Tagged: Glacial Geology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:21 pm on June 23, 2022 Permalink | Reply
    Tags: "New study solves long-standing mystery of what may have triggered ice age", About 100000 years ago when mammoths roamed the Earth the Northern Hemisphere climate plummeted into a deep freeze that allowed massive ice sheets to form., , As the ocean gateways in the Canadian Arctic Archipelago remained open the Northern Hemisphere cooled sufficiently to allow ice sheets to build up in Northern Canada and Siberia but not in Scandinavia, , , , Glacial Geology, Over a period of about 10000 years local mountain glaciers grew and formed large ice sheets covering much of today's Canada Siberia and northern Europe., The researchers further simulated a previously unexplored scenario in which marine ice sheets obstructed the waterways in the Canadian Arctic Archipelago., The researchers identified the ocean gateways in the Canadian Arctic Archipelago as a critical linchpin determining whether or not ice sheets could grow in Scandinavia., , These scenarios may even help explain more short-lived cold periods such as the Younger Dryas cold reversal (12900 to 11700 years ago) that punctuated the general warming at the end of the last ice ag, Unlike the cold Canadian Arctic Archipelago where ice readily forms Scandinavia should have remained largely ice-free due to the North Atlantic Current which brings warm water to the coasts of northwe, Where did the ice sheets that rang in the last ice age more than 100000 years ago come from and how could they grow so quickly?   

    From The University of Arizona: “New study solves long-standing mystery of what may have triggered ice age” 

    From The University of Arizona

    6.23.22

    Media contact
    Daniel Stolte
    Science Writer, University Communications
    stolte@arizona.edu
    520-626-4402

    Researcher contacts
    Marcus Lofverstrom
    Department of Geosciences
    lofverstrom@email.arizona.edu

    Diane Thompson
    Department of Geosciences
    thompsod@arizona.edu

    Sophisticated simulations of climate during the onset of the last glacial period – some 100,000 years ago – may help explain why a massive ice sheet formed in Scandinavia despite its comparatively mild climate.

    1
    At the beginning of the last ice, local mountain glaciers grew and formed large ice sheets, like the one seen here in Greenland, that covered much of today’s Canada, Siberia, and Northern Europe. Credit: Annie Spratt/Unsplash.

    A new study led by University of Arizona researchers may have solved two mysteries that have long puzzled paleo-climate experts: Where did the ice sheets that rang in the last ice age more than 100000 years ago come from and how could they grow so quickly?

    Understanding what drives Earth’s glacial–interglacial cycles – the periodic advance and retreat of ice sheets in the Northern Hemisphere – is no easy feat, and researchers have devoted substantial effort to explaining the expansion and shrinking of large ice masses over thousands of years. The new study, published in the journal Nature Geoscience, proposes an explanation for the rapid expansion of the ice sheets that covered much of the Northern Hemisphere during the most recent ice age, and the findings could also apply to other glacial periods throughout Earth’s history.

    About 100000 years ago when mammoths roamed the Earth the Northern Hemisphere climate plummeted into a deep freeze that allowed massive ice sheets to form. Over a period of about 10000 years local mountain glaciers grew and formed large ice sheets covering much of today’s Canada Siberia and northern Europe.

    While it has been widely accepted that periodic “wobbling” in the Earth’s orbit around the sun triggered cooling in the Northern Hemisphere summer that caused the onset of widespread glaciation, scientists have struggled to explain the extensive ice sheets covering much of Scandinavia and northern Europe, where temperatures are much more mild.

    Unlike the cold Canadian Arctic Archipelago where ice readily forms Scandinavia should have remained largely ice-free due to the North Atlantic Current which brings warm water to the coasts of northwestern Europe. Although the two regions are located along similar latitudes, the Scandinavian summer temperatures are well above freezing, while the temperatures in large parts of the Canadian Arctic remain below freezing through the summer, according to the researchers. Because of this discrepancy, climate models have struggled to account for the extensive glaciers that advanced in northern Europe and marked the beginning of the last ice age, said the study’s lead author, Marcus Lofverstrom.

    “The problem is we don’t know where those ice sheets (in Scandinavia) came from and what caused them to expand in such a short amount of time,” said Lofverstrom, an assistant professor of geosciences and head of the UArizona Earth System Dynamics Lab.

    To find answers, Lofverstrom helped develop an extremely complex Earth-system model, known as the Community Earth System Model, which allowed his team to realistically recreate the conditions that existed at the beginning of the most recent glacial period. Notably, he expanded the ice-sheet model domain from Greenland to encompass most of the Northern Hemisphere at high spatial detail. Using this updated model configuration, the researchers identified the ocean gateways in the Canadian Arctic Archipelago as a critical linchpin controlling the North Atlantic climate and ultimately determining whether or not ice sheets could grow in Scandinavia.

    The simulations revealed that as long as the ocean gateways in the Canadian Arctic Archipelago remain open Earth’s orbital configuration cooled the Northern Hemisphere sufficiently to allow ice sheets to build up in Northern Canada and Siberia, but not in Scandinavia.

    In a second experiment the researchers simulated a previously unexplored scenario in which marine ice sheets obstructed the waterways in the Canadian Arctic Archipelago. In that experiment, the comparatively fresh Arctic and North Pacific water – typically routed through the Canadian Arctic Archipelago – was diverted east of Greenland, where deep water masses typically form. This diversion led to a freshening and weakening of the North Atlantic deep circulation, sea ice expansion, and cooler conditions in Scandinavia.

    “Using both climate model simulations and marine sediment analysis, we show that ice forming in northern Canada can obstruct ocean gateways and divert water transport from the Arctic into the North Atlantic,” Lofverstrom said, “and that in turn leads to a weakened ocean circulation and cold conditions off the coast of Scandinavia, which is sufficient to start growing ice in that region.”

    “These findings are supported by marine sediment records from the North Atlantic, which show evidence of glaciers in northern Canada several thousand years before the European side,” said Diane Thompson, assistant professor in the UArizona Department of Geosciences. “The sediment records also show compelling evidence of a weakened deep ocean circulation before the glaciers form in Scandinavia, similar to our modeling results.”

    Together, the experiments suggest that the formation of marine ice in northern Canada may be a necessary precursor to glaciation in Scandinavia, the authors write.

    Pushing climate models beyond their traditional application of predicting future climates provides an opportunity to identify previously unknown interactions in the Earth system, such as the complex and sometimes counterintuitive interplay between ice sheets and climate, Lofverstrom said.

    “It is possible that the mechanisms we identified here apply to every glacial period, not just the most recent one,” he said. “It may even help explain more short-lived cold periods such as the Younger Dryas cold reversal (12,900 to 11,700 years ago) that punctuated the general warming at the end of the last ice age.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 5:07 pm on January 20, 2022 Permalink | Reply
    Tags: "Research in Colorado mountains takes students’ environmental immersion to new heights", , , Bringing the research alive and painting a more holistic picture of what Earth processes are happening., , Communication of Science and Technology, , , , , Environmental Sociology, , Glacial Geology, Glaciers are disappearing.,   

    From Vanderbilt University (US): “Research in Colorado mountains takes students’ environmental immersion to new heights” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    Jan. 20, 2022
    Amy Wolf


    Research trip to Colorado takes students’ environmental immersion experience to new heights.

    Vanderbilt junior Callie Hilgenhurst and a dozen of her classmates took their research to a new immersive level, collecting soil and rock samples 9,000 feet up in the Sawatch Mountain Range of Colorado. Their work in the mountains and then in the lab helped show the movement of glaciers, ultimately giving clues about the impact of climate change.

    “This trip to Colorado was really incredible,” said Hilgenhurst, an Earth and environmental sciences major from Nashville. “Going out and being part of the scientific method—literally taking samples that we get to bring back to the lab—and experiencing the research on such a grand scale was awesome.”

    1
    Students in the new Glacial Geology class. From left to right: Miquéla Thornton, Genna Chiaro, Sophia Wang, Courtney Howarth, Easton Maxey, Alex Xu, Kevin Chen, behind him is Ellie Miller, and to the right of her is Estelle Shaya, and Bryce Belanger; on the bottom is Rachel Brewer, Callie Hilgenhurst and Kristin Sequeira.

    The immersive trip was part of a new class in the College of Arts and Science called Glacial Geology.

    “It’s designed to help students think about the landforms and landscapes that glaciers create and leave behind,” said Dan Morgan, associate dean in the College of Arts and Science and principal senior lecturer in Earth and environmental sciences. “Then we analyze what drives those advances and retreats in glaciers and put that in the context of global climate change.”

    CLIMATE CHANGE

    Many of the students in the class said making an impact on climate change is crucial. That’s why faculty designed the class with only one prerequisite, allowing students with diverse majors to take the course.

    “Fighting climate change is very big in my heart, and it’s really important that we do everything we can to maintain the 1.5 degrees Celsius of warming as much as we can. I also took the class because I know that glacial geology isn’t always going to be around in the future because glaciers are disappearing,” Hilgenhurst said.

    Fellow student Ellie Miller has dedicated a great amount of energy to Earth sciences as a triple major in Earth and environmental sciences, environmental sociology and communication of science and technology. She jumped at the chance to gather data in the field and learn more about glacial environments.

    “I was so ready to get my hands dirty and actually see where my samples are coming from—and then carry that all back to the lab and be able to run procedures,” said the Olathe, Kansas, resident. “Being able to see the connection between our field site and the data that we’re producing here at Vanderbilt brings the research alive and paints a more holistic picture of what Earth processes are happening.”

    This trip was Miquéla Thornton’s first experience out west. The communication of science and technology and creative writing double major from Richton Park, Illinois, said she loved observing her fellow students and then writing about the experience.

    “In my time at Vanderbilt, I’ve taken both environmental science and psychology classes, which really sparked an interest in science writing because everyone needs to understand what’s going on with climate change and what’s happening with our Earth,” she said.

    3
    Dan Morgan (far right) teaches as part of his Glacial Geology class during an immersive trip in Colorado.

    IMMERSION TRIPS

    Morgan, who has led Vanderbilt undergraduates on expeditions to places as remote as Antarctica, said bringing students into the field is invaluable in connecting them to the research.

    “This is something that’s fun and makes Vanderbilt a really special place because we’re educating and expanding the living-learning experience all the way to this mountain.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: