From The MPG Institute for Plant Breeding Research[MPG Institut für Pflanzenzüchtungsforschung](DE): “A two-step adaptive walk in the wild”
From The MPG Institute for Plant Breeding Research[MPG Institut für Pflanzenzüchtungsforschung](DE)
May 18, 2022
Angela Hancock
Max Planck Research Group Leader
hancock@mpipz.mpg.de
Dr Mia von Scheven
Head of Public Relations and Outreach
+49 221 5062-670
pr@mpipz.mpg.de
New research in plants that colonized the base of an active stratovolcano reveals that two simple molecular steps rewired nutrient transport, enabling adaptation.
An international team led by Angela Hancock at The MPG Institute for Plant Breeding Research[MPG Institut für Pflanzenzüchtungsforschung](DE) and including scientists from The Victory Project[Associação Projecto Vitó](CV) and Fogo Natural Park (Cape Verde), The University of Nottingham (UK), and The Ruhr-University Bochum [Ruhr-Universität Bochum,](DE) studied a wild thale cress (Arabidopsis thaliana) population that colonized the base of an active stratovolcano. They found that a two-step molecular process rewired nutrient transport in the population. The findings, published today in the journal Science Advances, reveal an exceptionally clear case of an adaptive walk in a wild population. The discovery has broader implications for evolutionary biology and crop improvement.
Adapting to a novel soil environment
Nutrient homeostasis is crucial for proper plant growth and thus central to crop productivity. Pinpointing the genetic changes that allow plants to thrive in novel soil conditions provides insights into this important process. However, given the immense size of a genome, it is challenging to identify the specific functional variants that enable adaptation.
Members of the research team previously found that wild populations of the molecular model plant, Arabidopsis thaliana, commonly referred to as thale cress, colonized the Cape Verde Islands from North Africa and adapted using new mutations that arose after the colonization of the islands. Here, the scientists focus on the thale cress population from Fogo Island, which grows at the base of Pico de Fogo, an active stratovolcano. “We wanted to know: What does it take to live at the base of an active volcano? How did the plants adapt to the volcanic soil of Fogo?”, said Hancock.
“What we found was surprising,” said Emmanuel Tergemina, first author of the study. “While the plants from Fogo appeared to be healthy in their natural environment, they grew poorly on standard potting soil.” Chemical analysis of Fogo soils showed they were severely depauperate of manganese, an element that is crucial for energy production and proper plant growth. In contrast, leaves from Fogo plants grown on standard potting soil contained high levels of manganese, suggesting the plants had evolved a mechanism to increase manganese uptake.
Two evolutionary steps to a new adaptive peak
The scientists used a combination of genetic mapping and evolutionary analysis to discover the molecular steps that allowed the plants to colonize Fogo’s manganese-limited soil.
In a first evolutionary step, a mutation disrupted the primary iron transport gene (IRT1), eliminating its function. Disruption of this gene in a natural population was striking because this key gene exists intact in all other worldwide populations of the thale cress species – no such disruptions are found elsewhere. Further, the patterns of genetic variation in the IRT1 genomic region suggest that the disrupted version of IRT1 was important in adaptation. Evolutionary reconstruction shows that the mutation swept quickly to fixation across the entire Fogo population so that all Fogo thale cress plants now carry this mutation. Using gene-editing technology (CRISPR-Cas9), the researchers examined the functional effects of IRT1 disruption in Fogo and found that it increases leaf manganese accumulation, which could explain its role in adaptation. However, the loss of the IRT1 transporter came with a cost: it severely reduced leaf iron.
In a second evolutionary step, the metal transporter gene NRAMP1 was duplicated in multiple parallel events. These duplications spread rapidly so that now nearly all thale cress plants in Fogo carry multiple copies of NRAMP1 in their genomes. These duplications amplify NRAMP1 gene function, increasing iron transport and compensating for the iron deficiency induced by IRT1 disruption. Moreover, the amplification occurred by several independent duplication events across the island population. This was unexpected given the short time since colonization (around 5000 years) and the lack of similar events in other worldwide populations. “The rapid rise in frequency of these duplications together with their beneficial effect on nutrient homeostasis indicates these were important in adaptation”, explained Hancock. “Overall, our results provide an exceptionally clear example of how simple genetic changes can rewire nutrient processing in plants, enabling adaptation to a novel soil environment.”
Implications for crop improvement
These results also provide some encouraging news for crop breeding. Traditionally, information about gene function has come from studies of individual mutant lines. However, by using variation that exists in nature, it is possible to uncover more complex multi-step processes that can lead to changes in agriculturally-relevant traits. “The discovery that a simple two-step process alters nutrient transport in this case may offer clues for approaches to improve crops to better fit local soil environments. Moreover, gene disruption and gene amplification, as in the case of IRT1 and NRAMP1 in Fogo, are some of the simplest genetic changes to engineer, which makes them especially exciting because it means that they could be readily transferable to other species,” concluded Tergemina.
See the full article here.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The MPG Institute for Plant Breeding Research was founded in Müncheberg, Germany in 1928 as part of the Kaiser-Wilhelm-Gesellschaft. The founding director, Erwin Baur, initiated breeding programmes with fruits and berries, and basic research on Antirrhinum majus and the domestication of lupins. After the Second World War, the institute moved west to Voldagsen, and was relocated to new buildings on the present site in Cologne in 1955.
The modern era of the Institute began in 1978 with the appointment of Jeff Schell and the development of plant transformation technologies and plant molecular genetics. The focus on molecular genetics was extended in 1980 with the appointment of Heinz Saedler. The appointment in 1983 of Klaus Hahlbrock broadened the expertise of the Institute in the area of plant biochemistry, and the arrival of Francesco Salamini in 1985 added a focus on crop genetics. During the period 1978-1990, the Institute was greatly expanded and new buildings were constructed for the departments led by Schell, Hahlbrock and Salamini, in addition to a new lecture hall and the Max Delbrück Laboratory building that housed independent research groups over a period of 10 years.
A new generation of directors was appointed from 2000 with the approaching retirements of Klaus Hahlbrock and Jeff Schell. Paul Schulze-Lefert and George Coupland were appointed in 2000 and 2001, respectively, and Maarten Koornneef arrived three years later upon the retirement of Francesco Salamini. The new scientific departments brought a strong focus on utilising model species to understand the regulatory principles and molecular mechanisms underlying selected traits. The longer-term aim is to translate these discoveries to breeding programmes through the development of rational breeding concepts. The arrival of a new generation of Directors also required modernization of the infrastructure. So far, this has involved complete refurbishment of the building that houses the Plant Developmental Biology laboratory (2004), construction of a new guesthouse and library (2005), planning of new buildings for the administration and technical workshops (2009), and a new laboratory building completed in May 2012. The new laboratory building includes a section that links the three scientific departments, offices and the Bioinformatics Research Group.
Departments
Department of Plant Developmental Biology
Department of Plant Microbe Interactions
Department of Comparative Development and Genetics
Department of Chromosome Biology
MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.
According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.
The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.
The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.
History
The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.
The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.
The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.
MPG Institutes and research groups
The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.
Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.
In addition, there are several associated institutes:
International Max Planck Research Schools
Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:
• Cologne Graduate School of Ageing Research, Cologne
• International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
• International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
• International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
• International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
• International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
• International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
• International Max Planck Research School for Computer Science, Saarbrücken
• International Max Planck Research School for Earth System Modeling, Hamburg
• International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
• International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
• International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
• International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
• International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
• International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
• International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
• International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
• International Max Planck Research School for Language Sciences, Nijmegen
• International Max Planck Research School for Neurosciences, Göttingen
• International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
• International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
• International Max Planck Research School for Maritime Affairs, Hamburg
• International Max Planck Research School for Molecular and Cellular Biology, Freiburg
• International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
• International Max Planck Research School for Molecular Biology, Göttingen
• International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
• International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
• International Max Planck Research School on Multiscale Bio-Systems, Potsdam
• International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
• International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
• International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
• International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
• International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
• International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
• International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
• International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg
Max Planck Schools
• Max Planck School of Cognition
• Max Planck School Matter to Life
• Max Planck School of Photonics
Max Planck Center
• The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
• The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang
Max Planck Institutes
Among others:
• Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
• Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
• Max Planck Institute for Biology in Tübingen was closed in 2005;
• Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
• Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
• Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
• Max Planck Institute for Metals Research, Stuttgart
• Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
• Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
• Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
• Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
• Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
• Max Planck Institute for Behavioral Physiology
• Max Planck Institute of Experimental Endocrinology
• Max Planck Institute for Foreign and International Social Law
• Max Planck Institute for Physics and Astrophysics
• Max Planck Research Unit for Enzymology of Protein Folding
• Max Planck Institute for Biology of Ageing
Reply