Tagged: Giant Magellan Telescope Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:41 am on July 15, 2016 Permalink | Reply
    Tags: , Giant Magellan Telescope, Video fly through   

    From Australian Astronomical Observatory: “Full concept animation of the GMT” Video 

    AAO Australian Astronomical Observatory

    Australian Astronomical Observatory

    Great fly through animation of the Giant Magellan Telescope, currently under construction in Chile. Australia is a 10% partner.

    The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope under construction, planned for completion in 2025.
    The location of the telescope is Las Campanas Observatory.

    Watch, enjoy, learn.

    The Giant Magellan Telescope will be one of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be operational in about 10 years and will be located in Chile.

    The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface with an aperture of 24.5 meters, or 80 feet in diameter. The GMT will have a resolving power 10 times greater than the Hubble Space Telescope. The GMT project is the work of a distinguished international consortium of leading universities and science institutions.

    The $1 billion project is US-led in partnership with Australia, Brazil, and Korea, with Chile as the host country.


    The project is US-led in partnership with Australia, Brazil, and Korea, with Chile as the host country.[4] The following organizations are members of the consortium developing the telescope.[27]

    Observatories of the Carnegie Institution of Washington
    University of Chicago
    Harvard University
    Smithsonian Astrophysical Observatory
    Texas A&M University
    University of Arizona
    University of Texas at Austin
    Australian National University
    Astronomy Australia Limited
    Korea Astronomy and Space Science Institute (한국천문연구원)
    University of São Paulo

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    AAO Anglo Australian Telescope Exterior
    AAO Anglo Australian Telescope Interior
    Anglo-Australian telescope

    The Australian Astronomical Observatory, a division of the Department of Industry, Innovation and Science, operates the Anglo-Australian and UK Schmidt telescopes on behalf of the astronomical community of Australia. To this end the Observatory is part of and is funded by the Australian Government. Its function is to provide world-class observing facilities for Australian optical astronomers.

  • richardmitnick 5:14 pm on February 13, 2016 Permalink | Reply
    Tags: , , Giant Magellan Telescope,   

    From Ethan Siegel: “The Future Of Astronomy: The Giant (25 Meter!) Magellan Telescope” 

    Starts with a bang
    Starts with a Bang

    Giant Magellan Telescope

    The first of the next generation of telescopes is already under construction. Here’s the audacious new science we’re in for!

    “We find them smaller and fainter, in constantly increasing numbers, and we know that we are reaching into space, farther and farther, until, with the faintest nebulae that can be detected with the greatest telescopes, we arrive at the frontier of the known universe.” -Edwin Hubble

    Pillars of Creation
    Pillars of Creation in the Eagle Nebula

    Throughout history, there have been four things that have determined just how much information we can glean about the Universe through astronomy:

    The size of your telescope, which determines both how much light you can gather in a given amount of time and also your resolution.
    The quality of your optical systems and cameras/CCDs, which allow you to maximize the amount of light that becomes usable data.
    The “seeing” through the telescope, which can be distorted by the atmosphere but minimized by high altitudes, still air, cloudless nights and adaptive optics technology.
    And your techniques of data analysis, which can ideally make the most of every single photon of light that comes through.

    There have been tremendous advances in ground-based astronomy over the past 25 years, but they’ve occurred almost exclusively through improvements in criteria 2 through 4. The largest telescope in the world in 1990 was the Keck 10-meter telescope, and while there are a number of 8-to-10 meter class telescopes today, 10 meters is still the largest class of telescopes in existence.

    Keck Observatory
    Keck Observatory Interior
    10 meter Keck Observatory

    Moreover, we’ve really reached the limits of what improvements in those areas can achieve without going to larger apertures. This isn’t intended to minimize the gains in these other areas; they’ve been tremendous. But it’s important to realize how far we’ve come. The charge-coupled devices (CCDs) that are mounted to telescopes can focus on either wide-field or very narrow areas of the sky, gathering all the photons in a particular band over the entire field-of-view or performing spectroscopy — breaking up the light into its individual wavelengths — for up to hundreds of objects at once. We can cram more megapixels into a given surface area. Quite simply, we’re at the point where practically every photon that comes in through a telescope’s mirror of the right wavelength can be utilized, and where we can observe for longer and longer periods of time to go deeper and deeper into the Universe if we have to.

    In addition, we’ve come a long way towards overcoming the atmosphere, without the need to launch a telescope into space. By building our observatories at very high altitudes in locations where the air is still — such as atop Mauna Kea or in the Chilean Andes — we can immediately take a large fraction of atmospheric turbulence out of the equation. The addition of adaptive optics, where a known signal (like a bright star, or an artificial star created by a laser that reflects off of the atmosphere’s sodium layer, 60 kilometers up) exists but appears blurry, can allow us to create the right “mirror shape” to de-blur that image, and hence all the other light that comes along with it. This way, we can further eliminate the turbulent effects of the atmosphere.

    ESO Very Large Telescope showing an Adaptive Optics Laser

    Gemini Observatory Adaptive Optics Laser Guide Star
    Download mp4 video here .

    And finally, computational power and data analysis technique have improved tremendously, where more useful information can be recorded and extracted from the same data that we can take. These are tremendous advances, but just like a generation ago, we’re still using the same size telescopes. If we want to go deeper into the Universe, to higher resolution, and to greater sensitivities, we have to go to larger apertures: we need a bigger telescope. There are currently three major projects that are competing to be first: the Thirty-Meter Telescope [TMT] atop Mauna Kea, the (39 meter) [ESO 39 meter] European Extremely Large Telescope [E-ELT] in Chile, and the (25 meter) Giant Magellan Telescope (GMT), also in Chile.



    These represent the next giant leap forward in ground based astronomy, and the Giant Magellan Telescope is probably going to be first, having broken ground at the end of last year and with early operations planned to begin in just 2021, and becoming fully operational by 2025.

    It’s not really technically possible to make a single mirror that large, as the materials themselves will deform at those weights. Some approaches are to use a segmented “honeycomb” shape of mirrors, like the E-ELT plans, with 798 mirrors, but that produces a distinct disadvantage: you get a large number of image artifacts that are difficult to remove where the sharp lines are. Instead, the Giant Magellan Telescope uses just seven mirrors (four are already complete), each a monstrous 8.4 meters (or 28 feet!) in diameter, all mounted together. The circular nature of these mirrors leaves gaps between them, meaning you miss out on a little bit of your light-gathering potential, but the resultant images are much cleaner, easier to work with, and free of those nasty artifacts.

    It’s also being built on a great site: the Las Campanas Observatory, which currently houses the twin [Carnegie Observatory] 6.5-meter Magellan telescopes.

    Carnegie Las Campanas Observatory
    Las Campanas Observatory in Chile

    Magellan 6.5 meter telescopes
    Carnegie Observatory Baade and Clay 6.5 meter telescopes at Las Campanas

    At an altitude of nearly 2,400 meters (~8,000 feet), with clear skies and devoid of light pollution, it’s one of the best places for astronomical observing on Earth. Equipped with the same cutting edge cameras/CCD, spectrograph, adaptive optics, tracking and computerized technology that the world’s best telescopes have today — only scaled up for a 25 meter telescope — the GMT is going to revolutionize astronomy in a number of tremendous ways.

    1.) The first galaxies: in order to go deeper into the Universe, you need to not only compensate for the fact that objects that are twice as far away deliver only one quarter of the light to your eyes, but that the expanding Universe causes that light to redshift, or to get stretched to longer wavelengths. Our atmosphere might only let a few select “windows” of light through, but this actually helps us out in some ways: the ultraviolet radiation that gets blocked by our atmosphere from nearby stars like the Sun can get redshifted all the way into the visible (and even near-infrared) portion of the spectrum at great enough distances. Finding these galaxies is easiest from space, but confirming them requires follow-up spectroscopy, which is best done from the ground. Ideally, the combination of the James Webb Space Telescope [JWST] (last week’s “future of astronomy” article) and the GMT — which can measure the redshift and spectral features of these objects directly and unambiguously — will push the limits of the most distant known galaxies in the Universe out farther than ever, and give us an unprecedented view of how galaxies form and evolve.

    NASA Webb telescope annotated

    2.) The first stars: even more exciting is the chance to directly observe and ascertain the properties of the first stars ever to form in the Universe. After the Big Bang, when the Universe forms neutral atoms for the first time, there are no heavy elements at all. There’s hydrogen, deuterium, helium-3 and helium-4, and a little bit of lithium-7. That’s it. Absolutely nothing else. And so the first stars that formed in the Universe must have been made out of these materials alone, with none of the heavier elements found in 100% of our Milky Way’s stars. To find these pristine stars — these Population III stars — we have to go to incredibly high redshifts. Whereas today, we’ve barely uncovered one such candidate for these stars, the GMT should be able to discover hundreds of such candidates. In addition, it won’t just discover more, but:

    it should be able to determine the relative elemental abundances within,
    could measure the hydrogen, helium, and possibly even deuterium and lithium concentrations,
    could measure the absorption spectra of the gas clouds between us and them,
    and can discover them before the Universe has been reionized, back when there’s still neutral gas there.

    This applies to the first galaxies as well, but is even more exciting for the first stars, enabling us to see pristine samples of the Universe and understand just how big these earliest stars can get.

    3.) The earliest supermassive black holes: we’ve serendipitously found a large number of these already, in the form of quasars. The largest number of these have been found by large-volume and all-sky surveys like [Sloan Digital Sky Survey, SDSS] and 2dF [2dF Galaxy Redshift Survey] before it, but in order to truly measure these objects well, we need to obtain their spectra, something GMT will be perfect for.

    SDSS Telescope
    SDSS telescope at Apache Point, NM, USA

    AAO Anglo Australian Telescope Exterior
    AAO Anglo Australian Telescope Interior
    3.9 meter Anglo-Australian telescope used in the 2dF Galaxy Redshift Survey conducted by the Anglo-Australian Observatory (AAO)

    The difference between spectroscopy and photometry is a little bit like the difference between a black-and-white TV and a color TV: they can both show you a picture, but with spectroscopy, the level of detail and the amount of information you get increases more than a thousand-fold, as we can learn what’s inside (and how much) via spectroscopy, while without it we can only make assumptions. GMT will not only give us follow-up spectroscopy on what the future EUCLID and WFIRST missions will find — the most distant quasars over huge regions of the sky — but will enable us to find more distant quasars (and hence younger, smaller and earlier supermassive black holes) than anything else in (and out of) this world.

    ESA Euclid spacecraft

    NASA WFIRST telescope

    4.) The Lyman-alpha forest: when we look at the most distant quasars and galaxies, we not only see that distant light, but we see every intervening gas cloud there is between that object and ourselves, along the line-of-sight. By measuring the absorption features along the way, we can see how the structure and composition of the Universe evolves, which tells us all sorts of things about components of the Universe that would otherwise be invisible, like neutrinos and dark matter.

    Lyman-Alpha Forest
    ESO Lyman-alpha forest

    Of course, there’s all the “normal” astronomy we can do with it as well, including planet-finding, understanding stellar and galaxy evolution, measuring supernovae and their remnants, planetary nebulae and star forming regions, clusters, interstellar and intergalactic gas and so much more.

    Supernova remnant Crab nebula
    Crab Nebula supernova remnant

    Planetary nebula Cat's Eye
    Cat’s Eye planetary nebula

    Perhaps most exciting will be the advances that we don’t know are coming. No one could’ve predicted that Edwin Hubble would discover the expanding Universe when the 100-inch Hooker telescope was first commissioned; no one could’ve predicted how the Hubble Deep Field would open up the Universe when that image was first taken. What will GMT find in the ultra-distant Universe?

    Mt Wilson 100 inch Hooker Telescope Interior
    100 inch Hooker telescope on Mt Wilson

    NASA Hubble Deep Field
    Hubble Deep Field

    NASA Hubble Telescope
    NASA/ESA Hubble

    This is why we look, and this is what science at the frontiers is. The Giant Magellan Telescope will do all the things from the ground that space-based telescopes can’t do as well, and will do them better than any other telescope in existence. Unlike the other large ground-based telescopes planned, it’s completely privately funded, there are no political controversies over it, and construction on it has already begun. The future of any scientific endeavor — and perhaps astronomy in particular — requires you to be ambitious, and to invest in looking for the unknown. We’ll never learn what lies beyond our current frontiers of knowledge unless we search, and the GMT is one major step towards looking where no one has ever looked before.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

  • richardmitnick 8:37 am on November 10, 2015 Permalink | Reply
    Tags: , , Giant Magellan Telescope,   

    From SPACE.com: “Gigantic* New Telescope Breaking Ground in Chile This Week” 

    space-dot-com logo


    November 09, 2015
    Mike Wall

    Artist’s illustration of the Giant Magellan Telescope (GMT), which will be built atop Las Campanas Peak in Chile. The groundbreaking ceremony for GMT, which will feature seven mirrors arranged to form a light-collecting surface 80 feet (24 meters) wide, is scheduled for Nov. 11, 2015.Credit: Giant Magellan Telescope – GMTO Corporation

    Construction will begin this week on a giant new telescope in the mountains of Chile, and Space.com will be there to take in the milestone moment.

    The groundbreaking ceremony for the Giant Magellan Telescope (GMT) — a huge instrument that astronomers will use to hunt for signs of life in the atmospheres of alien planets, probe the nature of dark energy and dark matter, and tackle other big cosmic questions — is scheduled to occur Wednesday (Nov. 11) at the Las Campanas Observatory in the Chilean Andes.

    The Giant Magellan Telescope Organization invited Space.com Senior Writer Mike Wall to attend the event, and he will provide coverage from onsite.

    When it’s finished, the GMT will consist of seven 27.6-foot-wide (8.4 meters) primary mirrors — the largest single-piece astronomical mirrors ever made — arranged into one light-collecting surface 80 feet (24 m) across, as well as seven smaller secondary mirrors that will change shape to counteract the blurring effects of Earth’s atmosphere. The finished observatory will boast about 10 times the resolving power of NASA’s famous Hubble Space Telescope, GMT officials have said**.

    Four of the 20-ton primary mirrors have already been cast, at the University of Arizona’s Steward Observatory Mirror Lab. All four should be fully polished (a time-consuming, exacting task) and delivered to Las Campanas by late 2021, allowing the telescope to begin science operations around that time, said GMT director Pat McCarthy.

    “That will give us the world’s largest telescope by more than a factor of two at that point,” McCarthy told Space.com in September, shortly after the casting of the fourth mirror had been completed.

    Primary mirrors number five, six and seven will probably be installed at the rate of about one per year after that, bringing the GMT up to full strength around 2024 or so, he added.

    Two other megascopes should also be coming online at about that time — the Thirty Meter Telescope (TMT) in Hawaii and the European Extremely Large Telescope (E-ELT), which, like GMT, will view the heavens from the Chilean Andes. TMT and E-ELT will combine hundreds of relatively small mirrors to form light-collecting surfaces that measure 98 feet (30 m) and 128 feet (39 m) wide, respectively.



    These three enormous ground-based observatories — along with NASA’s James Webb Space Telescope, which is scheduled to launch in late 2018 — should usher in a sort of astronomy golden age, McCarthy said.

    NASA James Webb Telescope

    “About seven to 10 years from now, there will be observational capabilities that are completely unprecedented,” he said. “I expect we will make a big leap in our understanding [of the cosmos], but I also suspect that we’ll find out that some of the things that we believe now turn out not to be quite correct. Often in science, the more you learn, the more you realize that there’s a lot to learn.”

    • I think that the writer is being over generous here. The GMT will be a 24 meter telescope. The ESO E-ELT will be a 39 meter telescope. The Caltech/UCO/DST/NAOC/NAOJ/NRC/ Thirty Meter Telescope will be just that, 30 meters.

    **This is a silly comparison. Ground based and space based observatories have not a lot in common.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 8:30 am on June 4, 2015 Permalink | Reply
    Tags: , , , Giant Magellan Telescope   

    From ANU: “Australia to play a key role in Giant Magellan Telescope” 

    ANU Australian National University Bloc

    Australian National University

    3 June 2015
    No Writer Credit

    Download as mp4 here.

    Australian scientists and industry will play a key role in an international collaboration to build the world’s most powerful optical telescope after the Giant Magellan Telescope (GMT) passed a major construction milestone.

    Giant Magellan Telescope
    Giant Magellan Interior

    The 11 international partners, including ANU and Astronomy Australia Limited (AAL), have approved construction of the GMT, unlocking more than US$500 million to start building the first new generation extremely large telescope in Chile.

    When fully operating, the GMT will look further out into space and back in time than any telescope ever built, and will produce images 10 times sharper than those from the Hubble space telescope.

    NASA Hubble Telescope
    NASA/ESA Hubble

    “The Giant Magellan Telescope will provide astronomers and astrophysicists with the opportunity to truly transform our view of the universe and our place within it,” said Professor Matthew Colless, Director of the ANU Research School of Astronomy and Astrophysics (RSAA) and Vice Chair of the GMT Organization Board.

    The ANU and AAL will have a 10 percent share of the US$1 billion project. That will ensure Australian astronomers and scientists will be able to use the GMT and remain at the forefront of astronomy and astrophysics research.

    “Australian industry will also play a key role in building some of the new high-technology equipment at the heart of the Giant Magellan Telescope,” Professor Colless said.

    “The next generation of optical telescopes such as the GMT demand a new class of astronomical instrumentation and facilities, and the ANU is well equipped to meet this challenge.”

    Professor Colless said the GMT Integral Field Spectograph is being designed and built by ANU researchers and engineers at RSAA. The spectrograph will record spectra from each point across the field of view simultaneously and take full advantage of the telescope’s light-collecting power and high resolution.

    Australian instrument scientists at ANU will also develop and build key elements of the crucial adaptive optics system for the GMT. Adaptive optics remove distortions in images, such as twinkling stars, caused by turbulence in the Earth’s atmosphere.

    AAL Chair, Nobel laureate and astrophysicist Professor Brian Schmidt, said the Giant Magellan Telescope would open up a new era in astronomy and allow scientists to look back in time to shortly after the big bang.

    “The Giant Magellan Telescope will help astronomers unlock secrets of the Universe and will herald a new era of discoveries,” Professor Schmidt said.

    AAL’s representative on the GMT Science Advisory Committee, Professor Chris Tinney of the University of New South Wales, said the telescope could help find habitable planets.

    “The GMT will play a leading role in the international race to identify planets orbiting stars near the Sun that could host life and potentially reveal the signatures of biological processes,” he said. “The first years of GMT’s operations will be an incredibly exciting time.”

    Images, video graphics, and a video news release on the Giant Magellan Telescope construction announcement are available at: http://www.gmto.org/gallery.

    Australia’s involvement in the GMT Project has been possible due to a $93 million contribution from the Commonwealth Government through the Education Investment Fund and National Collaborative Research Infrastructure Strategy.

    The Giant Magellan Telescope partners are: Astronomy Australia Ltd., The Australian National University, Carnegie Institution for Science, Harvard University, Korea Astronomy and Space Science Institute, Smithsonian Institution, Texas A&M University, The University of Arizona, The University of Chicago, The University of Texas at Austin, and Fundação de Amparo à Pesquisa do Estado de São Paulo.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ANU Campus

    ANU is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.

    Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.

  • richardmitnick 9:05 pm on May 8, 2014 Permalink | Reply
    Tags: , , , , Giant Magellan Telescope   

    What Do You Know About The Giant Magellan Telescope? 

    Giant Magellan Telescope
    Giant Magellan Telescope

    Q. What is GMT?
    The Giant Magellan Telescope will be one of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be operational in about 10 years and will be located in Chile.

    The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface with an aperture of 24.5 meters, or 80 feet in diameter. The GMT will have a resolving power 10 times greater than the Hubble Space Telescope. The GMT project is the work of a distinguished international consortium of leading universities and science institutions.

    Q. How will it work?

    Light from the edge of the universe will first reflect off of the seven primary mirrors, then reflect again off of the seven smaller secondary mirrors, and finally, down through the center primary mirror to the advanced CCD (charge coupled device) imaging cameras. There, the concentrated light will be measured to determine how far away objects are and what they are made of.

    The GMT primary mirrors are made at the Steward Observatory Mirror Lab (SOML) in Tucson, Arizona. They are a marvel of modern engineering and glassmaking; each segment is curved to a very precise shape and polished to within a few wavelengths of light – approximately one-millionth of an inch. Although the GMT mirrors will represent a much larger array than any telescope, the total weight of the glass is far less than one might expect. This is accomplished by using a honeycomb mold whereby the finished glass is mostly hollow. The glass mold is placed inside a giant rotating oven where it is “spin cast,” giving the glass a natural parabolic shape. This greatly reduces the amount of grinding required to shape the glass and also reduces weight. Finally, since the giant mirrors are essentially hollow, they can be cooled with fans to help equalize them to the night air temperature, thus minimizing distortion from heat.

    One of the most sophisticated engineering aspects of the telescope is what is known as “adaptive optics.” The telescope’s secondary mirrors are actually flexible. Under each secondary mirror surface, there are hundreds of actuators that will constantly adjust the mirrors to counteract atmospheric turbulence. These actuators, controlled by advanced computers, will transform twinkling stars into clear steady points of light. It is in this way that the GMT will offer images that are 10 times sharper than the Hubble Space Telescope.

    The location of the GMT also offers a key advantage in terms of seeing through the atmosphere. Located in one of the highest and driest locations on earth, Chile’s Atacama Desert, the GMT will have spectacular conditions for more than 300 nights a year. Las Campanas Peak (“Cerro Las Campanas”), where the GMT will be located, has an altitude of over 2,550 meters or approximately 8,500 feet. The site is almost completely barren of vegetation due to lack of rainfall. The combination of seeing, number of clear nights, altitude, weather and vegetation make Las Campanas Peak an ideal location for the GMT.

    The GMT will be built on a peak in the Andes Mountains at 8,500 feet near several existing telescope facilities at Las Campanas, Chile. The Las Campanas Observatory (LCO) location was selected for its high altitude, dry climate, dark skies, and unsurpassed seeing quality, as well as its access to the southern sky. Las Campanas Peak (“Cerro Las Campanas”), one of many peaks within LCO, has an altitude of over 2,550 meters (approximately 8,500 feet).

    The GMT project is in the fortunate position of having clear access to an already developed site: road access, water, electrical power and communications are already in place. The site has a long history of excellent performance. Light pollution is negligible and likely to remain so for decades to come. The weather pattern has been stable for more than 30 years. There are also many interesting objects that are primarily visible from the southern hemisphere such as the large and small Magellanic clouds, which are our closest neighboring galaxies, and our own galactic center.

    Q. Why is it being built?

    Most people do not realize that, as recently as 100 years ago, scientists thought the Milky Way was the entire universe.

    “The essence of our species is to explore — to find new answers and new meaning for who we are.”

    • Pat McCarthy, Director GMT

    But in the 1920s, Edwin Hubble, using the famous 100-inch telescope at Mount Wilson, determined that there were other galaxies too. That discovery was followed by the realization that the universe was expanding. These discoveries revolutionized our view of the universe. The heavens were not static, as had been assumed, but changing over time. Like the 100-inch telescope, perhaps the most exciting and intriguing fact is that the Giant Magellan Telescope promises to make discoveries that we cannot yet imagine.

    Mount Wilson Telescope

    Perhaps one of the most exciting questions yet to be answered is: are we alone? The Giant Magellan Telescope may help us answer that. Finding evidence of life on other planets would be a momentous discovery–certainly one of the greatest in the history of human exploration. But taking pictures of these so called “extrasolar” planets, which orbit other stars, is extraordinarily difficult. In addition to the vast distance–the very closest star to earth is four light-years away–the biggest problem is the glare of the host star which blocks out most of the reflected light of a small distant planet.

    This is why the great collecting area of the GMT is so important. The GMT mirrors will collect more light than any telescope ever built and the resolution will be the best ever achieved.

    This unprecedented light gathering ability and resolution will help with many other fascinating questions in 21st century astronomy. How did the first galaxies form? What are dark matter and dark energy that comprise most of our universe? How did stellar matter from the Big Bang congeal into what we see today? What is the fate of the universe?

    More information about GMT’s Scientific Objectives is available here.

    GMT Science Instruments

    The GMTO Board of Directors has adopted an instrument development plan that follows the recommendations of the GMT Instrument Development Advisory Panel. Instrument development will be staged to match the technical development of the telescope and its adaptive optics system. Currently we are moving forward with four instruments and one facility fiber positioning system, summarized below. The summaries link to more information and related publications.

    Visible Echelle Spectrograph – G-CLEF
    A high resolution, highly stable, fiber-fed visible light Echelle spectrograph well suited to precision radial velocity observations, investigations in stellar astrophysics and studies of the intergalactic medium. G-CLEF will operate from 350nm to 950nm with spectral resolutions ranging from 25,000 to 120,000.

    Visible Multi-Object Spectrograph – GMACS
    A high throughput, general purpose multi-object spectrograph optimized for observations of very faint objects. GMACS will be used for studies of galaxy evolution, evolution of the IGM and circumstellar matter, and studies of resolved stellar populations, among other applications.

    Near-IR IFU and Adaptive Optics Imager – GMTIFS
    A general purpose, AO-fed near-infrared (0.9 to 2.5 microns) integral field spectrograph and adaptive optics imager. The IFU mode will support multiple spaxel scales with spectral resolutions of 5,000 or 10,000.

    IR Echelle Spectrograph – GMTNIRS
    An AO-fed high-resolution, 1-5 micron narrow-field spectrograph aimed at studies of pre-main sequence objects, extrasolar planets, debris disks, and other mid-IR targets. The baseline configuration provides spectral resolutions ranging from 50,000 to 100,000.

    Facility Fiber Optics Positioner – MANIFEST

    A facility fiber positioning system that covers GMT’s full corrected 20 arcmin field of view. MANIFEST can feed G-CLEF and GMACS simultaneously with fiber bundles that may be configured to increase spectroscopic multiplexing, spectral resolution, and other scientific capabilities.

    ScienceSprings is powered by MAINGEAR computers

    • Maril 9:11 am on May 9, 2014 Permalink | Reply

      It is rather mind blowing to realize that we so recently thought the Milky Way was everything.


  • richardmitnick 7:39 pm on August 26, 2013 Permalink | Reply
    Tags: , , , , Giant Magellan Telescope   

    About the Giant Magellan Telescope: “GMT third mirror successfully cast in Arizona” 

    Giant Magellan Telescope
    Giant Magellan Telescope

    August 26, 2013

    Professor Bob Kirshner celebrates the successful casting of the third of seven mirrors for the Giant Magellan Telescope which the Dean of FAS, Michael Smith, has just approved as a major funding-raising focus for the University. The casts are made under the University of Arizona football stadium overseen by the Steward Observatory there.

    Each casting of the more than 80 foot mirrors takes months of preparation followed by even longer to polish the surface to an accuracy of 1/1000 of a human hair.

    Kirshner is photographed next to an ice sculpture showing the honeycomb construction used in casting mirrors of this size.

    See the full article here.

    The Giant Magellan Telescope will be one of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be operational in about 10 years and will be located in Chile.

    The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface with an aperture of 24.5 meters, or 80 feet in diameter. The GMT will have a resolving power 10 times greater than the Hubble Space Telescope. The GMT project is the work of a distinguished international consortium of leading universities and science institutions.


    ScienceSprings is powered by MAINGEAR computers

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: