Tagged: Global mm-VLBI Array (GMVA) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:00 am on February 7, 2019 Permalink | Reply
    Tags: Abraham (Avi) Loeb, , , , , Black Hole Initiative, Black Hole Institute, , Global mm-VLBI Array (GMVA), Infrared results beautifully complemented by observations at radio wavelengths, , , , S-02, , , The development of high-resolution infrared cameras revealed a dense cluster of stars at the center of the Milky Way   

    From Nautilus: “How Supermassive Black Holes Were Discovered” 

    Nautilus

    From Nautilus

    February 7, 2019
    Mark J. Reid, CfA SAO

    Astronomers turned a fantastic concept into reality.

    An Introduction to the Black Hole Institute

    Fittingly, the Black Hole Initiative (BHI) was founded 100 years after Karl Schwarzschild solved Einstein’s equations for general relativity—a solution that described a black hole decades before the first astronomical evidence that they exist. As exotic structures of spacetime, black holes continue to fascinate astronomers, physicists, mathematicians, philosophers, and the general public, following on a century of research into their mysterious nature.

    Pictor A Blast from Black Hole in a Galaxy Far, Far Away

    This computer-simulated image of a supermassive black hole at the core of a galaxy. Credit NASA, ESA, and D. Coe, J. Anderson

    The mission of the BHI is interdisciplinary and, to that end, we sponsor many events that create the environment to support interaction between researchers of different disciplines. Philosophers speak with mathematicians, physicists, and astronomers, theorists speak with observers and a series of scheduled events create the venue for people to regularly come together.

    As an example, for a problem we care about, consider the singularities at the centers of black holes, which mark the breakdown of Einstein’s theory of gravity. What would a singularity look like in the quantum mechanical context? Most likely, it would appear as an extreme concentration of a huge mass (more than a few solar masses for astrophysical black holes) within a tiny volume. The size of the reservoir that drains all matter that fell into an astrophysical black hole is unknown and constitutes one of the unsolved problems on which BHI scholars work.

    We are delighted to present a collection of essays which were carefully selected by our senior faculty out of many applications to the first essay competition of the BHI. The winning essays will be published here on Nautilus over the next five weeks, beginning with the fifth-place finisher and working up to the first-place finisher. We hope that you will enjoy them as much as we did.

    —Abraham (Avi) Loeb
    Frank B. Baird, Jr. Professor of Science, Harvard University
    Chair, Harvard Astronomy Department
    Founding Director, Black Hole Initiative (BHI)

    In the 1700s, John Michell in England and Pierre-Simon Laplace in France independently thought “way out of the box” and imagined what would happen if a huge mass were placed in an incredibly small volume. Pushing this thought experiment to the limit, they conjectured that gravitational forces might not allow anything, even light, to escape. Michell and Laplace were imagining what we now call a black hole.

    Astronomers are now convinced that when massive stars burn through their nuclear fuel, they collapse to near nothingness and form a black hole. While the concept of a star collapsing to a black hole is astounding, the possibility that material from millions and even billions of stars can condense into a single supermassive black hole is even more fantastic.

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Yet astronomers are now confident that supermassive black holes exist and are found in the centers of most of the 100 billion galaxies in the universe.

    How did we come to this astonishing conclusion? The story begins in the mid-1900s when astronomers expanded their horizons beyond the very narrow range of wavelengths to which our eyes are sensitive. Very strong sources of radio waves were discovered and, when accurate positions were determined, many were found to be centered on distant galaxies. Shortly thereafter, radio antennas were linked together to greatly improve angular resolution.

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    CfA Submillimeter Array Mauna Kea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    These new “interferometers” revealed a totally unexpected picture of the radio emission from galaxies—the radio waves did not appear to come from the galaxy itself, but from two huge “lobes” symmetrically placed about the galaxy. Figure One shows an example of such a “radio galaxy,” named Cygnus A. Radio lobes can be among the largest structures in the universe, upward of a hundred times the size of the galaxy itself.

    2
    Figure One: Radio image of the galaxy Cygnus A. Dominating the image are two huge “lobes” of radio emitting plasma. An optical image of the host galaxy would be smaller than the gap between the lobes. The minimum energy needed to power some radio lobes can be equivalent to the total conversion of 10 million stars to energy! Note the thin trails of radio emission that connect the lobes with the bright spot at the center, where all of the energy originates. NRAO/AUI

    How are immense radio lobes energized? Their symmetrical placement about a galaxy clearly suggested a close relationship. In the 1960s, sensitive radio interferometers confirmed the circumstantial case for a relationship by discovering faint trails, or “jets,” tracing radio emission from the lobes back to a very compact source at the precise center of the galaxy. These findings motivated radio astronomers to increase the sizes of their interferometers in order to better resolve these emissions. Ultimately this led to the technique of Very Long Baseline Interferometry (VLBI), in which radio signals from antennas across the Earth are combined to obtain the angular resolution of a telescope the size of our planet!

    GMVA The Global VLBI Array

    Radio images made from VLBI observations soon revealed that the sources at the centers of radio galaxies are “microscopic” by galaxy standards, even smaller than the distance between the sun and our nearest star.

    When astronomers calculated the energy needed to power radio lobes they were astounded. It required 10 million stars to be “vaporized,” totally converting their mass to energy using Einstein’s famous equation E = mc2! Nuclear reactions, which power stars, cannot even convert 1 percent of a star’s mass to energy. So trying to explain the energy in radio lobes with nuclear power would require more than 1 billion stars, and these stars would have to live within the “microscopic” volume indicated by the VLBI observations. Because of these findings, astronomers began considering alternative energy sources: supermassive black holes.

    Given that the centers of galaxies might harbor supermassive black holes, it was natural to check the center of our Milky Way galaxy for such a monster. In 1974, a very compact radio source, smaller than 1 second of arc (1/3600 of a degree) was discovered there. The compact source was named Sagittarius A*, or Sgr A* for short, and is shown at the center of the right panel of Figure 2. Early VLBI observations established that Sgr A* was far more compact than the size of our solar system. However, no obvious optical, infrared, or even X-ray emitting source could be confidently identified with it, and its nature remained mysterious.

    3
    Figure Two: Images of the central region of the Milky Way. The left panel shows an infrared image. The orbital track of star S2 is overlaid, magnified by a factor of 100. The orbit has period of 16 years, requires an unseen mass of 4 million times that of the sun, and the gravitational center is indicated by the arrow. The right panel shows a radio image. The point-like radio source Sgr A* (just below the middle of the image) is precisely at the gravitational center of the orbiting stars. Sgr A* is intrinsically motionless at the galactic center and, therefore, must be extremely massive.Left panel: R. Genzel; Right panel: J.-H. Zhao

    Star S0-2 Andrea Ghez Keck/UCLA Galactic Center Group

    Andrea’s Favorite star SO-2

    Andrea Ghez, astrophysicist and professor at the University of California, Los Angeles, who leads a team of scientists observing S2 for evidence of a supermassive black hole UCLA Galactic Center Group

    SGR A and SGR A* from Penn State and NASA/Chandra

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    Meanwhile, the development of high-resolution infrared cameras revealed a dense cluster of stars at the center of the Milky Way. These stars cannot be seen at optical wavelengths, because visible light is totally absorbed by intervening dust. However, at infrared wavelengths 10 percent of their starlight makes its way to our telescopes, and astronomers have been measuring the positions of these stars for more than two decades. These observations culminated with the important discovery that stars are moving along elliptical paths, which are a unique characteristic of gravitational orbits. One of these stars has now been traced over a complete orbit, as shown in the left panel of Figure Two.

    Many stars have been followed along partial orbits, and all are consistent with orbits about a single object. Two stars have been observed to approach the center to within the size of our solar system, which by galaxy standards is very small. At this point, gravity is so strong that stars are orbiting at nearly 10,000 kilometers per second—fast enough to cross the Earth in one second! These measurements leave no doubt that the stars are responding to an unseen mass of 4 million times that of the sun. Combining this mass with the (astronomically) small volume indicated by the stellar orbits implies an extraordinarily high density. At this density it is hard to imagine how any type of matter would not collapse to form a black hole.

    The infrared results just described are beautifully complemented by observations at radio wavelengths. In order to identify an infrared counterpart for Sgr A*, the position of the radio source needed to be precisely transferred to infrared images. An ingenious method to do this uses sources visible at both radio and infrared wavelengths to tie the reference frames together. Ideal sources are giant red stars, which are bright in the infrared and have strong emission at radio wavelengths from molecules surrounding them. By matching the positions of these stars at the two wavebands, the radio position of Sgr A* can be transferred to infrared images with an accuracy of 0.001 seconds of arc. This technique placed Sgr A* precisely at the position of the gravitational center of the orbiting stars.

    How much of the dark mass within the stellar orbits can be directly associated with the radio source Sgr A*? Were Sgr A* a star, it would be moving at over 10,000 kilometers per second in the strong gravitational field as other stars are observed to do. Only if Sgr A* is extremely massive would it move slowly. The position of Sgr A* has been monitored with VLBI techniques for over two decades, revealing that it is essentially stationary at the dynamical center of the Milky Way. Specifically, the component of Sgr A*’s intrinsic motion perpendicular to the plane of the Milky Way is less than one kilometer per second. By comparison, this is 30 times slower than the Earth orbits the sun. The discovery that Sgr A* is essentially stationary and anchors the galactic center requires that Sgr A* contains over 400,000 times the mass of the sun.

    Recent VLBI observations have shown that the size of the radio emission of Sgr A* is less than that contained within the orbit of Mercury. Combining this volume available to Sgr A* with the lower limit to its mass yields a staggeringly high density. This density is within a factor of less than 10 of the ultimate limit for a black hole. At such an extreme density, the evidence is overwhelming that Sgr A* is a supermassive black hole.

    These discoveries are elegant for their directness and simplicity. Orbits of stars provide an absolutely clear and unequivocal proof of a great unseen mass concentration. Finding that the compact radio source Sgr A* is at the precise location of the unseen mass and is motionless provides even more compelling evidence for a supermassive black hole. Together they form a simple, unique demonstration that the fantastic concept of a supermassive black hole is indeed a reality. John Michell and Pierre-Simon Laplace would be astounded to learn that their conjectures about black holes not only turned out to be correct, but were far grander than they ever could have imagined.

    Mark J. Reid is a senior astronomer at the Center for Astrophysics, Harvard & Smithsonian. He uses radio telescopes across the globe simultaneously to obtain the highest resolution images of newborn and dying stars, as well as black holes.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
  • richardmitnick 5:44 pm on February 17, 2018 Permalink | Reply
    Tags: , , , , , , Global mm-VLBI Array (GMVA), ,   

    From ESO: “7. Challenges in Obtaining an Image of a Supermassive Black Hole” 

    ESO 50 Large

    European Southern Observatory

    “Seeing a black hole” has been a long-cherished desire for many astronomers, but now, thanks to the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA) projects, it may no longer be just a dream.

    Event Horizon Telescope Array

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    Future Array/Telescopes

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    NSF CfA Greenland telescope

    Global mm-VLBI Array

    Greenland Telescope

    To make it possible to image the shadow of the event horizon of Sagittarius A* [SgrA*], many researchers and cutting-edge technologies have been mobilised — because obtaining an image of a black hole is not as easy as snapping a photo with an ordinary camera.

    Sagittarius A* has a mass of approximately four million times that of the Sun, but it only looks like a tiny dot from Earth, 26 000 light-years away.

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    NASA/Chandra Telescope

    To capture its image, incredibly high resolution is needed. As explained in the fifth post of this blog series, the key is to use Very-Long-Baseline Interferometry (VLBI), a technique that combines the observing power of and the data from telescopes around the world to create a virtual giant radio telescope.

    The resolution of a telescope can be calculated from the radio wavelength the telescope is observing at and the size of the telescope — or in VLBI, the distance between the antennas. However, while actually observing, several kinds of noise and errors interfere with the telescope’s performance and affect the resolution.

    In VLBI, each antenna is equipped with an extremely precise atomic clock to record the time at which radio signals from the target object were received. The gathered data are synthesised using the times as a reference, so that the arrival time of the radio waves to each antenna can be accurately adjusted.

    But this process isn’t always straightforward because the Earth’s atmosphere blocks a certain range of wavelengths. Several kinds of molecules such as water vapour absorb a fraction of radio waves that pass through the atmosphere, with shorter wavelengths more susceptible to absorption. To minimise the effect of atmospheric absorption, radio telescopes are built at high and dry sites, but even then they are still not completely immune from the effect.

    The tricky part of this absorption effect is that the direction of a radio wave is slightly changed when it passes through the atmosphere containing water vapour. This means that the radio waves arrive at different times at each antenna, making it difficult to synthesise the data later using the time signal as a reference. And even worse: since VLBI utilises antennas located thousands of kilometres apart, it has to take into account the differences in the amount of water vapour in the sky above each site, as well as the large fluctuations of water vapour content during the observation period. In optical observations, these fluctuations make the light of a star flicker and lower the resolution. Radio observations have similar problems.

    “We have only a few ways to reduce this effect in VLBI observations,” explains Satoki Matsushita at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) of Taiwan. “If there is a compact object emitting intense radiation near the target object, we can remove most of the effect of refraction of radio waves by water vapour by using such an intense radiation source as a reference. However, no such intense reference source has been found near Sagittarius A* so far. And even if there is a reference source, there are still necessary conditions that must be satisfied: the telescopes need to have the ability to observe the target object and reference object at the same time; or the telescopes need to have the high-speed drive mechanism to quickly switch the observation between the target object and the reference object. Unfortunately, not all telescopes participating in the EHT/GMVA observations have this capability. One of the methods to remove the effect is to equip each antenna with an instrument to measure the amount of water vapour, but ALMA is the only telescope that has adopted this method at this point.”

    Another major challenge in imaging a black hole is obtaining a high-quality image. By combining the data collected by antennas thousands of kilometres apart, VLBI achieves a resolution equivalent to a radio telescope several thousands of kilometres in diameter. However, VLBI also has a lot of large blank areas that are not covered by any of the antennas. These missing parts make it difficult for VLBI to reproduce a high-fidelity image of a target object from the synthesised data. This is a common problem for all radio interferometers, including ALMA, but it can be more serious in VLBI where the antennas are located very far apart.

    It might be natural to think that a higher resolution means a higher image quality, as is the case with an ordinary digital camera, but in radio observations the resolution and image quality are quite different things. The resolution of a telescope determines how close two objects can be to each other and yet still be resolved as separate objects, while the image quality defines the fidelity in reproducing the image of the structure of the observed object. For example, imagine a leaf, which has a variety of veins. The resolution is the ability to see thinner vein patterns, while the image quality is the ability to capture the overall spread of the leaf. In normal human experience, it would seem bizarre if you could see the very thin veins of a leaf but couldn’t grasp a complete view of the leaf — but such things happen in VLBI, since some portions of data are inevitably missing.

    1
    This infographic illustrates how ALMA contributes to the EHT observations. With its shorter baseline, ALMA is sensitive to larger scales than the EHT and so ALMA can fill in the lower-resolution, larger-scale structures that the EHT misses. Credit: NRAO

    Researchers have been studying data processing methods to improve image quality for almost as long as the history of the radio interferometer itself, so there are some established methods that are already widely used, while others are still in an experimental phase. In the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA) projects, which are both aiming to capture the shadow of a black hole’s event horizon for the first time, researchers began to develop effective image analysis methods using simulation data well before the start of the observations.

    2
    A simulated image of the supermassive black hole at the centre of the M87 galaxy. The dark gap at the centre is the shadow of the black hole. Credit: Monika Moscibrodzka (Radboud University)

    The observations with the EHT and the GMVA were completed in April 2017. The data collected by the antennas around the world has been sent to the US and Germany, where data processing will be conducted with dedicated data-processing computers called correlators. The data from the South Pole Telescope, one of the participating telescopes in the EHT, will arrive at the end of 2017, and then data calibration and data synthesis will begin in order to produce an image, if possible. This process might take several months to achieve the goal of obtaining the first image of a black hole, which is eagerly awaited by black hole researchers and the general astronomical community worldwide.

    This lengthy time span between observations and results is normal in astronomy, as the reduction and analysis of the data is a careful, time-consuming process. Right now, all we can do is wait patiently for success to come — for a long-held dream of astronomers to be transformed into a reality.

    Until then, this is the last post in our blog series about the EHT and GMVA projects. When the results become available in early 2018, we’ll be back with what will hopefully be exciting new information about our turbulent and fascinating galactic centre

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    SPECULOOS four 1m-diameter robotic telescopes 2016 in the ESO Paranal Observatory, 2,635 metres (8,645 ft) above sea level

    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 1:56 pm on August 15, 2017 Permalink | Reply
    Tags: Black hole imaging, , , Global mm-VLBI Array (GMVA),   

    From ESO: “Taking the First Picture of a Black Hole” 

    ESO 50 Large

    European Southern Observatory

    1.8.2017 Challenges in Obtaining an Image of a Supermassive Black Hole

    “Seeing a black hole” has been a long-cherished desire for many astronomers, but now, thanks to the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA) projects, it may no longer be just a dream.

    Event Horizon Telescope Array
    Event Horizon Telescope map

    The locations of the radio dishes that will be part of the Event Horizon Telescope array. Image credit: Event Horizon Telescope sites, via University of Arizona at https://www.as.arizona.edu/event-horizon-telescope.

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment (APEX)

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    Future Array/Telescopes

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    Global mm-VLBI Array

    To make it possible to image the shadow of the event horizon of Sagittarius A*, many researchers and cutting-edge technologies have been mobilised — because obtaining an image of a black hole is not as easy as snapping a photo with an ordinary camera.

    Sagittarius A* has a mass of approximately four million times that of the Sun, but it only looks like a tiny dot from Earth, 26 000 light-years away. To capture its image, incredibly high resolution is needed. As explained in the fifth post of this blog series, the key is to use Very-Long-Baseline Interferometry (VLBI), a technique that combines the observing power of and the data from telescopes around the world to create a virtual giant radio telescope.

    The resolution of a telescope can be calculated from the radio wavelength the telescope is observing at and the size of the telescope — or in VLBI, the distance between the antennas. However, while actually observing, several kinds of noise and errors interfere with the telescope’s performance and affect the resolution.

    In VLBI, each antenna is equipped with an extremely precise atomic clock to record the time at which radio signals from the target object were received. The gathered data are synthesised using the times as a reference, so that the arrival time of the radio waves to each antenna can be accurately adjusted.

    But this process isn’t always straightforward because the Earth’s atmosphere blocks a certain range of wavelengths. Several kinds of molecules such as water vapour absorb a fraction of radio waves that pass through the atmosphere, with shorter wavelengths more susceptible to absorption. To minimise the effect of atmospheric absorption, radio telescopes are built at high and dry sites, but even then they are still not completely immune from the effect.

    The tricky part of this absorption effect is that the direction of a radio wave is slightly changed when it passes through the atmosphere containing water vapour. This means that the radio waves arrive at different times at each antenna, making it difficult to synthesise the data later using the time signal as a reference. And even worse: since VLBI utilises antennas located thousands of kilometres apart, it has to take into account the differences in the amount of water vapour in the sky above each site, as well as the large fluctuations of water vapour content during the observation period. In optical observations, these fluctuations make the light of a star flicker and lower the resolution. Radio observations have similar problems.

    “We have only a few ways to reduce this effect in VLBI observations,” explains Satoki Matsushita at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) of Taiwan. “If there is a compact object emitting intense radiation near the target object, we can remove most of the effect of refraction of radio waves by water vapour by using such an intense radiation source as a reference. However, no such intense reference source has been found near Sagittarius A* so far. And even if there is a reference source, there are still necessary conditions that must be satisfied: the telescopes need to have the ability to observe the target object and reference object at the same time; or the telescopes need to have the high-speed drive mechanism to quickly switch the observation between the target object and the reference object. Unfortunately, not all telescopes participating in the EHT/GMVA observations have this capability. One of the methods to remove the effect is to equip each antenna with an instrument to measure the amount of water vapour, but ALMA is the only telescope that has adopted this method at this point.”

    Another major challenge in imaging a black hole is obtaining a high-quality image. By combining the data collected by antennas thousands of kilometres apart, VLBI achieves a resolution equivalent to a radio telescope several thousands of kilometres in diameter. However, VLBI also has a lot of large blank areas that are not covered by any of the antennas. These missing parts make it difficult for VLBI to reproduce a high-fidelity image of a target object from the synthesised data. This is a common problem for all radio interferometers, including ALMA, but it can be more serious in VLBI where the antennas are located very far apart.

    It might be natural to think that a higher resolution means a higher image quality, as is the case with an ordinary digital camera, but in radio observations the resolution and image quality are quite different things. The resolution of a telescope determines how close two objects can be to each other and yet still be resolved as separate objects, while the image quality defines the fidelity in reproducing the image of the structure of the observed object. For example, imagine a leaf, which has a variety of veins. The resolution is the ability to see thinner vein patterns, while the image quality is the ability to capture the overall spread of the leaf. In normal human experience, it would seem bizarre if you could see the very thin veins of a leaf but couldn’t grasp a complete view of the leaf — but such things happen in VLBI, since some portions of data are inevitably missing.

    2
    This infographic illustrates how ALMA contributes to the EHT observations. With its shorter baseline, ALMA is sensitive to larger scales than the EHT and so ALMA can fill in the lower-resolution, larger-scale structures that the EHT misses. Credit: NRAO.

    Researchers have been studying data processing methods to improve image quality for almost as long as the history of the radio interferometer itself, so there are some established methods that are already widely used, while others are still in an experimental phase. In the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA) projects, which are both aiming to capture the shadow of a black hole’s event horizon for the first time, researchers began to develop effective image analysis methods using simulation data well before the start of the observations.

    4
    A simulated image of the supermassive black hole Sagittarius A*, which is likely to be obtained in the most recent EHT observations. The dark gap at the centre is the shadow of the black hole. Credit: Kazunori Akiyama (MIT Haystack Observatory).

    The observations with the EHT and the GMVA were completed in April 2017. The data collected by the antennas around the world has been sent to the US and Germany, where data processing will be conducted with dedicated data-processing computers called correlators. The data from the South Pole Telescope, one of the participating telescopes in the EHT, will arrive at the end of 2017, and then data calibration and data synthesis will begin in order to produce an image, if possible. This process might take several months to achieve the goal of obtaining the first image of a black hole, which is eagerly awaited by black hole researchers and the general astronomical community worldwide.

    This lengthy time span between observations and results is normal in astronomy, as the reduction and analysis of the data is a careful, time-consuming process. Right now, all we can do is wait patiently for success to come — for a long-held dream of astronomers to be transformed into a reality.

    Until then, this is the last post in our blog series about the EHT and GMVA projects. When the results become available in early 2018, we’ll be back with what will hopefully be exciting new information about our turbulent and fascinating galactic centre.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: