By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter’s wide-field imaging capability.

    ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

    The first step toward the creation of what would become ALMA came in 1997, when the National Radio Astronomy Observatory (NRAO) and the European Southern Observatory (ESO) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

    A series of resolutions and agreements led to the choice of “Atacama Large Millimeter Array”, or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. (“Alma” means “soul” in Spanish and “learned” or “knowledgeable” in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the National Astronomical Observatory of Japan (NAOJ) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.

    During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA’s stringent requirements. The components designed and manufactured across Europe were transported by specialist aerospace and astrospace logistics company Route To Space Alliance, 26 in total which were delivered to Antwerp for onward shipment to Chile.

    Partners

    European Southern Observatory (EU) and the European Regional Support Centre
    National Science Foundation (US) via the National Radio Astronomy Observatory (US) and the North American ALMA Science Center (US)
    National Research Council Canada [Conseil national de recherches Canada] (CA)
    National Astronomical Observatory of Japan (JP) under the National Institute of Natural Sciences (自然科学研究機構, Shizenkagaku kenkyuukikou) (JP)
    ALMA-Taiwan at the Academia Sinica Institute of Astronomy & Astrophysics [中央研究院天文及天文物理研究所](TW)
    Republic of Chile

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 4:24 pm on June 28, 2022 Permalink | Reply
    Tags: "A sanitizer in the galactic centre region", A long-term study of the chemical composition of Sgr B2 was started that took advantage of the high angular resolution and sensitivity provided by ALMA., An outstanding star forming region in our Galaxy where many molecules were detected in the past is Sagittarius B2 (Sgr B2)., , , , , , Ground based Millimeter/submillimeter astronomy, Investigation of the chemical composition of Sgr B2 began more than 15 years ago with the IRAM 30-m telescope., Iso-propanol was observed in a “delivery room” of stars-the massive star-forming region Sagittarius B2 which is located near the centre of our Milky Way., One difficulty in the identification of organic molecules is the spectral confusion. Each molecule emits radiation at specific frequencies-its spectral "fingerprint"-known from laboratory measurements, , Thanks to ALMA's high angular resolution it was possible to isolate very narrow spectral lines-five times more narrow than the lines detected on larger scales with the IRAM 30-m radio telescope!, The "Cologne Database for Molecular Spectroscopy (CDMS)" provides spectroscopic data to detect these molecules contributed by many groups and has been instrumental in their detection in many cases., The ALMA observations have led to the identification of three new organic molecules., The bigger the molecule the more spectral lines at different frequencies it produces., The goal of the present work is to understand how organic molecules form in the interstellar medium., The latest result within this ALMA project is now the detection of propanol (C3H7OH)., The molecular cloud is the target of an extensive investigation of its chemical composition with the ALMA telescope., , The search for molecules in space has been going on for more than 50 years. To date astronomers have identified 276 molecules in the interstellar medium., To date astronomers have identified 276 molecules in the interstellar medium., With the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) ten years ago it became possible to go beyond what could be achieved toward Sgr B2 with a single-dish telescope.   

    From The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE): “A sanitizer in the galactic centre region” 

    From The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE)

    June 28, 2022

    Dr. Norbert Junkes
    Press and public relations
    Max Planck Institute for Radio Astronomy, Bonn
    +49 2 28525-399
    njunkes@mpifr-bonn.mpg.de

    Dr. Arnaud Belloche
    Max Planck Institute for Radio Astronomy, Bonn
    +49 228 525-376
    belloche@mpifr-bonn.mpg.de

    Prof. Dr. Karl M. Menten
    Director at the Institute and Head of the “Millimeter and Submillimeter Astronomy” Research Dept.
    Max Planck Institute for Radio Astronomy, Bonn
    +49 228 525-471
    kmenten@mpifr-bonn.mpg.de

    Interstellar detection of iso-propanol in Sagittarius B2

    Many of us have probably already – literally – handled the chemical compound iso-propanol: it can used as an antiseptic, a solvent or a cleaning agent. But this substance is not only found on Earth: researchers led by Arnaud Belloche from the Max Planck Institute for Radio Astronomy in Bonn have now detected the molecule in interstellar space for the first time. It was observed in a “delivery room” of stars-the massive star-forming region Sagittarius B2 which is located near the centre of our Milky Way. The molecular cloud is the target of an extensive investigation of its chemical composition with the ALMA telescope in the Chilean Atacama Desert.

    1
    Alcohol in space: the position of star-forming molecular cloud Sagittarius B2 (Sgr B2) close to the central source of the Milky Way, Sgr A*. The image, taken from the GLOSTAR Galactic Plane Survey (Effelsberg & VLA) shows radio sources in the Galactic centre region. The isomers propanol and iso-propanol were both detected in Sgr B2 using the ALMA telescope.
    © GLOSTAR (Bruntaler et al. 2021, Astronomy & Astrophysics): Background image. Wikipedia (public domain): Propanol and isopropanol models.

    The search for molecules in space has been going on for more than 50 years. To date astronomers have identified 276 molecules in the interstellar medium. The “Cologne Database for Molecular Spectroscopy (CDMS)” provides spectroscopic data to detect these molecules contributed by many research groups and has been instrumental in their detection in many cases.

    The goal of the present work is to understand how organic molecules form in the interstellar medium, in particular in regions where new stars are born, and how complex these molecules can be. The underlying motivation is to establish connections to the chemical composition of bodies in the Solar system such as comets, as delivered for instance by the Rosetta mission to comet 67P/Churyumov–Gerasimenko a few years ago.

    An outstanding star forming region in our Galaxy where many molecules were detected in the past is Sagittarius B2 (Sgr B2), which is located close to the famous source Sgr A*, the supermassive black hole in the centre of our Galaxy.

    “Our group began to investigate the chemical composition of Sgr B2 more than 15 years ago with the IRAM 30-m telescope”, says Arnaud Belloche from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn/Germany, the leading author of the detection paper.

    “These observations were successful and led in particular to the first interstellar detection of several organic molecules, among many other results.”

    With the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) ten years ago it became possible to go beyond what could be achieved toward Sgr B2 with a single-dish telescope and a long-term study of the chemical composition of Sgr B2 was started that took advantage of the high angular resolution and sensitivity provided by ALMA.

    So far, the ALMA observations have led to the identification of three new organic molecules (iso-propyl cyanide, N-methylformamide, urea) since 2014. The latest result within this ALMA project is now the detection of propanol (C3H7OH).

    Propanol is an alcohol, and is now the largest in this class of molecules that has been detected in interstellar space. This molecule exists in two forms (“isomers”), depending on which carbon atom the hydroxyl (OH) functional group is attached to: 1) normal-propanol, with OH bound to a terminal carbon atom of the chain, and 2) iso-propanol, with OH bound to the central carbon atom in the chain. Iso-propanol is also well known as the key ingredient in hand sanitizers on Earth. Both isomers of propanol in Sgr B2 were identified in the ALMA data set. It is the first time that iso-propanol is detected in the interstellar medium, and the first time that normal-propanol is detected in a star forming region. The first interstellar detection of normal-propanol was obtained shortly before the ALMA detection by a Spanish research team with single-dish radio telescopes in a molecular cloud not far from Sgr B2. The detection of iso-propanol toward Sgr B2, however, was only possible with ALMA.

    “The detection of both isomers of propanol is uniquely powerful in determining the formation mechanism of each. Because they resemble each other so much, they behave physically in very similar ways, meaning that the two molecules should be present in the same places at the same times”, says Rob Garrod from the University of Virginia. “The only open question is the exact amounts that are present – this makes their interstellar ratio far more precise than would be the case for other pairs of molecules. It also means that the chemical network can be tuned much more carefully to determine the mechanisms by which they form.”

    The ALMA telescope network was essential for the detection of both isomers of propanol toward Sgr B2, thanks to its high sensitivity, its high angular resolution, and its broad frequency coverage. One difficulty in the identification of organic molecules in the spectra of star forming regions is the spectral confusion. Each molecule emits radiation at specific frequencies-its spectral “fingerprint”-which is known from laboratory measurements.

    “The bigger the molecule the more spectral lines at different frequencies it produces. In a source like Sgr B2, there are so many molecules contributing to the observed radiation that their spectra overlap and it is difficult to disentangle their fingerprints and identify them individually”, says Holger Müller from Cologne University where laboratory work especially on normal-propanol was performed.

    Thanks to ALMA’s high angular resolution it was possible to isolate parts of Sgr B2 that emit very narrow spectral lines-five times more narrow than the lines detected on larger scales with the IRAM 30-m radio telescope! The narrowness of these lines reduces the spectral confusion, and this was key for the identification of both isomers of propanol in Sgr B2. The sensitivity of ALMA also played a key role: it would not have been possible to identify propanol in the collected data if the sensitivity had been just twice worse.

    This research is a long-standing effort to probe the chemical composition of sites in Sgr B2 where new stars are being formed, and thereby understand the chemical processes at work in the course of star formation. The goal is to determine the chemical composition of the star forming sites, and possibly identify new interstellar molecules. “Propanol has long been on our list of molecules to search for, but it is only thanks to the recent work done in our laboratory to characterize its rotational spectrum that we could identify its two isomers in a robust way”, says Oliver Zingsheim, also from Cologne University.

    Detecting closely related molecules that slightly differ in their structure (such as normal- and iso-propanol or, as was done in the past: normal- and iso-propyl cyanide) and measuring their abundance ratio allows the researchers to probe specific parts of the chemical reaction network that leads to their production in the interstellar medium.

    “There are still many unidentified spectral lines in the ALMA spectrum of Sgr B2 which means that still a lot of work is left to decipher its chemical composition. In the near future, the expansion of the ALMA instrumentation down to lower frequencies will likely help us to reduce the spectral confusion even further and possibly allow the identification of additional organic molecules in this spectacular source”, concludes Karl Menten, Director at the MPIfR and Head of its Millimeter and Submillimeter Astronomy research department.

    Science paper:
    Astronomy & Astrophysics

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MPIFR campus

    Effelsberg Radio Telescope- a radio telescope in the Ahr Hills (part of the Eifel) in Bad Münstereifel(DE)

    The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) is located in Bonn, Germany. It is one of 80 institutes in the MPG Society.

    By combining the already existing radio astronomy faculty of the University of Bonn led by Otto Hachenberg with the new MPG institute the MPG Institute for Radio Astronomy was formed. In 1972 the 100-m radio telescope in Effelsberg was opened. The institute building was enlarged in 1983 and 2002.

    The institute was founded in 1966 by the MPG Society as the “MPG Institut für Radioastronomie (MPIfR) (DE)”.

    The foundation of the institute was closely linked to plans in the German astronomical community to construct a competitive large radio telescope in (then) West Germany. In 1964, Professors Friedrich Becker, Wolfgang Priester and Otto Hachenberg of the Astronomische Institute der Universität Bonn submitted a proposal to the Stiftung Volkswagenwerk for the construction of a large fully steerable radio telescope.

    In the same year the Stiftung Volkswagenwerk approved the funding of the telescope project but with the condition that an organization should be found, which would guarantee the operations. It was clear that the operation of such a large instrument was well beyond the possibilities of a single university institute.

    Already in 1965 the MPG Society decided in principle to found the MPG Institut für Radioastronomie. Eventually, after a series of discussions, the institute was officially founded in 1966.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:
    International Max Planck Research Schools
    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 1:49 pm on June 28, 2022 Permalink | Reply
    Tags: "Young and cool and on edge — an unstable protoplanetary disk", , , , , Ground based Millimeter/submillimeter astronomy, , If the cloud is initially rotating the contraction of the gas will magnify that rotation due to the conservation of angular momentum., The very young (less than hundred thousand years) star L1527 IRS in the Taurus molecular cloud at a distance of 137 parsecs., Today’s authors present a detailed analysis of a particular protoplanetary disk — one that is gravitationally unstable., When a cloud of gas in space has enough mass the gravitational forces from all the gas overwhelm the gas pressure keeping the cloud puffed up and it collapses under its own gravity to form a star.   

    From astrobites : “Young and cool and on edge — an unstable protoplanetary disk” 

    Astrobites bloc

    From astrobites

    Jun 28, 2022
    Konstantin Gerbig

    Title: Formation of dust clumps with sub-Jupiter mass and cold shadowed region in gravitationally unstable disk around class 0/I protostar in L1527 IRS

    Authors: Satoshi Ohashi, Riouhei Nakatani, Hauyu Baobab Liu, Hiroshi Kobayashi, Yichen Zhang, Tomoyuki Hanawa, and Nami Sakai

    First Author’s Institution: RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan

    Status: Published on ArXiv, 17 Jun 2022

    When a cloud of gas in space has enough mass the gravitational forces from all the gas overwhelm the gas pressure keeping the cloud puffed up and it collapses under its own gravity to form a star. If the cloud is initially rotating the contraction of the gas will magnify that rotation due to the conservation of angular momentum – imagine spinning on a desk chair, and pulling your legs in towards your body. The rotation also drives material towards the equatorial plane ultimately resulting in a so-called protoplanetary disk — a flattened disk of leftover gas and dust orbiting the newly-formed star.

    The protoplanetary disk that birthed the planets in our solar system is long gone, so we need to look to stars much younger than our Sun, to study these planetary nurseries. Today’s authors present a detailed analysis of a particular protoplanetary disk — one that is gravitationally unstable.

    Remember the gravitational instability that formed the star from a cloud? Well, the disk can be unstable to its own gravity, too, when the pressure and rotational forces are too small to prevent collapse. This can occur if the disk is very massive and also very cool. Gravitational instability in disks is one possible way of manufacturing giant planets. It causes the disk to fragment into many small blobs of gas, which then collapse into planets. Thus, understanding how gravitational instability begins is an important piece of the puzzle in understanding the formation of the diverse range of planetary systems discovered over the last twenty years.

    1
    Figure 1: ALMA images (Band 7,4,3) and JVLA image (Q band) of the L1527 protoplanetary disk viewed edge-on. The clumps detected in the Q band are marked with black crosses in the other panels. The white ellipse in the bottom left of each panel indicates the image resolution. Figure 2 in the paper.

    Observing an edge-on protoplanetary disk

    Two excellent tools for observing protoplanetary disks are the Atacama Large Millimeter Array (ALMA) [above] and the Jansky Very Large Array (JVLA).

    Both use an array of dishes that look at the target in unison, acting as one massive telescope [interferometry]. Both can observe at different wavelengths, called bands, which can be combined to produce a more complete picture of the disk.

    2
    Figure 2: Sketch of L1527’s disk, as viewed from Earth. The hot regions (red) on the near side are obscured by the flared outer disk (blue), so the near side appears slightly hotter in temperature maps. Figure 7 in the paper.

    The disk observed by today’s authors is around the very young (less than hundred thousand years) star L1527 IRS in the Taurus molecular cloud at a distance of 137 parsecs. The disk is viewed nearly edge-on, and its host star is still accreting and the disk has not yet fully formed. Each band penetrates the disk to a different depth, so the observation will look very different depending on the filter. Figure 1 shows three ALMA images (bands 3,4,7) and one JVLA image (Q band). Viewed head-on, the center of the disk is expected to be symmetrical in temperature, so any temperature asymmetry in this region can be used to measure the disk inclination. The regions closest to the host star receive the most radiation, so they are the hottest. However, since the disk is flared (= it becomes thicker with distance to the star) , the inner regions on the near side should be mostly obscured, whereas the inner regions on the far side are better visible. This is sketched in the schematic in Fig. 2 [above]. Because of this asymmetry, the near side appears hotter in Fig. 1 [above]. The authors used this to put the disk inclination at around 5 degrees, with an additional warping potentially being present.

    Assessing gravitational instability

    A gravitationally unstable disk is characterized by a distinctive spiral structure. The problem is we can only view this disk edge-on, so we can’t see the spiral structure—much like how the Milky Way’s spiral structure isn’t visible from Earth.

    The author’s resolved this issue by assessing the stability of the L1527 disk using Toomre’s stability analysis with measured values for temperature and surface density. They find that the disk is expected to be gravitationally unstable. The left panel of Fig 3. shows the spiral structure typical to a gravitationally unstable disk in the face-on view. If we were to look at this model disk from an edge-on, 90 degree rotated view, we’d see two high density regions flanking the center of the disk (right panel of Fig. 3). This almost reproduces the shape of the Q-band observation (right most panel, Fig. 1) so the authors conclude that L1527’s disk is indeed likely to be gravitationally unstable.

    3
    Figure 3: Model of a gravitationally unstable disk. If a massive disk cools enough such that its gas pressure cannot withstand the gas’ self-gravity, it starts to fragment and form a spiral structure (left panel, face-on view). The spiral structure projects two clumps on the edge-on view (right panel). Figure 17 in the paper.

    One caveat of this assessment is that the surface density—which is a crucial quantity in Toomre’s stability analysis—has to be inferred indirectly by combining dust temperature measurements and opacity models that have some uncertainty attached to them (opacity is the ability of material to block photons). However, if truly unstable, the L1527 disk would be one of the youngest systems to be subject to gravitational instability, suggesting that this young star could have giant planets forming around it much sooner than expected.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.

    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 8:23 am on June 20, 2022 Permalink | Reply
    Tags: "Close Encounter More Than 10000 Years Ago Stirred Up Spirals in an Accretion Disk", A 32 solar mass protostar in the Galactic Center., A binary stellar system known as Scholz's Star flew by the solar system about 70000 years ago probably penetrating through the Oort cloud and sending comets to the inner solar system., Accretion disks at the early evolutionary stages of star formation are subject to frequent dynamic processes such as flybys., , An object flew by the disk more than 10000 years ago and perturbed the disk leading to the formation of spiral arms., , At a distance of about 26000 light-years away from us the Galactic Center is a unique and important star-forming environment., , , Ground based Millimeter/submillimeter astronomy, Numerical simulation matches perfectly with the ALMA observations., The disk clearly displays two spiral arms. Such spiral arms resemble those found in spiral galaxies but are rarely seen in protostellar disks., The disk has a diameter of about 4000 astronomical units and is surrounding a forming early O-type star of 32 solar mass., The spiral arms in the disk are relics of the flyby of the intruding object., The team detected an object of about three solar masses at about 8000 astronomical units away from the disk.   

    From ALMA (CL): “Close Encounter More Than 10000 Years Ago Stirred Up Spirals in an Accretion Disk” 

    From ALMA (CL)

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Junko Ueda
    Public Information Officer
    NAOJ
    Email: junko.ueda@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL) http://www.almaobservatory.org/

    European Southern Observatory(EU) http://www.eso.org/public/

    National Astronomical Observatory of Japan(JP) http://www.nao.ac.jp/en/

    National Radio Astronomy Observatory(US) https://public.nrao.edu/
    Full identification of an astronomical asset will be presented once in the first instance of that asset.

    1
    The three plots starting from the bottom left are snapshots from the numerical simulation, capturing the system right at the flyby event, 4,000 years after, and 8,000 years after, respectively. The top right image is from the ALMA observations, showing the disk with spirals and the two objects around it, corresponding to the system at 12,000 years after the flyby event. Image credit: Lu et al.

    An international research team from China, the U.S., and Germany has used high-resolution observational data from ALMA and discovered a massive accretion disk with two spiral arms surrounding a 32 solar mass protostar in the Galactic Center. This disk could be perturbed by a close encounter with a flyby object, thus leading to the formation of the spiral arms. This finding demonstrates that the formation of massive stars may be similar to that of lower-mass stars through accretion disks and flybys.

    Accretion disks around protostars, also known as ‘protostellar disks,’ are essential components in star formation because they continuously feed gas into protostars from the environment. In this sense, they are stellar cradles where stars are born and raised. Accretion disks surrounding solar-like low-mass protostars have been extensively studied in the last few decades, leading to a wealth of observational and theoretical achievements. For massive protostars, especially early O-type ones of more than 30 solar masses, it is still unclear whether and how accretion disks play a role in their formation. These massive stars are far more luminous than the Sun, with intrinsic luminosities up to several hundreds of thousands of times the solar value, which strongly impact the environment of the entire Galaxy. Therefore, understanding the formation of massive stars is of great importance.

    At a distance of about 26000 light-years away from us the Galactic Center is a unique and important star-forming environment. The most well-known object here would undoubtedly be the supermassive black hole Sgr A*. Besides that, there is a massive reservoir of dense molecular gas, mainly in the form of molecular hydrogen (H2), which is the raw material for star formation. The gas will start to form stars once gravitational collapse is initiated. However, direct observations of star-forming regions around the Galactic Center are challenging, given the considerable distance and the contamination from foreground gas between the Galactic Center and us. A very high resolution, combined with high sensitivity, is necessary to resolve details of star formation in this region.

    The research team has used the long-baseline observations of ALMA to achieve a resolution of 40 milliarcseconds. We can easily spot a baseball hidden in Osaka from Tokyo at such a resolution. With these high-resolution, high-sensitivity ALMA observations, the team has discovered an accretion disk around the Galactic Center. The disk has a diameter of about 4000 astronomical units and is surrounding a forming early O-type star of 32 solar mass. “This system is among the most massive protostars with accretion disks and represents the first direct imaging of a protostellar accretion disk in the Galactic Center,” said Qizhou Zhang, a co-author and an astrophysicist at the Center for Astrophysics. This discovery suggests that the formation of massive early O-type stars does go through a phase with accretion disks involved, and such a conclusion is valid for the Galactic Center.

    What is more interesting is that the disk clearly displays two spiral arms. Such spiral arms resemble those found in spiral galaxies but are rarely seen in protostellar disks. Spiral arms could emerge in accretion disks due to fragmentation induced by gravitational instabilities. However, the disk discovered in this study is hot and turbulent, thus able to balance its gravity. The team detected an object of about three solar masses at about 8000 astronomical units away from the disk. Through a combined analysis of analytic solutions and numerical simulations, they reproduce a scenario where an object flew by the disk more than 10000 years ago and perturbed the disk leading to the formation of spiral arms. “The numerical simulation matches perfectly with the ALMA observations. We conclude that the spiral arms in the disk are relics of the flyby of the intruding object,” said Xing Lu, the lead author and an associate researcher at the Shanghai Astronomical Observatory of the Chinese Academy of Sciences.

    This finding demonstrates that accretion disks at the early evolutionary stages of star formation are subject to frequent dynamic processes such as flybys, which would substantially influence the formation of stars and planets. It is interesting to note that flybys have also happened in our Solar System. A binary stellar system known as Scholz’s Star flew by the solar system about 70000 years ago probably penetrating through the Oort cloud and sending comets to the inner solar system. This study suggests that for more massive stars, especially in the high stellar density environment around the Galactic Center, such flybys should also be frequent. “The formation of stars should be a dynamical process, with many mysteries still unresolved,” said Xing Lu. “With more upcoming high-resolution ALMA observations, we expect to disentangle these mysteries in star formation.”

    Additional information

    These research results were published by X. Lu et al. in Nature Astronomy.

    This research was supported by the initial funding of scientific research for high-level talents at Shanghai Astronomical Observatory, JSPS KAKENHI Grant Number JP20K14528, and the National Natural Science Foundation of China grants W820301904 and 12033005.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA) (CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO) (EU), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) (CA) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the centimetre-wavelength Very Large Array (VLA) site in New Mexico, United States.

    The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

    The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

    By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter’s wide-field imaging capability.

    ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

    The first step toward the creation of what would become ALMA came in 1997, when the National Radio Astronomy Observatory (NRAO) and the European Southern Observatory (ESO) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

    A series of resolutions and agreements led to the choice of “Atacama Large Millimeter Array”, or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. (“Alma” means “soul” in Spanish and “learned” or “knowledgeable” in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the National Astronomical Observatory of Japan (NAOJ) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.

    During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA’s stringent requirements. The components designed and manufactured across Europe were transported by specialist aerospace and astrospace logistics company Route To Space Alliance, 26 in total which were delivered to Antwerp for onward shipment to Chile.

    Partners

    European Southern Observatory (EU) and the European Regional Support Centre
    National Science Foundation (US) via the National Radio Astronomy Observatory (US) and the North American ALMA Science Center (US)
    National Research Council Canada [Conseil national de recherches Canada] (CA)
    National Astronomical Observatory of Japan (JP) under the National Institute of Natural Sciences (自然科学研究機構, Shizenkagaku kenkyuukikou) (JP)
    ALMA-Taiwan at the Academia Sinica Institute of Astronomy & Astrophysics [中央研究院天文及天文物理研究所](TW)
    Republic of Chile

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 10:14 am on June 16, 2022 Permalink | Reply
    Tags: "New maps of asteroid Psyche reveal an ancient world of metal and rock", , , , , , Ground based Millimeter/submillimeter astronomy,   

    From The Massachusetts Institute of Technology: “New maps of asteroid Psyche reveal an ancient world of metal and rock” 

    From The Massachusetts Institute of Technology

    June 15, 2022
    Jennifer Chu

    The varied surface suggests a dynamic history, which could include metallic eruptions, asteroid-shaking impacts, and a lost rocky mantle.


    Maps of the asteroid Psyche
    On the left, this map shows surface properties on Psyche, from sandy areas (purple/low) to rocky areas (yellow/high). The map on the right shows metal abundances on Psyche, from low (purple) to high (yellow).

    1
    Astronomers at MIT and elsewhere have mapped the composition of asteroid Psyche, revealing a surface of metal, sand, and rock. Credit: Screenshot courtesy of NASA.

    Later this year, NASA is set to launch a probe the size of a tennis court to the asteroid belt, a region between the orbits of Mars and Jupiter where remnants of the early solar system circle the sun. Once inside the asteroid belt, the spacecraft will zero in on Psyche, a large, metal-rich asteroid that is thought to be the ancient core of an early planet. The probe, named after its asteroid target, will then spend close to two years orbiting and analyzing Psyche’s surface for clues to how early planetary bodies evolved.

    Ahead of the mission, which is led by principal investigator Lindy Elkins-Tanton ’87, SM ’87, PhD ’02, planetary scientists at MIT and elsewhere have now provided a sneak peak of what the Psyche spacecraft might see when it reaches its destination.

    In a paper appearing today in the Journal of Geophysical Research: Planets, the team presents the most detailed maps of the asteroid’s surface properties to date, based on observations taken by a large array of ground telescopes in northern Chile. The maps reveal vast metal-rich regions sweeping across the asteroid’s surface, along with a large depression that appears to have a different surface texture between the interior and its rim; this difference could reflect a crater filled with finer sand and rimmed with rockier materials.

    Overall, Psyche’s surface was found to be surprisingly varied in its properties.

    The new maps hint at the asteroid’s history. Its rocky regions could be vestiges of an ancient mantle — similar in composition to the rocky outermost layer of Earth, Mars, and the asteroid Vesta — or the imprint of past impacts by space rocks. Finally, craters that contain metallic material support the idea proposed by previous studies that the asteroid may have experienced early eruptions of metallic lava as its ancient core cooled.

    “Psyche’s surface is very heterogeneous,” says lead author Saverio Cambioni, the Crosby Distinguished Postdoctoral Fellow in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “It’s an evolved surface, and these maps confirm that metal-rich asteroids are interesting, enigmatic worlds. It’s another reason to look forward to the Psyche mission going to the asteroid.”

    Cambioni’s co-authors are Katherine de Kleer, assistant professor of planetary science and astronomy at Caltech, and Michael Shepard, professor of environmental, geographical, and geological sciences at Bloomsburg University.
    ===
    Telescope Power

    The surface of Psyche has been a focus of numerous previous mapping efforts. Researchers have observed the asteroid using various telescopes to measure light emitted from the asteroid at infrared wavelengths, which carry information about Psyche’s surface composition. However, these studies could not spatially resolve variations in composition over the surface.

    Cambioni and his colleagues instead were able to see Psyche in finer detail, at a resolution of about 20 miles per pixel, using the combined power of the 66 radio antennas of the Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile.

    Each antenna of ALMA measures light emitted from an object at millimeter wavelengths, within a range that is sensitive to temperature and certain electrical properties of surface materials.

    “The signals of the ALMA antennas can be combined into a synthetic signal that’s equivalent to a telescope with a diameter of 16 kilometers (10 miles),” de Kleer says. “The larger the telescope, the higher the resolution.”

    On June 19, 2019, ALMA focused its entire array on Psyche as it orbited and rotated within the asteroid belt. De Kleer collected data during this period and converted it into a map of thermal emissions across the asteroid’s surface, which the team reported in a 2021 study. Those same data were used by Shepard to produce the most recent high-resolution 3D shape model of Psyche, also published in 2021.

    To catch a match

    In the new study, Cambioni ran simulations of Psyche to see which surface properties might best match and explain the measured thermal emissions. In each of hundreds of simulated scenarios, he set the asteroid’s surface with different combinations of materials, such as areas of different metal abundances. He modeled the asteroid’s rotation and measured how simulated materials on the asteroid would give off thermal emissions. Cambioni then looked for the simulated emissions that best matched the actual emissions measured by ALMA. That scenario, he reasoned, would reveal the likeliest map of the asteroid’s surface materials.

    “We ran these simulations area by area so we could catch differences in surface properties,” Cambioni says.

    The study produced detailed maps of Psyche’s surface properties, showing that the asteroid’s façade is likely covered in a large diversity of materials. The researchers confirmed that, overall, Psyche’s surface is rich in metals, but the abundance of metals and silicates varies across its surface. This may be a further hint that, early in its formation, the asteroid may have had a silicate-rich mantle that has since disappeared.

    They also found that, as the asteroid rotates, the material at the bottom of a large depression — likely a crater — changes temperature much faster than material along the rim. This suggests that the crater bottom is covered in “ponds” of fine-grained material, like sand on Earth, which heats up quickly, whereas the crater rims are composed of rockier, slower-to-warm materials.

    “Ponds of fine-grained materials have been seen on small asteroids, whose gravity is low enough for impacts to shake the surface and cause finer materials to pool,” Cambioni says. “But Psyche is a large body, so if fine-grained materials accumulated on the bottom of the depression, this is interesting and somewhat mysterious.”

    “These data show that Psyche’s surface is heterogeneous, with possible remarkable variations in composition,” says Simone Marchi, staff scientist at the Southwest Research Institute and a co-investigator on NASA’s Psyche mission, who was not involved in the current study. “One of the primary goals of the Psyche mission is to study the composition of the asteroid surface using its gamma rays and neutron spectrometer and a color imager. So, the possible presence of compositional heterogeneties is something that the Psyche Science Team is eager to study more.”

    This research was supported by the EAPS Crosby Distinguished Postodoctoral Fellowship, and in part by the Heising-Simons Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 2:06 pm on June 15, 2022 Permalink | Reply
    Tags: "ALMA Gets Front-Row Seat to an Ongoing Star-Formation Standoff in the Large Magellanic Cloud", , , , , Ground based Millimeter/submillimeter astronomy   

    From ALMA (CL): “ALMA Gets Front-Row Seat to an Ongoing Star-Formation Standoff in the Large Magellanic Cloud” 

    From ALMA (CL)

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Junko Ueda
    Public Information Officer
    NAOJ
    Email: junko.ueda@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL) http://www.almaobservatory.org/

    European Southern Observatory(EU) http://www.eso.org/public/

    National Astronomical Observatory of Japan(JP) http://www.nao.ac.jp/en/

    National Radio Astronomy Observatory(US) https://public.nrao.edu/
    Full identification of an astronomical asset will be presented once in the first instance of that asset.

    1
    30 Doradus is a large star-forming region located in the heart of the Tarantula Nebula. Shown here in composite, the red/orange millimeter-wavelength data from the Atacama Large Millimeter/submillimeter Array (ALMA) stands out like stringlike filaments against optical data from the Hubble Space Telescope (HST). Scientists studying 30 Dor discovered that despite intense stellar feedback— which is known to moderate or decrease the birth rate of stars— gravity continues to shape the region, giving rise to star formation. Credit: ALMA (ESO/NAOJ/NRAO), T. Wong (U. Illinois, Urbana-Champaign); S. Dagnello (NRAO/AUI/NSF)

    2
    This zoomed-in view of the southern region of 30 Doradus reveals some clumpy areas that help make up the gas cloud. Unlike the northern region, which is home to massive protostars more than 5x the mass of the Sun, the southern region is home to numerous protostars similar in mass to the Sun. Future studies of the star-forming region using the Atacama Large Millimeter/submillimeter Array (ALMA) will help scientists understand why star formation differs from location to location within 30 Dor. Credit: ALMA (ESO/NAOJ/NRAO), T. Wong (U. Illinois, Urbana-Champaign); S. Dagnello (NRAO/AUI/NSF)

    3
    This zoomed-in view of the northern region of 30 Doradus reveals the filamentary structures that make up the gas cloud. This region contains several massive protostars— each more than 5x the mass of the Sun— and is characterized by ongoing star formation. Future studies of the star-forming region using the Atacama Large Millimeter/submillimeter Array (ALMA) will help scientists understand why star formation differs from location to location within 30 Dor. Credit: ALMA (ESO/NAOJ/NRAO), T. Wong (U. Illinois, Urbana-Champaign); S. Dagnello (NRAO/AUI/NSF)

    4
    This composite image shows the star-forming region 30 Doradus, also known as the Tarantula Nebula. The background image, taken in the infrared, is itself a composite: it was captured by the HAWK-I instrument on ESO’s Very Large Telescope (VLT) and the Visible and Infrared Survey Telescope for Astronomy (VISTA), shows bright stars and light, pinkish clouds of hot gas. The bright red-yellow streaks that have been superimposed on the image come from radio observations taken by the Atacama Large Millimeter/submillimeter Array (ALMA), revealing regions of cold, dense gas which have the potential to collapse and form stars. The unique web-like structure of the gas clouds led astronomers to the nebula’s spidery nickname. Credit: ESO, ALMA (ESO/NAOJ/NRAO)/Wong et al., ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit.

    5
    30 Doradus is a large star-forming region located in the Large Magellanic Cloud, at the heart of the Tarantula Nebula. It is roughly 170,000 light-years away from Earth. Credit: IAU/Sky & Telescope.

    While using the Atacama Large Millimeter/submillimeter Array (ALMA) to observe large star-forming regions in the Large Magellanic Cloud (LMC), scientists discovered a turbulent push-and-pull dynamic in the star-forming region, 30 Doradus. Observations revealed that despite intense stellar feedback, gravity is shaping the molecular cloud, and against scientific odds, is driving the ongoing formation of young, massive stars. The observations were presented today in a press conference at the 240th American Astronomical Society (AAS) meeting in Pasadena, California, and are published in The Astrophysical Journal [below] .

    30 Doradus is a large star-forming region located next door to the Milky Way— just 170,000 light-years away— in the heart of the Large Magellanic Cloud’s famed Tarantula Nebula. It is home to the most massive cluster of stars in the cosmic neighborhood, creating a perfect target for scientists seeking to understand the birth and evolution of stars. At the heart of 30 Doradus lies a sparkling stellar nursery that has witnessed the birth of over 800,000 stars and protostars, including half a million hot, young, and massive stars. The region is of interest to astronomers studying star formation and galactic evolution because of the ongoing effects of gravity and stellar feedback: enormous energy released back into the region by young and massive stars that can slow down star formation. Gravity and feedback compete against each other to manage star-formation rates.

    Using ALMA’s highly-sensitive Band 6 receivers, astronomers made new observations of 30 Doradus that led to a surprising revelation about the molecular cloud. “Stars form when dense clouds of gas cannot resist the pull of gravity. Our new observations reveal clear evidence that gravity is shaping the thickest parts of the clouds while also revealing many lower-density cloud fragments which are too turbulent for gravity to exert much influence,” said Tony Wong, a professor at the University of Illinois at Urbana-Champaign and the lead author on the new research. “We were expecting that the parts of the cloud closest to the young, massive stars would show the clearest signs of gravity being overwhelmed by feedback, resulting in a lower rate of star formation. Instead, these observations confirmed that even in a region with extremely active feedback, gravity’s presence is still strongly felt, and star formation is likely to continue.”

    “The outstanding resolution and sensitivity of ALMA allowed us to map the entire region of 30 Doradus in the southern skies,” says Monica Rubio, Professor at the University of Chile and associate researcher of the Center for Excellence in Astrophysics and Associated Technologies in Chile (CATA), a specialist in the Magellanic Clouds and co-author of this study. “It was a surprise to confirm that dense regions existed and survived in such a violent environment, where the UV radiation and wind of the hundreds of massive stars should disperse and photo-ionize most of the gas. We are sure that the excellent conditions of the skies in Northern Chile for millimeter-wave observations and the power of ALMA will continue to astonish us with important discoveries in the coming years”.

    To form a clearer picture of what was happening in 30 Doradus, the team divided the cloud into clumps to measure how one part of the cloud differs from another. Since stars typically form in the densest parts of molecular clouds, distinguishing between the less-dense and more-dense clumps was critical to building a clear understanding of what is happening in 30 Doradus. The novel approach revealed a pattern. “We used to think of interstellar gas clouds as puffy or roundish structures, but it’s increasingly clear that they are stringlike or filamentary,” said Wong. “When we divided the cloud into clumps to measure differences in density, we observed that the densest clumps are not randomly placed but are highly organized onto these filaments. The filaments themselves appear to be shaped by gravity, so they are probably an important step in the process of star formation.”

    Unlike the Milky Way, which experiences a relatively slow and steady star formation rate of roughly seven stars— or the equivalent of four solar masses— each year, 30 Doradus’ home galaxy, the LMC, and its star-forming regions go through “boom and bust” cycles, which often results in periods of intensely paced star formation. The team hopes that the new findings and additional future research will shed light on the differences between the Milky Way and other, more active star-forming galaxies, including how the competition between gravity and feedback shapes molecular clouds and impacts stellar birth rates.

    Remy Indebetouw, an astronomer at NRAO and a co-author of the research said, “30 Doradus contains the nearest massive stellar cluster to Earth. Clusters like this one can act like bombs in galaxies, blowing out gas and even changing their long-term evolution. We want to understand how molecular clouds turn into stars in detail— how long does it take, how quickly do newly formed stars start to affect their natal cloud, and over what distances, things that are currently not well understood. Observing these clusters will get us one step closer to an answer.”

    Wong added that the observations are both helping scientists to understand the broad scientific implications of star formation and revealing the history and future of galaxies. “One of the biggest mysteries of astronomy is why we are able to witness stars forming today. Why didn’t all available gas collapse in a huge fireworks show long ago? What we’re learning now can help us shine a light on what is happening deep within molecular clouds to understand better how galaxies sustain star formation over time.”
    Additional Information

    The research paper “The 30 Doradus Molecular Cloud at 0.4 Parsec Resolution with ALMA: Physical Properties and the Boundedness of CO Emitting Structures,” by Wong et al. (2022) appeared in The Astrophysical Journal.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA) (CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO) (EU), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) (CA) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the centimetre-wavelength Very Large Array (VLA) site in New Mexico, United States.

    The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

    The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

    By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter’s wide-field imaging capability.

    ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

    The first step toward the creation of what would become ALMA came in 1997, when the National Radio Astronomy Observatory (NRAO) and the European Southern Observatory (ESO) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

    A series of resolutions and agreements led to the choice of “Atacama Large Millimeter Array”, or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. (“Alma” means “soul” in Spanish and “learned” or “knowledgeable” in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the National Astronomical Observatory of Japan (NAOJ) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.

    During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA’s stringent requirements. The components designed and manufactured across Europe were transported by specialist aerospace and astrospace logistics company Route To Space Alliance, 26 in total which were delivered to Antwerp for onward shipment to Chile.

    Partners

    European Southern Observatory (EU) and the European Regional Support Centre
    National Science Foundation (US) via the National Radio Astronomy Observatory (US) and the North American ALMA Science Center (US)
    National Research Council Canada [Conseil national de recherches Canada] (CA)
    National Astronomical Observatory of Japan (JP) under the National Institute of Natural Sciences (自然科学研究機構, Shizenkagaku kenkyuukikou) (JP)
    ALMA-Taiwan at the Academia Sinica Institute of Astronomy & Astrophysics [中央研究院天文及天文物理研究所](TW)
    Republic of Chile

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 1:22 pm on June 15, 2022 Permalink | Reply
    Tags: "The Tarantula's cosmic web:: astronomers map violent star formation in nebula outside our galaxy", , Ground based Millimeter/submillimeter astronomy, , , the Tarantula Nebula is one of the brightest and most active star-forming regions in our galactic neighbourhood.   

    From The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral] [Europäische Südsternwarte](EU)(CL): “The Tarantula’s cosmic web:: astronomers map violent star formation in nebula outside our galaxy” 

    ESO 50 Large

    From The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral] [Europäische Südsternwarte](EU)(CL)

    15 June 2022

    Tony Wong
    Astronomy Department, University of Illinois
    Urbana-Champaign, IL, USA
    Tel: +1 217 244 4207
    Email: wongt@illinois.edu

    Guido De Marchi
    European Space Research and Technology Centre, European Space Agency
    Noordwijk, Netherlands
    Tel: +31 71 565 8332
    Cell: +31 6 5081 6906
    Email: gdemarchi@esa.int

    Bárbara Ferreira
    ESO Media Manager
    Garching bei München, Germany
    Tel: +49 89 3200 6670
    Cell: +49 151 241 664 00
    Email: press@eso.org

    1
    Astronomers have unveiled intricate details of the star-forming region 30 Doradus-also known as the Tarantula Nebula, using new observations from the Atacama Large Millimeter/submillimeter Array (ALMA)[below]. In a high-resolution image released today by the European Southern Observatory (ESO) and including ALMA data, we see the nebula in a new light, with wispy gas clouds that provide insight into how massive stars shape this region.

    2
    This image shows the star-forming region 30 Doradus, also known as the Tarantula Nebula, in radio wavelengths, as observed by the Atacama Large Millimeter/submillimeter Array (ALMA). The bright red-yellow streaks reveal regions of cold, dense gas which have the potential to collapse and form stars. The unique web-like structure of the gas clouds is characteristic of the Tarantula Nebula. Credit: ALMA (ESO/NAOJ/NRAO)/Wong et al.

    3
    This infrared image shows the star-forming region 30 Doradus, also known as the Tarantula Nebula, highlighting its bright stars and light, pinkish clouds of hot gas. The image is a composite: it was captured by the HAWK-I instrument on ESO’s Very Large Telescope (VLT) [below] and the Visible and Infrared Survey Telescope for Astronomy (VISTA) [below]. Credit: ESO, M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit.


    This video starts with a view of the star-forming region 30 Doradus, also known as the Tarantula Nebula, in optical wavelengths, taken with ESO’s 2.2-metre telescope at La Silla Observatory. Located in the southern constellation of Dorado (The Dolphinfish) in the nearby Large Magellanic Cloud, the Tarantula Nebula is known for its unique, web-like clouds.

    During the video, the image shifts to an infrared view of the Tarantula Nebula. The infrared data are provided by ESO’s Very Large Telescope (VLT) and the Visible and Infrared Survey Telescope for Astronomy (VISTA) and reveal pinkish clouds of hot gas. Radio data taken by the Atacama Large Millimeter/submillimeter Array (ALMA) are then overlaid, represented by bright red-yellow streaks. These streaks highlight the locations of cold, dense gas clouds that have the potential to collapse and form new stars. The radio data are then presented on their own, displaying in detail some of the spidery structures that originally gave rise to the moniker Tarantula Nebula. Credit: ESO/M. Kornmesser, ALMA (ESO/NAOJ/NRAO)/Wong et al., ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit.


    This zoom video starts with a wide view of the Milky Way and ends with a close-up look at a rich region of star formation in the nearby Large Magellanic Cloud, in the southern constellation of Dorado (The Dolphinfish). The specific region shown, 30 Doradus, is also known as the Tarantula Nebula.

    The final view of these clouds was captured by ESO’s Very Large Telescope and the Visible and Infrared Survey Telescope for Astronomy (VISTA) [below], and overlaid with new radio data taken by the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA data reveal bright yellow-red streaks of cold, dense gas that have the potential to collapse and form new stars.
    Credit: ESO/Digitized Sky Survey 2/N. Risinger (skysurvey.org)/R. Gendler (http://www.robgendlerastropics.com/), ALMA (ESO/NAOJ/NRAO)/Wong et al., ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit. Music: John Dyson.

    “These fragments may be the remains of once-larger clouds that have been shredded by the enormous energy being released by young and massive stars, a process dubbed feedback,” says Tony Wong, who led the research on 30 Doradus presented today at the American Astronomical Society (AAS) meeting and published in The Astrophysical Journal. Astronomers originally thought the gas in these areas would be too sparse and too overwhelmed by this turbulent feedback for gravity to pull it together to form new stars. But the new data also reveal much denser filaments where gravity’s role is still significant. “Our results imply that even in the presence of very strong feedback, gravity can exert a strong influence and lead to a continuation of star formation,” adds Wong, who is a professor at the University of Illinois at Urbana-Champaign, USA.

    Located in the Large Magellanic Cloud, a satellite galaxy of our own Milky Way, the Tarantula Nebula is one of the brightest and most active star-forming regions in our galactic neighbourhood, lying about 170 000 light-years away from Earth.

    At its heart are some of the most massive stars known, a few with more than 150 times the mass of our Sun, making the region perfect for studying how gas clouds collapse under gravity to form new stars.

    “What makes 30 Doradus unique is that it is close enough for us to study in detail how stars are forming, and yet its properties are similar to those found in very distant galaxies, when the Universe was young,” said Guido De Marchi, a scientist at the European Space Agency (ESA) and a co-author of the paper presenting the new research. “Thanks to 30 Doradus, we can study how stars used to form 10 billion years ago when most stars were born.”

    While most of the previous studies of the Tarantula Nebula have focused on its centre, astronomers have long known that massive star formation is happening elsewhere too. To better understand this process, the team conducted high-resolution observations covering a large region of the nebula. Using ALMA [below], they measured the emission of light from carbon monoxide gas. This allowed them to map the large, cold gas clouds in the nebula that collapse to give birth to new stars — and how they change as huge amounts of energy are released by those young stars.

    “We were expecting to find that parts of the cloud closest to the young massive stars would show the clearest signs of gravity being overwhelmed by feedback,” says Wong. “We found instead that gravity is still important in these feedback-exposed regions — at least for parts of the cloud that are sufficiently dense.”

    In the image released today by ESO, we see the new ALMA data overlaid on a previous infrared image of the same region that shows bright stars and light pinkish clouds of hot gas, taken with ESO’s Very Large Telescope (VLT)[below] and ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA)[below]. The composition shows the distinct, web-like shape of the Tarantula Nebula’s gas clouds that gave rise to its spidery name. The new ALMA data comprise the bright red-yellow streaks in the image: very cold and dense gas that could one day collapse and form stars.

    The new research contains detailed clues about how gravity behaves in the Tarantula Nebula’s star-forming regions, but the work is far from finished. “There is still much more to do with this fantastic data set, and we are releasing it publicly to encourage other researchers to conduct new investigations,” Wong concludes.

    More information

    This research is being presented at the 240th meeting of the American Astronomical Society (AAS) in the press conference titled Stars, Their Environments & Their Planets (Wednesday, 15 June, 19:15 CEST / 10:15 PT). Reporters are welcome to watch the live stream of the press conference, which will be visible publicly on the AAS Press Office YouTube channel: https://www.youtube.com/c/AASPressOffice.

    The research is also presented in the paper The 30 Doradus Molecular Cloud at 0.4 Parsec Resolution with ALMA: Physical Properties and the Boundedness of CO Emitting Structures to appear in The Astrophysical Journal.

    The team is composed of T. Wong (Astronomy Department, University of Illinois, USA [Illinois]), L. Oudshoorn (Leiden Observatory, Leiden University, The Netherlands [Leiden]), E. Sofovich (Illinois), A. Green (Illinois), C. Shah (Illinois), R. Indebetouw (Department of Astronomy, University of Virginia, USA and National Radio Astronomy Observatory, USA [NRAO]), M. Meixner (SOFIA-USRA, NASA Ames Research Center, USA), A. Hacar (Department of Astrophysics, University of Vienna, Austria), O. Nayak (Space Telescope Science Institute, USA [STSci]), K. Tokuda (Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Japan and National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Japan and Department of Physics, Graduate School of Science, Osaka Metropolitan University, Japan [Osaka]), A. D. Bolatto (Department of Astronomy and Joint Space Science Institute, University of Maryland, USA and NRAO Visiting Astronomer), M. Chevance (Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany), G. De Marchi (European Space Research and Technology Centre, Netherlands), Y. Fukui (Department of Physics, Nagoya University, Japan), A. S. Hirschauer (STSci), K. E. Jameson (CSIRO, Space and Astronomy, Australia), V. Kalari (International Gemini Observatory, NSF’s NOIRLab, Chile), V. Lebouteiller (AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, France), L. W. Looney (Illinois), S. C. Madden (Departement d’Astrophysique AIM/CEA Saclay, France), Toshikazu Onishi (Osaka), J. Roman-Duval (STSci), M. Rubio (Departamento de Astronomía, Universidad de Chile, Chile) and A. G. G. M. Tielens (Department of Astronomy, University of Maryland, USA and Leiden).

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    Helium is the second-most-abundant element in the universe, but on Earth it’s relatively rare. It results from the decay of uranium, can’t be artificially created, and is produced as a byproduct of natural gas refinement. Only a limited number of countries produce it, with the U.S. and Russia among top suppliers. Because that’s the case, it only takes a handful of supply disruptions to trigger a crisis — the gas industry refers to the current one as “Helium shortage 4.0,” it being the fourth since 2006.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO (EU) in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte] (EU)(CL) is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious program focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organizing cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: Cerro La Silla, Cerro Paranaland Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration in astronomy. Established as an intergovernmental organisation in 1962, ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. At Paranal ESO will host and operate the Čerenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory.


    Cerro La Silla HELIOS (HARPS Experiment for Light Integrated Over the Sun).

    3.6m telescope & HARPS at Cerro LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    MPG Institute for Astronomy [MPG-Institut für Astronomie](DE) European Southern Observatory(EU) 2.2 meter telescope at Cerro La Silla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    European Southern Observatory (EU) Cerro La Silla Observatory 600 km north of Santiago de Chile at an altitude of 2400 metres.

    European Southern Observatory(EU) , Very Large Telescope at Cerro Paranal in the Atacama Desert •ANTU (UT1; The Sun ) •KUEYEN (UT2; The Moon ) •MELIPAL (UT3; The Southern Cross ), and •YEPUN (UT4; Venus – as evening star). Elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo.

    European Southern Observatory(EU) VLTI Interferometer image, Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level, •ANTU (UT1; The Sun ), •KUEYEN (UT2; The Moon ), •MELIPAL (UT3; The Southern Cross ), and •YEPUN (UT4; Venus – as evening star).

    ESO VLT Survey telescope.

    ESO Very Large Telescope 4 lasers on Yepun (CL).

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    ESO New Technology Telescope at Cerro La Silla, at an altitude of 2400 metres.

    Part of ESO’s Paranal Observatory the VLT Survey Telescope (VISTA) observes the brilliantly clear skies above the Atacama Desert of Chile. It is the largest survey telescope in the world in visible light, with an elevation of 2,635 metres (8,645 ft) above sea level.

    European Southern ObservatoryNational Radio Astronomy Observatory(US)National Astronomical Observatory of Japan(JP) ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres.

    European Southern Observatory(EU) ELT 39 meter telescope to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    European Southern Observatory(EU)/MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE) ESO’s Atacama Pathfinder Experiment(CL) high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft).

    The Leiden Observatory [Sterrewacht Leiden](NL) MASCARA instrument cabinet at Cerro La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft).

    ESO Next Generation Transit Survey telescopes, an array of twelve robotic 20-centimetre telescopes at Cerro Paranal, 2,635 metres (8,645 ft) above sea level.


    ESO Speculoos telescopes four 1 meter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level.

    TAROT telescope at Cerro LaSilla, 2,635 metres (8,645 ft) above sea level.

    European Southern Observatory (EU) ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres.

    A novel gamma ray telescope under construction on Mount Hopkins, Arizona. A large project known as the Čerenkov Telescope Array composed of hundreds of similar telescopes to be situated in the Canary Islands and Chile at, ESO Cerro Paranal site The telescope on Mount Hopkins will be fitted with a prototype high-speed camera, assembled at the University of Wisconsin–Madison and capable of taking pictures at a billion frames per second. Credit: Vladimir Vassiliev.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), The new Test-Bed Telescope 2 is housed inside the shiny white dome shown in this picture, at ESO’s Cerro LaSilla Facility in Chile. The telescope has now started operations and will assist its northern-hemisphere twin in protecting us from potentially hazardous, near-Earth objects. The domes of ESO’s 0.5 m and the Danish 0.5 m telescopes are visible in the background of this image.Part of the world-wide effort to scan and identify near-Earth objects, the European Space Agency’s Test-Bed Telescope 2 (TBT2), a technology demonstrator hosted at ESO’s La Silla Observatory, has now started operating. Working alongside its northern-hemisphere partner telescope, TBT2 will keep a close eye on the sky for asteroids that could pose a risk to Earth, testing hardware and software for a future telescope network.

    European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU) ‘s The open dome of The black telescope structure of the European Space Agency Test-Bed Telescope 2 peers out of its open dome in front of the rolling desert landscape. The telescope is located at ESO’s Cerro La Silla Observatory, which sits at a 2400 metre altitude in the Chilean Atacama Desert.

     
  • richardmitnick 8:09 pm on June 14, 2022 Permalink | Reply
    Tags: "Undergraduate Researcher Captures Young Galaxy's 'Coming of Age' and Finds Evidence That Early Galaxies May Be Bigger and More Complex Than We Thought", A1689-zD1 is a star-forming galaxy located in the Virgo constellation cluster., , , , , Ground based Millimeter/submillimeter astronomy   

    From ALMA (CL): “Undergraduate Researcher Captures Young Galaxy’s ‘Coming of Age’ and Finds Evidence That Early Galaxies May Be Bigger and More Complex Than We Thought” Revised to add link to science paper 

    From ALMA (CL)

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Junko Ueda
    Public Information Officer
    NAOJ
    Email: junko.ueda@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL) http://www.almaobservatory.org/

    European Southern Observatory(EU) http://www.eso.org/public/

    National Astronomical Observatory of Japan(JP) http://www.nao.ac.jp/en/

    National Radio Astronomy Observatory(US) https://public.nrao.edu/
    Full identification of an astronomical asset will be presented once in the first instance of that asset.

    1
    A1689-zD1 is a star-forming galaxy located in the Virgo constellation cluster. It was first observed thanks to gravitational lensing from the Abell 1689 galaxy, which made the young galaxy appear nine times more luminous. New observations made using the Atacama Large Millimeter/submillimeter Array (ALMA) are revealing to scientists that the young galaxy, and others like it, may be bigger and more complex than originally thought. Credit: ALMA (ESO/NAOJ/NRAO)/H. Akins (Grinnell College), B. Saxton (NRAO/AUI/NSF)

    2
    This composite combines radio images of A1689-zD1, captured using the Atacama Large Millimeter/submillimeter Array (ALMA), shown in orange/red, with optical images from the Hubble Space Telescope (HST), shown in blue/white. In the context of its surroundings, it becomes clear how A1689-zD1 managed to “hide out” behind Abell 1689, and why gravitational lensing— the magnification of the young galaxy— are critical to studying its behaviors and processes. Credit: ALMA (ESO/NAOJ/NRAO)/H. Akins (Grinnell College), HST, B. Saxton (NRAO/AUI/NSF)

    3
    This artist’s conception illustrates the previously unknown complexity of the young galaxy, A1689-zD1. Reaching far beyond the center of the galaxy, shown here in pink, is an abundant halo of cold carbon gas. For scientists, this uncommon feature indicates that the galaxy may be much larger than previously believed and that early stages of normal galaxy formation may have been more active and dynamic than theorized. To the upper left and lower right are outflows of hot, ionized gas pushing outward from the center of the galaxy, shown here in red. Scientists believe it is possible that these outflows have something, though they don’t yet know what, to do with the presence of cold carbon gas in the outer reaches of the galaxy. Credit: ALMA (ESO/NAOJ/NRAO), B. Saxton (NRAO/AUI/NSF)

    4
    A1689-zD1 is a young, star-forming galaxy located in the Virgo constellation cluster, roughly 13 billion light-years away from Earth. Credit: IAU/Sky & Telescope

    Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed a significant amount of cold, neutral gas in the outer regions of the young galaxy A1689-zD1, as well as outflows of hot gas coming from the galaxy’s center. These results may shed light on a critical stage of galactic evolution for early galaxies, where young galaxies begin the transformation to be increasingly like their later, more structured cousins. The observations were presented today in a press conference at the 240th meeting of the American Astronomical Society (AAS) in Pasadena, California. They will be published in an upcoming edition of The Astrophysical Journal.

    A1689-zD1— a young, active, star-forming galaxy slightly less luminous and less massive than the Milky Way— is located roughly 13 billion light-years away from Earth in the Virgo constellation cluster. It was discovered hiding out behind the Abell 1689 galaxy cluster in 2007 and confirmed in 2015 thanks to gravitational lensing, which amplified the brightness of the young galaxy by more than 9x. Since then, scientists have continued to study the galaxy as a possible analog for the evolution of other “normal” galaxies. That label— normal— is an important distinction that has helped researchers divide A1689-zD1’s behaviors and characteristics into two buckets: typical and uncommon, with the uncommon characteristics mimicking those of later and more massive galaxies.

    “A1689-zD1 is located in the very early Universe— only 700 million years after the Big Bang. This is the era where galaxies were just beginning to form,” said Hollis Akins, an undergraduate student in astronomy at Grinnell College and the lead author of the research. “What we see in these new observations is evidence of processes that may contribute to the evolution of what we call normal galaxies as opposed to massive galaxies. More importantly, these processes are ones we did not previously believe applied to these normal galaxies.”

    One of these uncommon processes is the galaxy’s production and distribution of star-forming fuel, potentially a lot of it. The team used ALMA’s highly-sensitive Band 6 receiver to home in on a halo of carbon gas that extends far beyond the center of the young galaxy. This could be evidence of ongoing star formation in the same region or the result of structural disruptions, such as mergers or outflows, in the earliest stages of the galaxy’s formation.

    According to Akins, this is unusual for early galaxies. “The carbon gas we observed in this galaxy is typically found in the same regions as neutral hydrogen gas, which is also where new stars tend to form. If that is the case with A1689-zD1, the galaxy is likely much larger than previously thought. It’s also possible that this halo is a remnant of previous galactic activity, like mergers that exerted complex gravitational forces on the galaxy leading to the ejection of a lot of neutral gas out to these large distances. In either case, the early evolution of this galaxy was likely active and dynamic, and we’re learning that this may be a common, although previously unobserved, theme in early galaxy formation.”

    More than just uncommon, the discovery could have significant implications for the study of galactic evolution, particularly as radio observations uncover details unseen at optical wavelengths. Seiji Fujimoto, a postdoctoral researcher at the Niels Bohr Institute’s Cosmic Dawn Center and co-author of the research, said, “The emission from the carbon gas in A1689-zD1 is much more extended than what was observed with Hubble Space Telescope, and this could mean that early galaxies are not as small as they appear. If, in fact, early galaxies are larger than we previously believed, this would have a major impact on the theory of galaxy formation and evolution in the early Universe.”

    Led by Akins, the team also observed outflows of hot, ionized gas— commonly caused by violent galactic activity like supernovae— pushing outward from the galaxy’s center. Given their potentially explosive nature, the outflows may have something to do with the carbon halo. “Outflows occur as a result of violent activity, such as the explosion of supernovae— which blast nearby gaseous material out of the galaxy— or black holes in the centers of galaxies— which have strong magnetic effects that can eject material in powerful jets. Because of this, there’s a strong possibility that the hot outflows have something to do with the presence of the cold carbon halo,” said Akins. “And that further highlights the importance of the multiphase, or hot to cold, nature of the outflowing gas.”

    Darach Watson, an associate professor at the Niels Bohr Institute’s Cosmic Dawn Center and co-author of the new research, confirmed A1689-zD1 as a high-redshift galaxy in 2015, the most distant dusty galaxy known. “We have seen this type of extended gas halo emission from galaxies that formed later in the Universe, but seeing it in such an early galaxy means that this behavior is universal even in the more modest galaxies that formed most of the stars in the early Universe. Understanding how these processes occurred in such a young galaxy is critical to understanding how star-formation happens in the early Universe.”

    Kirsten Knudsen, a professor of astrophysics in the Department of Space, Earth, and Environment at the Chalmers University of Technology and co-author of the research, found evidence of A1689-zD1’s dust continuum in 2017. Knudsen pointed out the fortunate role of extreme gravitational lensing in making each discovery in the research possible. “Because A1689-zD1 is magnified more than nine times, we can see critical details that are otherwise difficult to observe in ordinary observations of such distant galaxies. Ultimately, we see here that early Universe galaxies are very complex, and this galaxy will continue to present new research challenges and results for some time.”

    Dr. Joe Pesce, NSF program officer for ALMA, added, “This fascinating ALMA research adds to a growing body of results indicating that things aren’t quite as we expected in the early Universe, but they are really interesting and exciting nonetheless!”

    Spectroscopy and infrared observations of A1689-zD1 are planned for January 2023, using the NIRSpec Integral Field Unit (IFU) and NIRCam on the James Webb Space Telescope. The new observations will complement previous HST and ALMA data, offering a deeper and more complete multi-wavelength look at the young galaxy.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA) (CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO) (EU), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) (CA) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the centimetre-wavelength Very Large Array (VLA) site in New Mexico, United States.

    The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

    The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

    By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter’s wide-field imaging capability.

    ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

    The first step toward the creation of what would become ALMA came in 1997, when the National Radio Astronomy Observatory (NRAO) and the European Southern Observatory (ESO) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

    A series of resolutions and agreements led to the choice of “Atacama Large Millimeter Array”, or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. (“Alma” means “soul” in Spanish and “learned” or “knowledgeable” in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the National Astronomical Observatory of Japan (NAOJ) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.

    During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA’s stringent requirements. The components designed and manufactured across Europe were transported by specialist aerospace and astrospace logistics company Route To Space Alliance, 26 in total which were delivered to Antwerp for onward shipment to Chile.

    Partners

    European Southern Observatory (EU) and the European Regional Support Centre
    National Science Foundation (US) via the National Radio Astronomy Observatory (US) and the North American ALMA Science Center (US)
    National Research Council Canada [Conseil national de recherches Canada] (CA)
    National Astronomical Observatory of Japan (JP) under the National Institute of Natural Sciences (自然科学研究機構, Shizenkagaku kenkyuukikou) (JP)
    ALMA-Taiwan at the Academia Sinica Institute of Astronomy & Astrophysics [中央研究院天文及天文物理研究所](TW)
    Republic of Chile

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 12:44 pm on June 14, 2022 Permalink | Reply
    Tags: "Scientists on the Hunt for Planetary Formation Fossils Reveal Unexpected Eccentricities in Nearby Debris Disk", , , , , Ground based Millimeter/submillimeter astronomy   

    From ALMA (CL): “Scientists on the Hunt for Planetary Formation Fossils Reveal Unexpected Eccentricities in Nearby Debris Disk” 

    From ALMA (CL)

    14 June, 2022

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Junko Ueda
    Public Information Officer
    NAOJ
    Email: junko.ueda@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL) http://www.almaobservatory.org/

    European Southern Observatory(EU) http://www.eso.org/public/

    National Astronomical Observatory of Japan(JP) http://www.nao.ac.jp/en/

    National Radio Astronomy Observatory(US) https://public.nrao.edu/
    Full identification of an astronomical asset will be presented once in the first instance of that asset.

    First radio images of HD 53143 shed new light on the early development of Sun-like systems.

    Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have imaged the debris disk of the nearby star HD 53143 at millimeter wavelengths for the first time, and it looks nothing like they expected. Based on early coronagraphic data, scientists expected ALMA to confirm the debris disk as a face-on ring peppered with clumps of dust. Instead, the observations took a surprise turn, revealing the most complicated and eccentric debris disk observed. The observations were presented today in a press conference at the 240th meeting of the American Astronomical Society (AAS) in Pasadena, California. They will be published in an upcoming edition of The Astrophysical Journal Letters.

    HD 53143— a roughly billion-year-old Sun-like star located 59.8 light-years from Earth in the Carina constellation— was first observed with the coronagraphic Advanced Camera for Surveys on the Hubble Space Telescope (HST) in 2006.

    A debris disk also surrounds it—a belt of comets orbiting a star constantly colliding and grinding down into smaller dust and debris— that scientists previously believed to be a face-on ring similar to the debris disk surrounding our Sun, more commonly known as the Kuiper Belt.

    The new observations made of HD 53143 using the ALMA highly-sensitive Band 6 receivers have revealed that the star system’s debris disk is highly eccentric. In ring-shaped debris disks, the star is typically located at or near the center of the disk. But in elliptically-shaped eccentric disks, the star resides at one focus of the ellipse, far away from the disk’s center. Such is the case with HD 53143, which wasn’t seen in previous coronagraphic studies because coronagraphs purposely block the light of a star to see nearby objects more clearly. The star system may also be harboring a second disk and at least one planet.

    “Until now, scientists had never seen a debris disk with such a complicated structure. In addition to being an ellipse with a star at one focus, it also likely has a second inner disk that is misaligned or tilted relative to the outer disk,” said Meredith MacGregor, an assistant professor at the Center for Astrophysics and Space Astronomy (CASA) and Department of Astrophysical and Planetary Sciences (APS) at CU Boulder, and the lead author on the study. “In order to produce this structure, there must be a planet or planets in the system that are gravitationally perturbing the material in the disk.”

    This level of eccentricity, MacGregor said, makes HD 53143 the most eccentric debris disk observed to date, being twice as eccentric as the Fomalhaut debris disk, which MacGregor fully imaged at millimeter wavelengths using ALMA in 2017. “So far, we have not found many disks with a significant eccentricity. In general, we don’t expect disks to be very eccentric unless something, like a planet, is sculpting them and forcing them to be eccentric. Without that force, orbits tend to circularize, like what we see in our Solar System.”

    MacGregor notes that debris disks aren’t just collections of dust and rocks in space. They are a historical record of planetary formation and how planetary systems evolve. and provide a peek into their futures. “We can’t study the formation of Earth and the Solar System directly, but we can study other systems that appear similar to but younger than our own. It’s a bit like looking back in time,” she said. “Debris disks are the fossil record of planet formation, and this new result is confirmation that there is much more to be learned from these systems and that knowledge may provide a glimpse into the complicated dynamics of young star systems similar to our Solar System.”

    Dr. Joe Pesce, NSF program officer for ALMA, added, “We are finding planets everywhere we look, and these fabulous results by ALMA are showing us how planets form – both those around other stars and in our own Solar System. This research demonstrates how astronomy works and how progress is made, informing not only what we know about the field but also about ourselves.”

    1
    While studying HD 53143— a roughly billion-year-old Sun-like star— in millimeter-wavelengths for the first time, scientists discovered that the star’s debris disk is highly eccentric. Unlike ring-shaped debris disks, in which the star sits in the center, HD 53143 is located at one foci of an elliptical-shaped disk and is shown as the unresolved dot below and left of the center. Scientists believe a second unresolved dot in the north of this image to be a planet that is perturbing and shaping the debris disk. Credit: ALMA (ESO/NAOJ/NRAO)/M. MacGregor (U. Colorado Boulder); S. Dagnello (NRAO/AUI/NSF)

    2
    Composite image of the HD 53143 star system. Shown in orange/red, millimeter-wavelength data from Atacama Large Millimeter/submillimeter Array (ALMA), reveal a previously unobserved eccentric debris disk orbiting HD 53143 in the form of an ellipse. An unresolved dot shows the star off-center near the southern foci of the disk, while a second unresolved dot to the north indicates the potential presence of a planet. Optical data from the Hubble Space Telescope’s Advanced Camera for Surveys (ACS) is shown in blue and white; a coronagraphic mask blocks out the starlight, allowing researchers to see what’s happening in the region surrounding HD 53143. Credit: ALMA(ESO/NAOJ/NRAO), M. MacGregor (U. Colorado Boulder); NASA/ESA Hubble, P. Kalas (UC Berkeley); S. Dagnello (NRAO/AUI/NSF)

    3
    Artist’s impression of the billion-year-old Sun-like star, HD 53143, and its highly eccentric debris disk. The star and a second inner disk are shown near the southern foci of the elliptical debris disk. A planet, which scientists assume is shaping the disk through gravitational force, is shown to the north. Debris disks are the fossils of planetary formation. Since we can’t directly study our disk— also known as the Kuiper Belt— scientists glean information about the formation of our Solar System by studying those we can see from a distance. Credit: ALMA (ESO/NAOJ/NRAO); M. Weiss (NRAO/AUI/NSF)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA) (CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO) (EU), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) (CA) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the centimetre-wavelength Very Large Array (VLA) site in New Mexico, United States.

    The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

    The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

    By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter’s wide-field imaging capability.

    ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

    The first step toward the creation of what would become ALMA came in 1997, when the National Radio Astronomy Observatory (NRAO) and the European Southern Observatory (ESO) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

    A series of resolutions and agreements led to the choice of “Atacama Large Millimeter Array”, or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. (“Alma” means “soul” in Spanish and “learned” or “knowledgeable” in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the National Astronomical Observatory of Japan (NAOJ) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.

    During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA’s stringent requirements. The components designed and manufactured across Europe were transported by specialist aerospace and astrospace logistics company Route To Space Alliance, 26 in total which were delivered to Antwerp for onward shipment to Chile.

    Partners

    European Southern Observatory (EU) and the European Regional Support Centre
    National Science Foundation (US) via the National Radio Astronomy Observatory (US) and the North American ALMA Science Center (US)
    National Research Council Canada [Conseil national de recherches Canada] (CA)
    National Astronomical Observatory of Japan (JP) under the National Institute of Natural Sciences (自然科学研究機構, Shizenkagaku kenkyuukikou) (JP)
    ALMA-Taiwan at the Academia Sinica Institute of Astronomy & Astrophysics [中央研究院天文及天文物理研究所](TW)
    Republic of Chile

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 9:26 pm on June 13, 2022 Permalink | Reply
    Tags: "Wandering star disrupts stellar nursery", A young protostar in L483, , , , Ground based Millimeter/submillimeter astronomy, ,   

    From Northwestern University: “Wandering star disrupts stellar nursery” 

    Northwestern U bloc

    From Northwestern University

    June 13, 2022
    Amanda Morris
    amandamo@northwestern.edu

    1
    A young protostar in L483 and its signature outflow peeks out through a shroud of dust in this infrared image from NASA’s Spitzer Space Telescope.

    Stars are known to form from collapsing clumps of gas and dust, or envelopes, seen here around a forming star system as a dark blob, or shadow, against a dusty background. The greenish color shows jets coming away from the young star within. The envelope is roughly 100 times the size of our solar system. CREDIT: NASA/JPL-Caltech/J.Tobin (University of Michigan)

    From a zoomed out, distant view, star-forming cloud L483 appears normal. But when a Northwestern University-led team of astrophysicists zoomed in closer and closer, things became weirder and weirder.

    As the researchers peered closer into the cloud, they noticed that its magnetic field was curiously twisted. And then — as they examined a newborn star within the cloud — they spotted a hidden star, tucked behind it.

    “It’s the star’s sibling, basically,” said Northwestern’s Erin Cox, who led the new study. “We think these stars formed far apart, and one moved closer to the other to form a binary. When the star traveled closer to its sibling, it shifted the dynamics of the cloud to twist its magnetic field.”

    The new findings provide insight into binary star formation and how magnetic fields influence the earliest stages of developing stars.

    Cox presented this research at the 240th meeting of the American Astronomical Society (AAS) in Pasadena, California. “The Twisted Magnetic Field of L483” will take place on Tuesday, June 14, as a part of a session on “Magnetic Fields and Galaxies.” The Astrophysical Journal.

    Cox is a postdoctoral associate at Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

    Twisted mystery

    Stellar nurseries are wild and wondrous places. As dense clouds of gas and dust collapse to form stars, they launch outflows of stellar material at hypersonic speeds. A magnetic field surrounding a star-forming cloud is typically parallel to these outflows. When Cox and her collaborators observed the large-scale L483 cloud, they discovered just that. The magnetic field matched this typical profile.

    But then the astrophysicists decided to take a closer look with NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), and this is when things became strange.

    The magnetic field was not, in fact, parallel to the newborn stars’ outflows. Instead, the field was twisted at a 45-degree angle, with respect to the outflows.

    “At first, it matched what theory predicts,” Cox said. “If you have a magnetized collapse, then the magnetic field is controlling how the star is forming. We expect to see this parallelism. But theory can say one thing, and observations can say another.”

    Unusual binary formation

    Although more observations are needed, Cox believes a previously hidden sibling star may be responsible for the twisted field. Using SOFIA, the astrophysics team spotted one newborn star forming inside an envelope of material. But upon closer examination with radio telescopes at the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the researchers spotted the second star, sharing the same stellar envelope.

    “These stars are still young and still forming,” Cox said. “The stellar envelope is what supplies the material to form the stars. It’s similar to rolling a snowball in snow to make it bigger and bigger. The young stars are ‘rolling’ in material to build up mass.”

    About the same distance apart as our sun to Pluto, the two young stars form a binary system. Currently, astrophysicists agree that binaries can be formed when star-forming clouds are large enough to produce two stars or when the disc rotating around a young star partially collapses to make a second star.

    But for the twin stars in L483, Cox suspects something unusual is at play.

    “There is newer work that suggests it’s possible to have two stars form faraway from each other, and then one star moves in closer to form a binary,” Cox said. “We think that’s what is happening here. We don’t know why one star would move toward another one, but we think the moving star shifted the dynamics of the system to twist the magnetic field.”

    Cox believes this new work ultimately could provide new insights into how binary stars — and the planets that orbit them — form. Most people are familiar with the iconic scene from “Star Wars,” in which Luke Skywalker wistfully gazes up at the binary stars that his home planet Tatooine orbits. Now, scientists know this scenario is not merely science fiction; planets orbiting binary stars potentially could be habitable worlds.

    “Learning how binary stars form is exciting because planet and star formation take place at the same time, and binary stars dynamically interact with each other,” Cox said. “In our census of exoplanets, we know planets exist around these double stars, but we don’t know much about how these planets differ from the ones that live around isolated stars. With new instruments coming online to discover and probe new binary systems, we will be able to test these results with a statistical sample.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Northwestern South Campus
    South Campus

    Northwestern University is a private research university in Evanston, Illinois. Founded in 1851 to serve the former Northwest Territory, the university is a founding member of the Big Ten Conference.

    On May 31, 1850, nine men gathered to begin planning a university that would serve the Northwest Territory.

    Given that they had little money, no land and limited higher education experience, their vision was ambitious. But through a combination of creative financing, shrewd politicking, religious inspiration and an abundance of hard work, the founders of Northwestern University were able to make that dream a reality.

    In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University’s founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.
    Twenty-one presidents have presided over Northwestern in the years since. The University has grown to include 12 schools and colleges, with additional campuses in Chicago and Doha, Qatar.

    Northwestern is known for its focus on interdisciplinary education, extensive research output, and student traditions. The university provides instruction in over 200 formal academic concentrations, including various dual degree programs. The university is composed of eleven undergraduate, graduate, and professional schools, which include the Kellogg School of Management, the Pritzker School of Law, the Feinberg School of Medicine, the Weinberg College of Arts and Sciences, the Bienen School of Music, the McCormick School of Engineering and Applied Science, the Medill School of Journalism, the School of Communication, the School of Professional Studies, the School of Education and Social Policy, and The Graduate School. As of fall 2019, the university had 21,946 enrolled students, including 8,327 undergraduates and 13,619 graduate students.

    Valued at $12.2 billion, Northwestern’s endowment is among the largest university endowments in the United States. Its numerous research programs bring in nearly $900 million in sponsored research each year.

    Northwestern’s main 240-acre (97 ha) campus lies along the shores of Lake Michigan in Evanston, 12 miles north of Downtown Chicago. The university’s law, medical, and professional schools, along with its nationally ranked Northwestern Memorial Hospital, are located on a 25-acre (10 ha) campus in Chicago’s Streeterville neighborhood. The university also maintains a campus in Doha, Qatar and locations in San Francisco, California, Washington, D.C. and Miami, Florida.

    As of October 2020, Northwestern’s faculty and alumni have included 1 Fields Medalist, 22 Nobel Prize laureates, 40 Pulitzer Prize winners, 6 MacArthur Fellows, 17 Rhodes Scholars, 27 Marshall Scholars, 23 National Medal of Science winners, 11 National Humanities Medal recipients, 84 members of the American Academy of Arts and Sciences, 10 living billionaires, 16 Olympic medalists, and 2 U.S. Supreme Court Justices. Northwestern alumni have founded notable companies and organizations such as the Mayo Clinic, The Blackstone Group, Kirkland & Ellis, U.S. Steel, Guggenheim Partners, Accenture, Aon Corporation, AQR Capital, Booz Allen Hamilton, and Melvin Capital.

    The foundation of Northwestern University can be traced to a meeting on May 31, 1850, of nine prominent Chicago businessmen, Methodist leaders, and attorneys who had formed the idea of establishing a university to serve what had been known from 1787 to 1803 as the Northwest Territory. On January 28, 1851, the Illinois General Assembly granted a charter to the Trustees of the North-Western University, making it the first chartered university in Illinois. The school’s nine founders, all of whom were Methodists (three of them ministers), knelt in prayer and worship before launching their first organizational meeting. Although they affiliated the university with the Methodist Episcopal Church, they favored a non-sectarian admissions policy, believing that Northwestern should serve all people in the newly developing territory by bettering the economy in Evanston.

    John Evans, for whom Evanston is named, bought 379 acres (153 ha) of land along Lake Michigan in 1853, and Philo Judson developed plans for what would become the city of Evanston, Illinois. The first building, Old College, opened on November 5, 1855. To raise funds for its construction, Northwestern sold $100 “perpetual scholarships” entitling the purchaser and his heirs to free tuition. Another building, University Hall, was built in 1869 of the same Joliet limestone as the Chicago Water Tower, also built in 1869, one of the few buildings in the heart of Chicago to survive the Great Chicago Fire of 1871. In 1873 the Evanston College for Ladies merged with Northwestern, and Frances Willard, who later gained fame as a suffragette and as one of the founders of the Woman’s Christian Temperance Union (WCTU), became the school’s first dean of women (Willard Residential College, built in 1938, honors her name). Northwestern admitted its first female students in 1869, and the first woman was graduated in 1874.

    Northwestern fielded its first intercollegiate football team in 1882, later becoming a founding member of the Big Ten Conference. In the 1870s and 1880s, Northwestern affiliated itself with already existing schools of law, medicine, and dentistry in Chicago. Northwestern University Pritzker School of Law is the oldest law school in Chicago. As the university’s enrollments grew, these professional schools were integrated with the undergraduate college in Evanston; the result was a modern research university combining professional, graduate, and undergraduate programs, which gave equal weight to teaching and research. By the turn of the century, Northwestern had grown in stature to become the third largest university in the United States after Harvard University and the University of Michigan.

    Under Walter Dill Scott’s presidency from 1920 to 1939, Northwestern began construction of an integrated campus in Chicago designed by James Gamble Rogers, noted for his design of the Yale University campus, to house the professional schools. The university also established the Kellogg School of Management and built several prominent buildings on the Evanston campus, including Dyche Stadium, now named Ryan Field, and Deering Library among others. In the 1920s, Northwestern became one of the first six universities in the United States to establish a Naval Reserve Officers Training Corps (NROTC). In 1939, Northwestern hosted the first-ever NCAA Men’s Division I Basketball Championship game in the original Patten Gymnasium, which was later demolished and relocated farther north, along with the Dearborn Observatory, to make room for the Technological Institute.

    After the golden years of the 1920s, the Great Depression in the United States (1929–1941) had a severe impact on the university’s finances. Its annual income dropped 25 percent from $4.8 million in 1930-31 to $3.6 million in 1933-34. Investment income shrank, fewer people could pay full tuition, and annual giving from alumni and philanthropists fell from $870,000 in 1932 to a low of $331,000 in 1935. The university responded with two salary cuts of 10 percent each for all employees. It imposed hiring and building freezes and slashed appropriations for maintenance, books, and research. Having had a balanced budget in 1930-31, the university now faced deficits of roughly $100,000 for the next four years. Enrollments fell in most schools, with law and music suffering the biggest declines. However, the movement toward state certification of school teachers prompted Northwestern to start a new graduate program in education, thereby bringing in new students and much needed income. In June 1933, Robert Maynard Hutchins, president of the University of Chicago, proposed a merger of the two universities, estimating annual savings of $1.7 million. The two presidents were enthusiastic, and the faculty liked the idea; many Northwestern alumni, however, opposed it, fearing the loss of their Alma Mater and its many traditions that distinguished Northwestern from Chicago. The medical school, for example, was oriented toward training practitioners, and alumni feared it would lose its mission if it were merged into the more research-oriented University of Chicago Medical School. The merger plan was ultimately dropped. In 1935, the Deering family rescued the university budget with an unrestricted gift of $6 million, bringing the budget up to $5.4 million in 1938-39. This allowed many of the previous spending cuts to be restored, including half of the salary reductions.

    Like other American research universities, Northwestern was transformed by World War II (1939–1945). Regular enrollment fell dramatically, but the school opened high-intensity, short-term programs that trained over 50,000 military personnel, including future president John F. Kennedy. Northwestern’s existing NROTC program proved to be a boon to the university as it trained over 36,000 sailors over the course of the war, leading Northwestern to be called the “Annapolis of the Midwest.” Franklyn B. Snyder led the university from 1939 to 1949, and after the war, surging enrollments under the G.I. Bill drove dramatic expansion of both campuses. In 1948, prominent anthropologist Melville J. Herskovits founded the Program of African Studies at Northwestern, the first center of its kind at an American academic institution. J. Roscoe Miller’s tenure as president from 1949 to 1970 saw an expansion of the Evanston campus, with the construction of the Lakefill on Lake Michigan, growth of the faculty and new academic programs, and polarizing Vietnam-era student protests. In 1978, the first and second Unabomber attacks occurred at Northwestern University. Relations between Evanston and Northwestern became strained throughout much of the post-war era because of episodes of disruptive student activism, disputes over municipal zoning, building codes, and law enforcement, as well as restrictions on the sale of alcohol near campus until 1972. Northwestern’s exemption from state and municipal property-tax obligations under its original charter has historically been a source of town-and-gown tension.

    Although government support for universities declined in the 1970s and 1980s, President Arnold R. Weber was able to stabilize university finances, leading to a revitalization of its campuses. As admissions to colleges and universities grew increasingly competitive in the 1990s and 2000s, President Henry S. Bienen’s tenure saw a notable increase in the number and quality of undergraduate applicants, continued expansion of the facilities and faculty, and renewed athletic competitiveness. In 1999, Northwestern student journalists uncovered information exonerating Illinois death-row inmate Anthony Porter two days before his scheduled execution. The Innocence Project has since exonerated 10 more men. On January 11, 2003, in a speech at Northwestern School of Law’s Lincoln Hall, then Governor of Illinois George Ryan announced that he would commute the sentences of more than 150 death-row inmates.

    In the 2010s, a 5-year capital campaign resulted in a new music center, a replacement building for the business school, and a $270 million athletic complex. In 2014, President Barack Obama delivered a seminal economics speech at the Evanston campus.

    Organization and administration

    Governance

    Northwestern is privately owned and governed by an appointed Board of Trustees, which is composed of 70 members and, as of 2011, has been chaired by William A. Osborn ’69. The board delegates its power to an elected president who serves as the chief executive officer of the university. Northwestern has had sixteen presidents in its history (excluding interim presidents). The current president, economist Morton O. Schapiro, succeeded Henry Bienen whose 14-year tenure ended on August 31, 2009. The president maintains a staff of vice presidents, directors, and other assistants for administrative, financial, faculty, and student matters. Kathleen Haggerty assumed the role of interim provost for the university in April 2020.

    Students are formally involved in the university’s administration through the Associated Student Government, elected representatives of the undergraduate students, and the Graduate Student Association, which represents the university’s graduate students.

    The admission requirements, degree requirements, courses of study, and disciplinary and degree recommendations for each of Northwestern’s 12 schools are determined by the voting members of that school’s faculty (assistant professor and above).

    Undergraduate and graduate schools

    Evanston Campus:

    Weinberg College of Arts and Sciences (1851)
    School of Communication (1878)
    Bienen School of Music (1895)
    McCormick School of Engineering and Applied Science (1909)
    Medill School of Journalism (1921)
    School of Education and Social Policy (1926)
    School of Professional Studies (1933)

    Graduate and professional

    Evanston Campus

    Kellogg School of Management (1908)
    The Graduate School

    Chicago Campus

    Feinberg School of Medicine (1859)
    Kellogg School of Management (1908)
    Pritzker School of Law (1859)
    School of Professional Studies (1933)

    Northwestern University had a dental school from 1891 to May 31, 2001, when it closed.

    Endowment

    In 1996, Princess Diana made a trip to Evanston to raise money for the university hospital’s Robert H. Lurie Comprehensive Cancer Center at the invitation of then President Bienen. Her visit raised a total of $1.5 million for cancer research.

    In 2003, Northwestern finished a five-year capital campaign that raised $1.55 billion, exceeding its fundraising goal by $550 million.

    In 2014, Northwestern launched the “We Will” campaign with a fundraising goal of $3.75 billion. As of December 31, 2019, the university has received $4.78 billion from 164,026 donors.

    Sustainability

    In January 2009, the Green Power Partnership (sponsored by the EPA) listed Northwestern as one of the top 10 universities in the country in purchasing energy from renewable sources. The university matches 74 million kilowatt hours (kWh) of its annual energy use with Green-e Certified Renewable Energy Certificates (RECs). This green power commitment represents 30 percent of the university’s total annual electricity use and places Northwestern in the EPA’s Green Power Leadership Club. The Initiative for Sustainability and Energy at Northwestern (ISEN), supporting research, teaching and outreach in these themes, was launched in 2008.

    Northwestern requires that all new buildings be LEED-certified. Silverman Hall on the Evanston campus was awarded Gold LEED Certification in 2010; Wieboldt Hall on the Chicago campus was awarded Gold LEED Certification in 2007, and the Ford Motor Company Engineering Design Center on the Evanston campus was awarded Silver LEED Certification in 2006. New construction and renovation projects will be designed to provide at least a 20% improvement over energy code requirements where feasible. At the beginning of the 2008–09 academic year, the university also released the Evanston Campus Framework Plan, which outlines plans for future development of the university’s Evanston campus. The plan not only emphasizes sustainable building construction, but also focuses on reducing the energy costs of transportation by optimizing pedestrian and bicycle access. Northwestern has had a comprehensive recycling program in place since 1990. The university recycles over 1,500 tons of waste, or 30% of all waste produced on campus, each year. All landscape waste at the university is composted.

    Academics

    Education and rankings

    Northwestern is a large, residential research university, and is frequently ranked among the top universities in the United States. The university is a leading institution in the fields of materials engineering, chemistry, business, economics, education, journalism, and communications. It is also prominent in law and medicine. Accredited by the Higher Learning Commission and the respective national professional organizations for chemistry, psychology, business, education, journalism, music, engineering, law, and medicine, the university offers 124 undergraduate programs and 145 graduate and professional programs. Northwestern conferred 2,190 bachelor’s degrees, 3,272 master’s degrees, 565 doctoral degrees, and 444 professional degrees in 2012–2013. Since 1951, Northwestern has awarded 520 honorary degrees. Northwestern also has chapters of academic honor societies such as Phi Beta Kappa (Alpha of Illinois), Eta Kappa Nu, Tau Beta Pi, Eta Sigma Phi (Beta Chapter), Lambda Pi Eta, and Alpha Sigma Lambda (Alpha Chapter).

    The four-year, full-time undergraduate program comprises the majority of enrollments at the university. Although there is no university-wide core curriculum, a foundation in the liberal arts and sciences is required for all majors; individual degree requirements are set by the faculty of each school. The university heavily emphasizes interdisciplinary learning, with 72% of undergrads combining two or more areas of study. Northwestern’s full-time undergraduate and graduate programs operate on an approximately 10-week academic quarter system with the academic year beginning in late September and ending in early June. Undergraduates typically take four courses each quarter and twelve courses in an academic year and are required to complete at least twelve quarters on campus to graduate. Northwestern offers honors, accelerated, and joint degree programs in medicine, science, mathematics, engineering, and journalism. The comprehensive doctoral graduate program has high coexistence with undergraduate programs.

    Despite being a mid-sized university, Northwestern maintains a relatively low student to faculty ratio of 6:1.

    Research

    Northwestern was elected to the Association of American Universities in 1917 and is classified as an R1 university, denoting “very high” research activity. Northwestern’s schools of management, engineering, and communication are among the most academically productive in the nation. The university received $887.3 million in research funding in 2019 and houses over 90 school-based and 40 university-wide research institutes and centers. Northwestern also supports nearly 1,500 research laboratories across two campuses, predominately in the medical and biological sciences.

    Northwestern is home to the Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern Institute for Complex Systems, Nanoscale Science and Engineering Center, Materials Research Center, Center for Quantum Devices, Institute for Policy Research, International Institute for Nanotechnology, Center for Catalysis and Surface Science, Buffet Center for International and Comparative Studies, the Initiative for Sustainability and Energy at Northwestern, and the Argonne/Northwestern Solar Energy Research Center among other centers for interdisciplinary research.

    Student body

    Northwestern enrolled 8,186 full-time undergraduate, 9,904 full-time graduate, and 3,856 part-time students in the 2019–2020 academic year. The freshman retention rate for that year was 98%. 86% of students graduated after four years and 92% graduated after five years. These numbers can largely be attributed to the university’s various specialized degree programs, such as those that allow students to earn master’s degrees with a one or two year extension of their undergraduate program.

    The undergraduate population is drawn from all 50 states and over 75 foreign countries. 20% of students in the Class of 2024 were Pell Grant recipients and 12.56% were first-generation college students. Northwestern also enrolls the 9th-most National Merit Scholars of any university in the nation.

    In Fall 2014, 40.6% of undergraduate students were enrolled in the Weinberg College of Arts and Sciences, 21.3% in the McCormick School of Engineering and Applied Science, 14.3% in the School of Communication, 11.7% in the Medill School of Journalism, 5.7% in the Bienen School of Music, and 6.4% in the School of Education and Social Policy. The five most commonly awarded undergraduate degrees are economics, journalism, communication studies, psychology, and political science. The Kellogg School of Management’s MBA, the School of Law’s JD, and the Feinberg School of Medicine’s MD are the three largest professional degree programs by enrollment. With 2,446 students enrolled in science, engineering, and health fields, the largest graduate programs by enrollment include chemistry, integrated biology, material sciences, electrical and computer engineering, neuroscience, and economics.

    Athletics

    Northwestern is a charter member of the Big Ten Conference. It is the conference’s only private university and possesses the smallest undergraduate enrollment (the next-smallest member, the University of Iowa, is roughly three times as large, with almost 22,000 undergraduates).

    Northwestern fields 19 intercollegiate athletic teams (8 men’s and 11 women’s) in addition to numerous club sports. 12 of Northwestern’s varsity programs have had NCAA or bowl postseason appearances. Northwestern is one of five private AAU members to compete in NCAA Power Five conferences (the other four being Duke, Stanford, USC, and Vanderbilt) and maintains a 98% NCAA Graduation Success Rate, the highest among Football Bowl Subdivision schools.

    In 2018, the school opened the Walter Athletics Center, a $270 million state of the art lakefront facility for its athletics teams.

    Nickname and mascot

    Before 1924, Northwestern teams were known as “The Purple” and unofficially as “The Fighting Methodists.” The name Wildcats was bestowed upon the university in 1924 by Wallace Abbey, a writer for the Chicago Daily Tribune, who wrote that even in a loss to the University of Chicago, “Football players had not come down from Evanston; wildcats would be a name better suited to “[Coach Glenn] Thistletwaite’s boys.” The name was so popular that university board members made “Wildcats” the official nickname just months later. In 1972, the student body voted to change the official nickname to “Purple Haze,” but the new name never stuck.

    The mascot of Northwestern Athletics is “Willie the Wildcat”. Prior to Willie, the team mascot had been a live, caged bear cub from the Lincoln Park Zoo named Furpaw, who was brought to the playing field on game days to greet the fans. After a losing season however, the team decided that Furpaw was to blame for its misfortune and decided to select a new mascot. “Willie the Wildcat” made his debut in 1933, first as a logo and then in three dimensions in 1947, when members of the Alpha Delta fraternity dressed as wildcats during a Homecoming Parade.

    Traditions

    Northwestern’s official motto, “Quaecumque sunt vera,” was adopted by the university in 1890. The Latin phrase translates to “Whatsoever things are true” and comes from the Epistle of Paul to the Philippians (Philippians 4:8), in which St. Paul admonishes the Christians in the Greek city of Philippi. In addition to this motto, the university crest features a Greek phrase taken from the Gospel of John inscribed on the pages of an open book, ήρης χάριτος και αληθείας or “the word full of grace and truth” (John 1:14).
    Alma Mater is the Northwestern Hymn. The original Latin version of the hymn was written in 1907 by Peter Christian Lutkin, the first dean of the School of Music from 1883 to 1931. In 1953, then Director-of-Bands John Paynter recruited an undergraduate music student, Thomas Tyra (’54), to write an English version of the song, which today is performed by the Marching Band during halftime at Wildcat football games and by the orchestra during ceremonies and other special occasions.
    Purple became Northwestern’s official color in 1892, replacing black and gold after a university committee concluded that too many other universities had used these colors. Today, Northwestern’s official color is purple, although white is something of an official color as well, being mentioned in both the university’s earliest song, Alma Mater (1907) (“Hail to purple, hail to white”) and in many university guidelines.
    The Rock, a 6-foot high quartzite boulder donated by the Class of 1902, originally served as a water fountain. It was painted over by students in the 1940s as a prank and has since become a popular vehicle of self-expression on campus.
    Armadillo Day, commonly known as Dillo Day, is the largest student-run music festival in the country. The festival is hosted every Spring on Northwestern’s Lakefront.
    Primal Scream is held every quarter at 9 p.m. on the Sunday before finals week. Students lean out of windows or gather in courtyards and scream to help relieve stress.
    In the past, students would throw marshmallows during football games, but this tradition has since been discontinued.

    Philanthropy

    One of Northwestern’s most notable student charity events is Dance Marathon, the most established and largest student-run philanthropy in the nation. The annual 30-hour event is among the most widely-attended events on campus. It has raised over $1 million for charity every year since 2011 and has donated a total of $13 million to children’s charities since its conception.

    The Northwestern Community Development Corps (NCDC) is a student-run organization that connects hundreds of student volunteers to community development projects in Evanston and Chicago throughout the year. The group also holds a number of annual community events, including Project Pumpkin, a Halloween celebration that provides over 800 local children with carnival events and a safe venue to trick-or-treat each year.

    Many Northwestern students participate in the Freshman Urban Program, an initiative for students interested in community service to work on addressing social issues facing the city of Chicago, and the university’s Global Engagement Studies Institute (GESI) programs, including group service-learning expeditions in Asia, Africa, or Latin America in conjunction with the Foundation for Sustainable Development.

    Several internationally recognized non-profit organizations were established at Northwestern, including the World Health Imaging, Informatics and Telemedicine Alliance, a spin-off from an engineering student’s honors thesis.
    Media

    Print

    Established in 1881, The Daily Northwestern is the university’s main student newspaper and is published on weekdays during the academic year. It is directed entirely by undergraduate students and owned by the Students Publishing Company. Although it serves the Northwestern community, the Daily has no business ties to the university and is supported wholly by advertisers.
    North by Northwestern is an online undergraduate magazine established in September 2006 by students at the Medill School of Journalism. Published on weekdays, it consists of updates on news stories and special events throughout the year. It also publishes a quarterly print magazine.
    Syllabus is the university’s undergraduate yearbook. It is distributed in late May and features a culmination of the year’s events at Northwestern. First published in 1885, the yearbook is published by Students Publishing Company and edited by Northwestern students.
    Northwestern Flipside is an undergraduate satirical magazine. Founded in 2009, it publishes a weekly issue both in print and online.
    Helicon is the university’s undergraduate literary magazine. Established in 1979, it is published twice a year: a web issue is released in the winter and a print issue with a web complement is released in the spring.
    The Protest is Northwestern’s quarterly social justice magazine.

    The Northwestern division of Student Multicultural Affairs supports a number of publications for particular cultural groups including Ahora, a magazine about Hispanic and Latino/a culture and campus life; Al Bayan, published by the Northwestern Muslim-cultural Student Association; BlackBoard Magazine, a magazine centered around African-American student life; and NUAsian, a magazine and blog on Asian and Asian-American culture and issues.
    The Northwestern University Law Review is a scholarly legal publication and student organization at Northwestern University School of Law. Its primary purpose is to publish a journal of broad legal scholarship. The Law Review publishes six issues each year. Student editors make the editorial and organizational decisions and select articles submitted by professors, judges, and practitioners, as well as student pieces. The Law Review also publishes scholarly pieces weekly on the Colloquy.
    The Northwestern Journal of Technology and Intellectual Property is a law review published by an independent student organization at Northwestern University School of Law.
    The Northwestern Interdisciplinary Law Review is a scholarly legal publication published annually by an editorial board of Northwestern undergraduates. Its mission is to publish interdisciplinary legal research, drawing from fields such as history, literature, economics, philosophy, and art. Founded in 2008, the journal features articles by professors, law students, practitioners, and undergraduates. It is funded by the Buffett Center for International and Comparative Studies and the Office of the Provost.

    Web-based

    Established in January 2011, Sherman Ave is a humor website that often publishes content on Northwestern student life. Most of its staff writers are current Northwestern undergraduates writing under various pseudonyms. The website is popular among students for its interviews of prominent campus figures, Freshman Guide, and live-tweeting coverage of football games. In Fall 2012, the website promoted a satiric campaign to end the Vanderbilt University football team’s custom of clubbing baby seals.
    Politics & Policy is dedicated to the analysis of current events and public policy. Established in 2010 by students at the Weinberg College of Arts and Sciences, School of Communication, and Medill School of Journalism, the publication reaches students on more than 250 college campuses around the world. Run entirely by undergraduates, it is published several times a week and features material ranging from short summaries of events to extended research pieces. The publication is financed in part by the Buffett Center.
    Northwestern Business Review is a campus source for business news. Founded in 2005, it has an online presence as well as a quarterly print schedule.
    TriQuarterly Online (formerly TriQuarterly) is a literary magazine published twice a year featuring poetry, fiction, nonfiction, drama, literary essays, reviews, blog posts, and art.
    The Queer Reader is Northwestern’s first radical feminist and LGBTQ+ publication.

    Radio, film, and television

    WNUR (89.3 FM) is a 7,200-watt radio station that broadcasts to the city of Chicago and its northern suburbs. WNUR’s programming consists of music (jazz, classical, and rock), literature, politics, current events, varsity sports (football, men’s and women’s basketball, baseball, softball, and women’s lacrosse), and breaking news on weekdays.
    Studio 22 is a student-run production company that produces roughly ten films each year. The organization financed the first film Zach Braff directed, and many of its films have featured students who would later go into professional acting, including Zach Gilford of Friday Night Lights.
    Applause for a Cause is currently the only student-run production company in the nation to create feature-length films for charity. It was founded in 2010 and has raised over $5,000 to date for various local and national organizations across the United States.
    Northwestern News Network is a student television news and sports network, serving the Northwestern and Evanston communities. Its studios and newsroom are located on the fourth floor of the McCormick Tribune Center on Northwestern’s Evanston campus. NNN is funded by the Medill School of Journalism.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: