Tagged: Gravitational Lensing Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:19 am on May 19, 2016 Permalink | Reply
    Tags: , , Gravitational Lensing, Keck DEIMOS,   

    From Keck: “Faintest Early-Universe Galaxy Ever, Detected and Confirmed” 

    Keck Observatory

    Keck Observatory.
    Keck, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland

    Keck Observatory

    May 18, 2016
    Steve Jefferson

    2

    Color image of the cluster taken with Hubble Space Telescope (images in three different filters were combined to make an RGB image). In the inset we show three spectra of the multiply imaged systems. They have peaks at the same wavelength, hence showing that they belong to the same source.

    NASA/ESA Hubble Telescope
    NASA/ESA Hubble Telescope

    An international team of scientists has detected and confirmed the faintest early-Universe galaxy ever using the W. M. Keck Observatory on the summit on Maunakea, Hawaii. In addition to using the world’s most powerful telescope, the team relied on gravitational lensing to see the incredibly faint object born just after the Big Bang. The results are being published* in The Astrophysical Journal Letters today.

    The team detected the galaxy as it was 13 billion years ago, or when the Universe was a toddler on a cosmic time scale.

    The detection was made using the DEIMOS instrument fitted on the ten-meter Keck II telescope, and was made possible through a phenomenon predicted by Einstein in which an object is magnified by the gravity of another object that is between it and the viewer [gravitational lensing]. In this case, the detected galaxy was behind the galaxy cluster MACS2129.4-0741, which is massive enough to create three different images of the object.

    Keck/DEIMOS
    Keck/DEIMOS

    radio galaxies gravitationally lensed by a very large foreground galaxy cluster Hubble
    Radio galaxies gravitationally lensed by a very large foreground galaxy cluster Hubble

    “Keck Observatory’s telescopes are simply the best in the world for this work,” said Bradac. “Their power, paired with the gravitational force of a massive cluster of galaxies, allows us to truly see where no human has seen before.”

    “Because you see three of them and the characteristics are exactly the same, that means it was lensed,” said Marc Kassis, staff astronomer at Keck Observatory who assists the discovery team at night. “The other thing that is particularly interesting is that it is small. The only way they would have seen it is through lensing. This allowed them to identify it as an ordinary galaxy near the edge of the visible Universe.”

    “If the light from this galaxy was not magnified by factors of 11, five and two, we would not have been able to see it,” said Kuang-Han Huang, a team member from UC Davis and the lead author of the paper. “It lies near the end of the reionization epoch, during which most of the hydrogen gas between galaxies transitioned from being mostly neutral to being mostly ionized (and lit up the stars for the first time).

    Reionization era and first stars, Caltech
    Reionization era and first stars, Caltech

    That shows how gravitational lensing is important for understanding the faint galaxy population that dominates the reionization photon production.”

    The galaxy’s magnified images were originally seen separately in both Keck Observatory and Hubble Space Telescope data. The team collected and combined all the Keck Observatory/DEIMOS spectra from all three images, confirming they were the same and that this is a triply-lensed system.

    “We now have good constraints on when the reionization process ends – at redshift around 6 or 12.5 billion years ago – but we don’t yet know a lot of details about how it happened,” Huang said. “The galaxy detected in our work is likely a member of the faint galaxy population that drives the reionization process.”

    “This galaxy is exciting because the team infers a very low stellar mass, or only one percent of one percent of the Milky Way galaxy,” Kassis said. “It’s a very, very small galaxy and at such a great distance, it’s a clue in answering one of the fundamental questions astronomy is trying to understand: What is causing the hydrogen gas at the very beginning of the Universe to go from neutral to ionized about 13 billion years ago. That’s when stars turned on and matter became more complex.”

    The core of the team consisted of Bradac, Huang, Brian Lemaux, and Austin Hoag of UC Davis who are most directly involved with spectroscopic observation and data reduction of galaxies at redshift above seven. Keck Observatory astronomers Luca Rizzi and Carlos Alvarez were instrumental in helping the team collect the DEIMOS data. Tommaso Treu from University of California, Los Angeles and Kasper Schmidt of Leibniz Institute for Astrophysics Potsdam were also part of the team. They lead the effort that obtains and analyzes spectroscopic data from the WFC3/IR grism on Hubble.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes near the summit of Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

    DEIMOS (the DEep Imaging and Multi-Object Spectrograph) boasts the largest field of view (16.7 arcmin by 5 arcmin) of any of the Keck instruments, and the largest number of pixels (64 Mpix). It is used primarily in its multi-object mode, obtaining simultaneous spectra of up to 130 galaxies or stars. Astronomers study fields of distant galaxies with DEIMOS, efficiently probing the most distant corners of the universe with high sensitivity.

    *Science paper:
    DETECTION OF LYMAN-ALPHA EMISSION FROM A TRIPLY IMAGED z = 6.85 GALAXY BEHIND MACS J2129.4−0741

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

     
  • richardmitnick 3:44 pm on February 24, 2016 Permalink | Reply
    Tags: , , , Gravitational Lensing, ,   

    From CfA: “Discovering Distant Radio Galaxies via Gravitational Lensing” 

    Harvard Smithsonian Center for Astrophysics


    Center For Astrophysics

    February 19, 2016
    No writer credit found

    radio galaxies gravitationally lensed by a very large foreground galaxy cluster Hubble
    A Hubble Space Telescope image of distant, bright radio galaxies being gravitationally lensed by a very large foreground galaxy cluster. The red contours show the radio emission of these galaxies, which date from an epoch about three billion years after the big bang. A team of X-ray astronomers used these lensed radio galaxies to identify and study distant galaxies with active supermassive black hole nuclei. NASA HST, and van Weeren et al.
    .

    A lensing cluster is a gravitationally bound collection of galaxies, hundreds or even thousands, whose mass acts as a gravitational lens to collect and reimage the light of more distant objects. These lensing clusters make excellent targets for astronomical research into the early universe because they magnify the faint radiation from more distant galaxies seen behind them, making these remote objects accessible to our telescopes. Most searches in “lensed galaxies” have so far been done at optical, near infrared or submillimeter wavelengths, and the latter have been successful at identifying luminous dusty galaxies from earlier cosmic epochs that are powered by bursts of star formation that were more common back then.

    X-ray astronomers study the powerful jets and high energy particles around supermassive black holes at the nuclei of active [galactic nucelii] (AGN). X-rays are also seen in galaxies dominated by star formation, but they are much dimmer than those seen from AGN and so are difficult to study when these galaxies are at cosmological distances. Even finding distant examples in lensing searches can be challenging, and when the star formation activity is modest they are not even expected to show up in infrared lensing searches. But in galactic nuclei, the same fast-moving particles that emit at X-ray wavelengths also emit at radio wavelengths. A search for lensed radio emission, therefore, is a way to study distant, faint galaxies and their black hole nuclei.

    CfA astronomers Reinout van Weeren, G. Ogrean, Christine Jones, Bill Forman, Felipe Andrade-Santos, E. Bulbul, Lawrence David, Ralph Kraft, Steve Murray (deceased), Paul Nulsen, Scott Randall, and Alexey Vikhlinin and their colleagues have completed a radio survey of the large cluster known as MACS J0717.5+3745.

    Radio galaxy MACS J0717.5+3745 Hubble Chandra composite
    This composite image shows the massive galaxy cluster MACS J0717.5+3745 (MACS J0717, for short), where four separate galaxy clusters have been involved in a collision — the first time such a phenomenon has been documented. Hot gas is shown in an image from NASA’s Chandra X-ray Observatory, and galaxies are shown in an optical image from the NASA/ESA Hubble Space Telescope. The hot gas is colour-coded to show temperature, where the coolest gas is reddish purple, the hottest gas is blue, and the temperatures in between are purple.
    The repeated collisions in MACS J0717 are caused by a 13-million-light-year-long stream of galaxies, gas, and dark matter — known as a filament — pouring into a region already full of matter. A collision between the gas in two or more clusters causes the hot gas to slow down. However, the massive and compact galaxies do not slow down as much as the gas does, and so move ahead of it. Therefore, the speed and direction of each cluster’s motion — perpendicular to the line of sight — can be estimated by studying the offset between the average position of the galaxies and the peak in the hot gas.
    MACS J0717 is located about 5.4 billion light-years from Earth. It is one of the most complex galaxy clusters ever seen. Other well-known clusters, like the Bullet Cluster and MACS J0025.4-1222, involve the collision of only two galaxy clusters and show much simpler geometry.

    NASA Chandra Telescope
    NASA/Chandra

    NASA Hubble Telescope
    NASA/ESA Hubble

    This group of galaxies, one of the largest and most complex known with the equivalent of over ten thousand Milky Way-sized galaxies, is located about five billion light-years away.

    The astronomers used the Jansky Very Large Array [VLA] to hunt for lensed radio sources in this cluster, and detected fifty-one compact galaxies — seven whose light seems to be magnified by the cluster by more than factor of two and as much as a factor of nine.

    NRAO VLA
    NRAO/Karl V Jansky VLA

    The scientists infer from the radio fluxes that most of these seven are forming new stars at a modest rate, ten to fifty per year, and date from an epoch about three billion years after the big bang. Two are also detected in X-rays by the Chandra X-ray Observatory, and so host AGN, each one radiating about as much light in X-rays as a billion Suns. The two AGN are interesting in themselves, but finding them both in this one region suggests that, like bright star forming galaxies, these AGN were more common back then too.
    Reference(s):

    The Discovery of Lensed Radio and X-ray Sources Behind the Frontier Fields Cluster MACSJ0717.5+3745 with the JVLA and Chandra, R. J. van Weeren, G. A. Ogrean, C. Jones, W. R. Forman, F. Andrade-Santos, A. Bonafede, M. Brüggen, E. Bulbul, T. E. Clarke, E. Churazov, L. David, W. A. Dawson, M. Donahue, A. Goulding, R. P. Kraft, B. Mason, J. Merten, T. Mroczkowski, S. S. Murray, P. E. J. Nulsen, P. Rosati, E. Roediger, S. W. Randall, J. Sayers, K. Umetsu, A. Vikhlinin, and A. Zitrin, ApJ 817, 98, 2016.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

     
  • richardmitnick 4:19 pm on January 11, 2016 Permalink | Reply
    Tags: , , , Gravitational Lensing,   

    From Ethan Siegel: “A distant galaxy cluster and the power of Einstein’s gravity” 

    Starts with a bang
    Starts with a Bang

    1.11.16
    Ethan Siegel

    Temp 1
    Image credit: NASA, ESA, and G. Tremblay (European Southern Observatory).

    The ability for mass to bend and magnify background light is a unique feature of General Relativity. But it can fool us, too.

    “Gravitational and electromagnetic interactions are long-range interactions, meaning they act on objects no matter how far they are separated from each other.” -Francois Englert

    A century ago, [Albert] Einstein put forth a new theory of gravity: General Relativity. The solar eclipse of 1919 finally confirmed that mass gravitationally bent light around it.

    2
    Images credit: New York Times, 10 November 1919 (L); Illustrated London News, 22 November 1919 (R).

    But only much later was the phenomenon of gravitational lensing confirmed: where a distant galaxy cluster acted as a lens, magnifying and distorting the background galaxies behind it.


    view the mp4 video here.

    In 2014, the Hubble Space Telescope imaged an ultra-massive galaxy cluster found by the Sloan Digital Sky Survey3 [SDSS], and unveiled what appeared to be a spectacular, multiply-imaged distortion of blue, star-forming background galaxies.

    NASA Hubble Telescope
    NASA/ESA Hubble

    SDSS Telescope
    SDSS telescope at Apache Point, NM, USA

    3
    Image credit: NASA, ESA, and G. Tremblay (European Southern Observatory).

    The multiple images of similar structures, the distortions and the similar colorations all pointed to gravitational lensing.

    Temp 4
    Image credit: NASA, ESA, and G. Tremblay (European Southern Observatory).

    But a careful analysis of the data showed that while the outer arcs are indeed lensed background galaxies…

    5
    Image credit: K. Sharon et al., 2014, via http://arxiv.org/abs/1407.2266.

    the brightest blue lights, interconnecting the two giant ellipticals at the cluster’s center, come from the merger of the galaxies and the surrounding gas themselves.

    6
    Image credit: NASA, ESA, and G. Tremblay (European Southern Observatory).

    What we’re looking at is a combination of the stars and galaxies of the foregrounds cluster, some 4,000 times as massive as the Milky Way, a transient burst of star formation, and only a few background objects.


    view mp4 video here.

    Despite our excellent intuition, there’s no substitute for good data.

    7
    Image credit: NASA, ESA, and G. Tremblay (European Southern Observatory).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 3:59 pm on December 29, 2015 Permalink | Reply
    Tags: , , , Gravitational Lensing   

    From Frontier Fields: “How Hubble “Sees” Gravity” 

    Frontier Fields
    Frontier Fields

    December 29, 2015
    Dr. Frank Summers

    Gravity is the familiar force of nature responsible for the diverse motions of a baseball thrown high into the air, a planet orbiting a star, or a star orbiting within a galaxy. Astronomers have long observed such motions and deduced the amount of gravity, and therefore the amount of matter, present in the planet, star, or galaxy. When taken to the extreme, gravity can also create some intriguing visual effects that are well suited to Hubble’s high-resolution observations.

    [Albert] Einstein’s general theory of relativity expresses how very large mass concentrations distort the space around them. Light passing through that distorted space is re-directed, and can produce a variety of interesting imagery. The bending of light by gravity is similar to the bending of light by a glass lens, hence we call this effect “gravitational lensing”.

    1
    An “Einstein Cross” gravitational lens.

    The simplest type of gravitational lensing is called “point source” lensing. There is a single concentration of matter at the center, such as the dense core of a galaxy. The light of a distant galaxy is re-directed around this core, often producing multiple images of the background galaxy (see the image above for an example). When the lensing approaches perfect symmetry, a complete or almost complete circle of light is produced, called an “Einstein ring”. Hubble observations have helped to greatly increase the number of Einstein rings known to astronomers.

    2
    Gravitational lensing in galaxy cluster Abell 2218

    More complex gravitational lensing arises in observations of massive clusters of galaxies.

    5
    Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. The image is derived from the 2MASS Extended Source Catalog (XSC)—more than 1.5 million galaxies, and the Point Source Catalog (PSC)–nearly 0.5 billion Milky Way stars. The galaxies are color coded by redshift (numbers in parentheses) obtained from the UGC, CfA, Tully NBGC, LCRS, 2dF, 6dFGS, and SDSS surveys (and from various observations compiled by the NASA Extragalactic Database), or photo-metrically deduced from the K band (2.2 μm). Blue/purple are the nearest sources (z < 0.01); green are at moderate distances (0.01 < z < 0.04) and red are the most distant sources that 2MASS resolves (0.04 < z < 0.1). The map is projected with an equal area Aitoff in the Galactic system (Milky Way at center).
    IPAC/Caltech, by Thomas Jarrett

    While the distribution of matter in a galaxy cluster generally does have a center, it is never perfectly circularly symmetric and is usually significantly lumpy. Background galaxies are lensed by the cluster with their images often appearing as short thin “lensed arcs” around the outskirts of the cluster. Hubble’s images of galaxy clusters, such as Abell 2218 (above) and Abell 1689, showed the large number and detailed distribution of these lensed images throughout massive galaxy clusters.

    These lensed images also act as probes of the matter distribution in the galaxy cluster. Astronomers can measure the motions of the galaxies within a cluster to determine the total amount of matter in the cluster. The result indicates that the most of the matter in a galaxy cluster is not in the visible galaxies, does not emit light, and is thus called dark matter. The distribution of lensed images reflects the distribution of all matter, both visible and dark. Hence, Hubble’s images of gravitational lensing have been used to create maps of dark matter in galaxy clusters.

    In turn, a map of the matter in a galaxy cluster helps provide better understanding and analysis of the gravitational lensed images. A model of the matter distribution can help identify multiple images of the same galaxy or be used to predict where the most distant galaxies are likely to appear in a galaxy cluster image. Astronomers work back and forth between the gravitational lenses and the cluster matter distribution to improve our understanding of both.

    3
    Three lensed images of a distant galaxy seen through a cluster of galaxies.

    On top of it all, gravitational lenses extend Hubble’s view deeper into the universe. Very distant galaxies are very faint. Gravitational lensing not only distorts the image of a background galaxy, it can also amplify its light. Looking through a lensing galaxy cluster, Hubble can see fainter and more distant galaxies than otherwise possible. The Frontier Fields project has examined multiple galaxy clusters, measured their lensing and matter distribution, and identified a collection of these most distant galaxies.

    While the effects of normal gravity are measurable in the motions of objects, the effects of extreme gravity are visible in images of gravitational lensing. The diverse lensed images of crosses, rings, arcs, and more are both intriguing and informative. Gravitational lensing probes the distribution of matter in galaxies and clusters of galaxies, as well as enables observations of the distant universe. Hubble’s data will also provide a basis and guide for the future James Webb Space Telescope, whose infrared observations will push yet farther into the cosmos.

    4
    A “smiley face” gravitational lens in a galaxy cluster.

    The distorted imagery of gravitational lensing often is likened to the distorted reflections of funhouse mirrors, but don’t take that comparison too far. Hubble’s images of gravitational lensing provide a wide range of serious science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb

     
  • richardmitnick 4:59 pm on December 9, 2015 Permalink | Reply
    Tags: , , , Gravitational Lensing   

    From AAS NOVA: “Supermassive Black Hole Through a Magnifying Glass” 

    AASNOVA

    American Astronomical Society

    9 December 2015
    Susanna Kohler

    1
    The distant quasar Q2237+0305 is gravitationally lensed by a foreground galaxy. This image, taken with the Nordic Optical Telescope, contains both the lensing foreground galaxy and the four images it produces of the quasar (clustered at the center). Angular separation between the upper and lower images of the quasar is 1.6″. [IAC Gravitational Lenses Group]

    Nordic Optical Telescope
    Nordic Opitcal Telescope Interior
    IAC Nordic Optical Telescope

    What happens when light from a distant quasar — powered by a supermassive black hole — is bent not only by a foreground galaxy, but also by individual stars within that galaxy’s nucleus? The neighborhood of the central black hole can be magnified, and we get a close look at the inner regions of its accretion disk!

    What is Microlensing?

    Our view of Q2237+0305 is heavily affected by a process called gravitational lensing. As evidenced by the four copies of the quasar in the image above, Q2237+0305 undergoes macrolensing, wherein the gravity of a massive foreground galaxy pulls on the light of a background object, distorting the image into arcs or multiple copies.

    But Q2237+0305 also undergoes an effect called microlensing. Due to the fortuitous alignment of Q2237+0305 with the nucleus of the foreground galaxy lensing it, stars within the foreground galaxy pass in front of the quasar images. As a star passes, its own gravitational pull also affects the light of the image, causing the image to brighten and/or magnify.

    How can we tell the difference between intrinsic brightening of Q2237+0305 and brightening due to microlensing? Brightening that occurs in all four images of the quasar is intrinsic. But if the brightening occurs in only one image, it must be caused by microlensing of that image. The timescale of this effect, which depends on how quickly the foreground galaxy moves relative to the background quasar, is on the order of a few hundred days for Q2237+0305.

    Resolving Structure

    The light curve of a microlensed image can reveal information about the structure of the distant object. For this reason, a team of scientists led by Evencio Mediavilla (Institute of Astrophysics of the Canaries, University of La Laguna) has studied the light curves of three independent microlensing events of Q2237+0305 images.

    2
    Average light curve of the three microlensing events near the peak brightness. The double-peaked structure may be due to light from the innermost region of the quasar’s accretion disk. [Mediavilla et al. 2015]

    Mediavilla and collaborators find a two-peaked structure in the light curves. Modeling the data as a standard thin disk that has been lensed, the team shows that the light curve features are consistent with fine structure relatable to the region near the quasar’s central supermassive black hole. The authors find that the diameter of the fine structure is ~6 Schwarzschild radii, leading them to believe that this structure actually represents the innermost region of the accretion disk.

    If the team’s models are correct, this represents the first direct measurement of the size of the innermost region of a quasar’s accretion disk. The authors encourage further monitoring of Q2237+0305: as stars within the dense foreground nucleus continue to pass in front of the quasar, many more microlensing events should be observable, allowing further analysis.
    Citation

    E. Mediavilla et al 2015 ApJ 814 L26. doi:10.1088/2041-8205/814/2/L26

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:06 am on October 30, 2015 Permalink | Reply
    Tags: , , , Gravitational Lensing   

    From Gemini- “Time Delay in Lensed Quasar: First Fast Turnaround Result” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    October 29, 2015

    A team of Norwegian and US astronomers, using data from Gemini North and the Nordic Optical Telescope (NOT), have measured the time delay in images of a quasar lensed by a foreground cluster of galaxies.

    Nordic Optical telescope
    Nordic Optical telescope interior
    NOT

    The Gemini observations are the first published result obtained with the innovative Fast Turnaround (FT) mode of observing.

    A distant quasar may have its light split into multiple images by a foreground galaxy cluster that acts as a gravitational lens. The light travels along different paths of differing lengths to form each of these images. Quasars themselves are intrinsically variable, so the observed fading and brightening of each image happens at different observed times. Measuring these “time delays” yields tight constraints on the mass distribution in the lensing cluster, as well as the lensing geometry, and hence cosmology.

    The team monitored the redshift z=2.82 quasar SDSS J2222+2754 over the course of three years, using the NOT and Gemini+GMOS-N. They found a time delay of 48 and 722 days for two pairs of the quasar’s lensed images. The Gemini data were instrumental in refining the time delay measurements for the quasar image that leads the other image by ~ 2 years and hence predicts the behavior of other images of the quasar; continuing monitoring of the system will now allow further observations that take advantage of that 2 year peek into the future.

    Under Gemini’s FT mode, users can submit proposals every month and (if accepted) receive data 1-4 months after their initial proposal idea. The mode can be used for any kind of scientifically valuable project that needs just a few hours of observing time. Since the program’s launch in January, it has been used to follow up discoveries of new solar system objects, obtain data sets needed to complete projects, and also for short, self-contained programs. For more information, see the FT web pages: http://www.gemini.edu/sciops/observing-gemini/observing-modes/fast-turnaround.

    This work is available on Astro-ph at: http://arxiv.org/abs/1505.06187.

    Paper Abstract:

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be τAB=47.7±6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of τCA=722±24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 12:37 pm on October 6, 2015 Permalink | Reply
    Tags: , , Gravitational Lensing,   

    From Hubble: “Can Hubble “see” gravity?” 

    NASA Hubble Telescope

    Hubble

    1
    A Hubble image of a quadruple gravitational lens. The gravity of the galaxy at the center has re-directed the light of a background galaxy into four images; located above, below, left, and right-of-center. This distribution of lensed images is called an “Einstein Cross.” Credit: NASA, ESA, and STScI

    Oct 5, 2015
    No Writer Credit

    Gravity is the familiar force of nature responsible for the diverse motions of a baseball thrown high into the air, a planet orbiting a star, or a star orbiting within a galaxy. Astronomers have long observed such motions and deduced the amount of gravity, and therefore the amount of matter, present in the planet, star, or galaxy. When taken to the extreme, gravity can also create some intriguing visual effects that are well suited to Hubble’s high-resolution observations.

    [Albert]Einstein’s general theory of relativity expresses how very large mass concentrations distort the space around them. Light passing through that distorted space is re-directed, and can produce a variety of interesting imagery. The bending of light by gravity is similar to the bending of light by a glass lens, hence we call this effect gravitational lensing.

    The simplest type of gravitational lensing is called “point source” lensing. There is a single concentration of matter at the center, such as the dense core of a galaxy. The light of a distant galaxy is re-directed around this core, often producing multiple images of the background galaxy (see image accompanying this article). When the lensing approaches perfect symmetry, a complete or almost-complete circle of light is produced, called an Einstein ring. Hubble observations have helped to greatly increase the number of Einstein rings known to astronomers.

    More complex gravitational lensing arises in observations of massive clusters of galaxies. While the distribution of matter in a galaxy cluster generally does have a center, it is never circularly symmetric and can be significantly lumpy. Background galaxies are lensed by the cluster, with their images often appearing as short, thin “lensed arcs” around the outskirts of the cluster. Hubble’s images of galaxy clusters, such as Abell 2218 and Abell 1689, showed the large number and detailed distribution of these lensed images throughout massive galaxy clusters.

    4
    This image shows the full overview of the galaxy cluster Abell 2218 and its gravitational lenses. This image was taken by Hubble in 1999 during the Early Release Observations made immediately after the Hubble Servicing Mission 3A.

    5
    English: This new Hubble image shows galaxy cluster Abell 1689. It combines both visible and infrared data from Hubble’s Advanced Camera for Surveys (ACS) with a combined exposure time of over 34 hours (image on left over 13 hours, image on right over 20 hours) to reveal this patch of sky in greater and striking detail than in previous observations.

    This image is peppered with glowing golden clumps, bright stars, and distant, ethereal spiral galaxies. Material from some of these galaxies is being stripped away, giving the impression that the galaxy is dripping, or bleeding, into the surrounding space. Also visible are a number of electric blue streaks, circling and arcing around the fuzzy galaxies in the centre.
    These streaks are the telltale signs of a cosmic phenomenon known as gravitational lensing. Abell 1689 is so massive that it bends and warps the space around it, affecting how light from objects behind the cluster travels through space. These streaks are the distorted forms of galaxies that lie behind the cluster.
    Date 12 September 2013

    These lensed images also act as probes of the matter distribution in the galaxy cluster. Astronomers can measure the motions of the galaxies within a cluster to determine the total amount of matter in the cluster. The result indicates that the most of the matter in a galaxy cluster is not in the visible galaxies and does not emit light, and is thus called dark matter. The distribution of lensed images reflects the distribution of all matter, both visible and dark. Hence, Hubble’s images of gravitational lensing have been used to create maps of dark matter in galaxy clusters.

    In turn, a map of the matter in a galaxy cluster helps provide better understanding and analysis of the gravitationally lensed images. A model of the matter distribution can help identify multiple images of the same galaxy or be used to predict where the most distant galaxies are likely to appear in a galaxy cluster image. Astronomers work back and forth between the gravitational lenses and the cluster matter distribution to improve our understanding of both.

    On top of it all, gravitational lenses extend Hubble’s view deeper into the universe. Very distant galaxies are very faint. Gravitational lensing not only distorts the image of a background galaxy, it can amplify its light. Looking through a lensing galaxy cluster, Hubble can see fainter and more distant galaxies than otherwise possible. It is like having an extra lens that is the size of the galaxy cluster. The Frontier Fields project has examined multiple galaxy clusters, measured their lensing and matter distribution, and identified a collection of these most distant galaxies.

    While the effects of normal gravity are measurable in the motions of objects, the effects of extreme gravity are visible in images of gravitational lensing. The diverse, lensed images of crosses, rings, arcs, and more are both intriguing and informative. Gravitational lensing probes the distribution of matter in galaxies and clusters of galaxies, and enables observations of the distant universe. Hubble’s data will also provide a basis and guide for the future James Webb Space Telescope [JWST], whose infrared observations will push yet farther into the cosmos.

    NASA Webb Telescope
    JWST

    The distorted imagery of gravitational lensing often is likened to the distorted reflections of funhouse mirrors, but don’t take that comparison too far. Hubble’s images of gravitational lensing provide a wide range of serious science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 9:54 am on September 26, 2015 Permalink | Reply
    Tags: , , , Gravitational Lensing,   

    From Kavli IPMU: “Discovery of potential gravitational lenses shows citizen science value” 

    KavliFoundation

    The Kavli Foundation

    Kavli IPMU
    Kavli IMPU

    September 24, 2015
    Press Contact

    Motoko Kakubayashi
    Press officer, Kavli Institute for the Physics and Mathematics of the Universe
    E: press@ipmu.jp
    T: +81-4-7136-5980
    F: +81-4-7136-4941

    Research Contact

    Anupreeta More
    Project Researcher, Kavli Institute for the Physics and Mathematics of the Universe
    E: anupreeta.more@ipmu.jp

    1
    Figure 1: 29 gravitational lens candidates found through Space Warps (credit: Space Warps, Canada-France-Hawaii Telescope Legacy Survey)

    Around 37,000 citizen scientists combed through 430,000 images to help an international team of researchers to discover 29 new gravitational lens candidates through SpaceWarps, an online classification system which guides citizen scientists to become lens hunters.

    Gravitational lens systems are massive galaxies that act like special lenses through their gravity, bending the light coming from a distant galaxy in the background and distorting its image. Dark matter around these massive galaxies also contributes to this lensing effect, and so studying these gravitational lenses gives scientists a way to study this exotic matter that emits no light.

    Since gravitational lenses are rare, only about 500 of them have been discovered to date, and the universe is enormous, it made sense for researchers to call on an extra pair of eyes to help scour through the mountain of images taken from the Canada-France-Hawaii Telescope [CFHT] Legacy Survey (CFHTLS).

    CFHT
    CFHT nterior
    CFHT

    Details of the discoveries will be published in Monthly Notices of the Royal Astronomical Society.

    “Computer algorithms have been somewhat successful in identifying gravitational lenses, but they can miss lensed images that appear similar to other features commonly found in galaxies, for example the blue spiral arms of a spiral galaxy,” said Anupreeta More, co-principal investigator of Space Warps and project researcher at the University of Tokyo’s Kavli Institute for the Physics and Mathematics of the Universe.

    “All that was needed was the ability to recognise patterns of shapes and colours,” said citizen scientist and paper co-author Christine Macmillan from Scotland. “It was fascinating to look at galaxies so far away, and realize that there is another behind it, even further away, whose light gets distorted in an arc.”

    Not only did this project give the public a chance to make scientific discoveries, it also gave them a chance to develop as researchers themselves. “I benefited from this project with an increase of my knowledge and some experience on making models of lenses,” said citizen scientist and paper co-author Claude Cornen from France.

    More, and two other collaborators, Phil Marshall at the Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, and Aprajita Verma at the Department of Physics, University of Oxford, are co-principal investigators of Space Warps, which taps into the unique strength of humans in analysing visual information essential for finding gravitational lenses.

    The team will now move onto studying some of the interesting gravitational lens candidates by observing them with telescopes to uncover some of the mysteries related to dark matter. They are keen to work together with more volunteers in the near future as they are preparing new images from other ongoing imaging surveys to discover many more lenses.

    2
    Figure 2: How one galaxy’s image appears distorted due to another galaxy (credit: Kavli IPMU)

    Paper details

    Journal: Monthly Notices of the Royal Astronomical Society (MNRAS)

    Title: Space Warps II. New Gravitational Lens Candidates from the CFHTLS Discovered through Citizen Science

    To download preprint, click here.
    Useful Links

    All images can be downloaded from this page: http://web.ipmu.jp/press/20150903-SpaceWarps

    Full list of citizens who took part: http://spacewarps.org/#/projects/CFHTLS/contributors

    To download preprint of another paper also accepted to MNRAS journal that describes the details of Space Warps, click here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Kavli IPMU (Kavli Institute for the Physics and Mathematics of the Universe) is an international research institute with English as its official language. The goal of the institute is to discover the fundamental laws of nature and to understand the Universe from the synergistic perspectives of mathematics, astronomy, and theoretical and experimental physics. The Institute for the Physics and Mathematics of the Universe (IPMU) was established in October 2007 under the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Sports, Science and Technology in Japan with the University of Tokyo as the host institution. IPMU was designated as the first research institute within the University of Tokyo Institutes for Advanced Study (UTIAS) in January 2011. It received an endowment from The Kavli Foundation and was renamed the “Kavli Institute for the Physics and Mathematics of the Universe” in April 2012. Kavli IPMU is located on the Kashiwa campus of the University of Tokyo, and more than half of its full-time scientific members come from outside Japan. http://www.ipmu.jp/

    Stem Education Coalition
    The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

    The Foundation’s mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.

     
  • richardmitnick 10:50 am on July 19, 2015 Permalink | Reply
    Tags: , , Gravitational Lensing,   

    From SPACE.com: “Newfound Alien Planet Is One of the Farthest Ever Detected” 

    space-dot-com logo

    SPACE.com

    April 16, 2015
    Elizabeth Howell

    1
    NASA’s Spitzer Space Telescope co-discovered an exoplanet more than 13,000 light-years from Earth, far from where most known exoplanets are Credit: NASA/JPL-Caltech

    A NASA telescope has co-discovered one of the most distant planets ever identified: a gas giant about 13,000 light-years away from Earth.

    The technique used by the Spitzer Space Telescope, called microlensing, is so new that it has only yielded about 30 planet discoveries so far. But the telescope’s potential for finding far-away worlds is vast, NASA said in a statement. And as astronomers begin to chart the location of these distant bodies, it will provide a sense of where planets are distributed in Earth’s Milky Way galaxy.

    NASA Spitzer Telescope
    Spitzer

    “We don’t know if planets are more common in our galaxy’s central bulge or the disk of the galaxy, which is why these observations are so important,” Jennifer Yee, of the Harvard-Smithsonian Center for Astrophysics, said in a NASA statement. Yee is the lead author on one of three new papers describing the discovery.

    2
    An infographic showing how NASA’s Spitzer Space Telescope works with ground-based telescopes to find distant exoplanets, using a technique called microlensing. Credit: NASA/JPL-Caltech

    Magnified starlight

    Microlensing happens when one star travels in front of another from the perspective of an observer (in this case, on Earth). When this happens, the gravity of the star in front magnifies the light of the star behind it, acting like a lens. Should the star in front have a planet, that planet would create a “blip” during the magnification, NASA said in the statement.

    The challenge, however, is pinning down how far away the closer star (and its planet) is from Earth. Microlensing tends to magnify the star behind, but usually the star in front is invisible to observers. That’s why about half of the 30 or so planets found with microlensing (including a few Tatooine-like planets) are at unknown distances from Earth.

    To overcome the distance problem, astronomers used the Spitzer telescope in concert with the Polish Optical Gravitational Lensing Experiment (OGLE) Warsaw Telescope at the Las Campanas Observatory in Chile. OGLE routinely does microlensing investigations, but for Spitzer, this was the first time the long-running telescope had successfully used the technique to find a planet.

    OGLE Warsaw Telescope
    OGLE Warsaw telescope interior
    Polish Optical Gravitational Lensing Experiment (OGLE) Warsaw Telescope

    Quick telescope work

    Prominent telescopes like Spitzer are usually fully booked with other astronomical observations. This makes it difficult to respond quickly when the astronomical community is alerted about a microlensing event, which lasts only 40 days on average. Spitzer officials, however, have worked to do these observations as early as three days after an event is announced.

    The new planet’s microlensing event was quite long, roughly 150 days.

    Spitzer orbits the sun from a position behind Earth (about 128 million miles or 207 million kilometers away from its home planet, further than the Earth-sun distance). This vast distance from its home planet means the telescope sees microlensing events occur at a slightly different time than do telescopes on Earth.

    Spitzer spotted the “blip” in the magnification about 20 days before OGLE did. By comparing the delay between what Spitzer and OGLE saw, astronomers could calculate the planet’s distance from Earth. Once they knew that measure, they were able to estimate the planet’s mass, which is roughly half that of Jupiter.

    This is the first time Spitzer found a planet using microlensing, but it comes after 22 previous attempts with OGLE and other telescopes on the ground. Astronomers forecast Spitzer will examine 120 more microlensing events this summer.

    So far, microlensing has helped astronomers find 30 planets at distances as far as 25,000 light-years away from Earth. That’s in addition to the more than 1,000 closer worlds discovered by the planet-hunting Kepler space telescope and ground-based observatories using other techniques. Astronomers are using the microlensing events to seek out planets in the central “bulge” of the Milky Way, a spot where stars are more densely packed and tend to cross more often.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:24 am on May 29, 2015 Permalink | Reply
    Tags: , , , Gravitational Lensing,   

    From FNAL- “Frontier Science Result: South Pole Telescope Gravitational lensing of the cosmic microwave background by galaxy clusters” 

    FNAL Home

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    May 29, 2015
    Scott Dodelson

    1
    The left panel shows a simulated map of an unlensed cosmic microwave background. The center panel shows the same map if a large galaxy cluster were along the line of sight. Note that the scale on these two panels goes to 100 microKelvin. The right panel shows the difference between the first two panels. The scale is now down to 10 microKelvin. (Plots are in units of arcminutes.) Image: Antony Lewis and Lindsay King, Institute of Astronomy

    The photons that make up the cosmic microwave background (CMB) have traversed the universe almost freely for 13.8 billion years, thereby carrying information about the state of the universe when it was only 380,000 years old.

    Cosmic Background Radiation Planck
    CMB per ESA/Planck

    ESA Planck
    ESA/Planck

    “Almost freely” refers to two ways that these photons are disturbed along their long journeys: They are sometimes scattered by hot electrons and they are deflected by deep gravitational wells.

    It is this latter deflection, called gravitational lensing, that offers immense promise as a tool to weigh massive objects such as galaxy clusters. Clusters are very important because their abundance offers insight into why the universe is currently accelerating. Extracting this insight, though, requires careful estimates of the masses of clusters. There are currently several techniques in play: X-ray emission, galaxy counts in the clusters, distortions of the shapes of background galaxies and the signal imprinted on the CMB by hot electrons in clusters.

    Lensing of the CMB provides a new way to measure cluster masses, one that has just been demonstrated. A simulated signal from one cluster is shown above. Each panel represents about 35 square arcminutes, about 20 times smaller than the moon, so a CMB experiment must have excellent resolution to see the effect. Cluster lensing is the difference between the left and center panels, shown in the right panel. The signal is roughly several microKelvin, much smaller than the typical hot and cold spots that have made the CMB famous. So the resolution must be coupled with exquisite sensitivity.

    Large ground-based telescopes such as the 10-meter South Pole Telescope [SPT] are beginning to attain this dual capability.

    South Pole Telescope
    SPT

    The noise levels are still too high to measure lensing by a single cluster, so the SPT team performed a likelihood analysis using 513 clusters, detected over three years of the telescope’s operation, to measure the weighted mass. The result was a 3-sigma measurement of the lensing of the CMB, with the mass consistent with those obtained with other methods. A paper on this result has recently been accepted for publication in The Astrophysical Journal.

    The team is now optimistic that this effect will lead to competitive constraints on cluster masses with upcoming surveys, such as SPT-3G and CMB-S4.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 564 other followers

%d bloggers like this: