Tagged: GBO -Green Bank Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:54 am on August 31, 2017 Permalink | Reply
    Tags: Berkeley SETI Research Center, Breakthrough Listen, , GBO -Green Bank Observatory,   

    From UC Berkeley: “Distant galaxy sends out 15 high-energy radio bursts” 

    UC Berkeley

    UC Berkeley

    August 30, 2017
    Robert Sanders
    rlsanders@berkeley.edu

    Breakthrough Listen, an initiative to find signs of intelligent life in the universe, has detected 15 brief but powerful radio pulses emanating from a mysterious and repeating source – FRB 121102 – far across the universe.

    Breakthrough Listen Project

    Fast radio bursts are brief, bright pulses of radio emission from distant but largely unknown sources, and FRB 121102 is the only one known to repeat: more than 150 high-energy bursts have been observed coming from the object, which was identified last year as a dwarf galaxy about 3 billion light years from Earth.

    2
    A sequence of 14 of the 15 detected bursts illustrate their dispersed spectrum and extreme variability. The streaks across the colored energy plot are the bursts appearing at different times and different energies because of dispersion caused by 3 billion years of travel through intergalactic space. In the top frequency spectrum, the dispersion has been removed to show the 300 microsecond pulse spike. Capturing this diverse set of bursts was made possible by the broad bandwidth that can be processed by the Breakthrough Listen backend at the Green Bank Telescope.



    GBO radio telescope, Green Bank, West Virginia, USA

    Possible explanations for the repeating bursts range from outbursts from rotating neutron stars with extremely strong magnetic fields – so-called magnetars – to a more speculative idea: They are directed energy sources, powerful laser bursts used by extraterrestrial civilizations to power spacecraft, akin to Breakthrough Starshot’s plan to use powerful laser pulses to propel nano-spacecraft to our solar system’s nearest star, Proxima Centauri.

    Breakthrough Starshot

    “Bursts from this source have never been seen at this high a frequency,” said Andrew Siemion, director of the Berkeley SETI Research Center and of the Breakthrough Listen program.

    As astronomers around the globe try to understand the mechanism generating fast radio bursts, they have repeatedly turned their radio telescopes on FRB 121102. Siemion and his team alerted the astronomical community to the high-frequency activity via an Astronomer’s Telegram on Monday evening, Aug. 28.

    “As well as confirming that the source is in a newly active state, the high resolution of the data obtained by the Listen instrument will allow measurement of the properties of these mysterious bursts at a higher precision than ever possible before,” said Breakthrough Listen postdoctoral researcher Vishal Gajjar, who discovered the increased activity.

    First detected with the Parkes Telescope in Australia, fast radio bursts have now been seen by several radio telescopes around the world.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    FRB 121102 was discovered on Nov. 2, 2012, (hence its name) and in 2015 it was the first fast radio burst seen to repeat, ruling out theories of bursts’ origins that involved the catastrophic destruction of the progenitor, at least in this instance.

    Regardless of FRB 121102’s ultimate source, when the recently detected pulses left their host galaxy, our solar system was less than 2 billion years old, noted Steve Croft, a Breakthrough Listen astronomer at UC Berkeley. Life on Earth consisted only of single-celled organisms; it would be another billion years before even the simplest multi-cellular life began to evolve.

    As part of Breakthrough Listen’s program to observe nearby stars and galaxies for signatures of extraterrestrial technology, the project science team at UC Berkeley added FRB 121102 to its list of targets. In the early hours of Saturday, Aug. 26, Gajjar observed that area of the sky using the Breakthrough Listen backend instrument at the Green Bank Telescope in West Virginia.

    The instrument accumulated 400 terabytes (a million million bytes) of data over a five-hour period, observing across the entire 4 to 8 GHz frequency band. This large dataset was searched for signatures of short pulses from the source over a broad range of frequencies, with a characteristic dispersion, or delay as a function of frequency, caused by the presence of gas in space between Earth and the source. The distinctive shape that the dispersion imposes on the initial pulse is an indicator of the amount of material between us and the source, and hence an indicator of the distance to the host galaxy.

    Analysis by Gajjar and the Breakthrough Listen team revealed 15 new pulses from FRB 121102. The observations show for the first time that fast radio bursts emit at higher frequencies than previously observed, with the brightest emission occurring at around 7 GHz.

    “The extraordinary capabilities of the backend receiver, which is able to record several gigahertz of bandwidth at a time, split into billions of individual channels, enable a new view of the frequency spectrum of FRBs, and should shed additional light on the processes giving rise to FRB emission.” Gajjar said.

    “Whether or not fast radio bursts turn out to be signatures of extraterrestrial technology, Breakthrough Listen is helping to push the frontiers of a new and rapidly growing area of our understanding of the universe around us,” Siemion said.

    See the full article here .
    Previously noted briefly here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

    Advertisements
     
  • richardmitnick 3:46 pm on July 19, 2017 Permalink | Reply
    Tags: , , , GBO -Green Bank Observatory, , , Seth Shostak SETI Institute Astronomer, , U Chicago Yerkes Observatory   

    From Centauri Dreams: “Keeping an Eye on Ross 128” 

    Centauri Dreams

    July 19, 2017
    Paul Gilster

    1
    A screen shot from Abel Méndez’s lab note titled “Strange Signals from the Nearby Red Dwarf Star Ross 128.” Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo/Aladin Sky Atlas.

    Frank Elmore Ross (1874-1960), an American astronomer and physicist, became the successor to E. E. Barnard at Yerkes Observatory.

    1
    U Chicago Yerkes Observatory

    2
    U Chicago Yerkes Observatory interior

    Barnard, of course, is the discoverer of the high proper motion of the star named after him, alerting us to its proximity.

    3
    http://www.daviddarling.info/encyclopedia/B/BarnardsStar.html

    And as his successor, Ross would go on to catalog over 1000 stars with high proper motion, many of them nearby. Ross 128, now making news for what observers at the Arecibo Observatory are calling “broadband quasi-periodic non-polarized pulses with very strong dispersion-like features,” is one of these, about 11 light years out in the direction of Virgo.

    NAIC/Arecibo Observatory, Puerto Rico, USA

    Any nearby stars are of interest from the standpoint of exoplanet investigations, though thus far we’ve yet to discover any companions around Ross 128. An M4V dwarf, Ross 128 has about 15 percent of the Sun’s mass. More significantly, it is an active flare star, capable of unpredictable changes in luminosity over short periods. Which leads me back to that unusual reception. The SETI Institute’s Seth Shostak described it this way in a post:

    “What the Puerto Rican astronomers found when the data were analyzed was a wide-band radio signal. This signal not only repeated with time, but also slid down the radio dial, somewhat like a trombone going from a higher note to a lower one.”

    And as Shostak goes on to say, “That was odd, indeed.”

    It’s this star’s flare activity that stands out for me as I look over the online announcement of its unusual emissions, which were noted during a ten-minute spectral observation at Arecibo on May 12. Indeed, Abel Mendez, director of the Planetary Habitability Laboratory at Arecibo, cited Type II solar flares first in a list of possible explanations, though his post goes on to note that such flares tend to occur at lower frequencies. An additional novelty is that the dispersion of the signal points to a more distant source, or perhaps to unusual features in the star’s atmosphere. All of this leaves a lot of room for investigation.

    We also have to add possible radio frequency interference (RFI) into the mix, something the scientists at Arecibo are examining as observations continue. The possibility that we are dealing with a new category of M-dwarf flare is intriguing and would have obvious ramifications given the high astrobiological interest now being shown in these dim red stars.

    All of this needs to be weighed as we leave the SETI implications open. The Arecibo post notes that signals from another civilization are “at the bottom of many other better explanations,” as well they should be assuming those explanations pan out. But we should also keep our options open, which is why the news that the Breakthrough Listen initiative has now observed Ross 128 with the Green Bank radio telescope in West Virginia is encouraging.



    GBO radio telescope, Green Bank, West Virginia, USA

    No evidence of the emissions Arecibo detected has turned up in the Breakthrough Listen data. We’re waiting for follow-up observations from Arecibo, which re-examined the star on the 16th, and Mendez in an update noted that the SETI Institute’s Allen Telescope Array had also begun observations.

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA

    Seth Shostak tells us that the ATA has thus far collected more than 10 hours of data, observations which may help us determine whether the signal has indeed come from Ross 128 or has another source.

    “We need to get all the data from the other partner observatories to put all things together for a conclusion,” writes Mendez. “Probably by the end of this week.”
    [Shostak]

    Or perhaps not, given the difficulty of detecting the faint signal and the uncertainties involved in characterizing it. If you’re intrigued, an Arecibo survey asking for public reactions to the reception is now available.

    I also want to point out that Arecibo Observatory is working on a new campaign to observe stars like Ross 128, the idea being to characterize their magnetic environment and radiation. One possible outcome of work like that is to detect perturbations in their emissions that could point to planets — planetary magnetic fields could conceivably affect flare activity. That’s an intriguing way to look for exoplanets, and the list being observed includes Barnard’s Star, Gliese 436, Ross 128, Wolf 359, HD 95735, BD +202465, V* RY Sex, and K2-18.

    A final note: Arecibo is now working with the Red Dots campaign in coordination with other observatories to study Barnard’s Star, for which there is some evidence of a super-Earth mass planet. More on these observations can be found in this Arecibo news release.

    ESO Red Dots Campaign

    Centauri Dreams


    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Tracking Research into Deep Space Exploration

    Alpha Centauri and other nearby stars seem impossible destinations not just for manned missions but even for robotic probes like Cassini or Galileo. Nonetheless, serious work on propulsion, communications, long-life electronics and spacecraft autonomy continues at NASA, ESA and many other venues, some in academia, some in private industry. The goal of reaching the stars is a distant one and the work remains low-key, but fascinating ideas continue to emerge. This site will track current research. I’ll also throw in the occasional musing about the literary and cultural implications of interstellar flight. Ultimately, the challenge may be as much philosophical as technological: to reassert the value of the long haul in a time of jittery short-term thinking.

     
  • richardmitnick 5:30 pm on June 28, 2017 Permalink | Reply
    Tags: GBO -Green Bank Observatory, , Video trip to GBO   

    From SETI@home: “A 3D tour of the Green Bank Telescope” Video 

    SETI@home
    SETI@home

    Jun 13, 2017

    A fabulous trip to the GBO


    Watch, enjoy, learn

    See the full article here.
    If you are attached to the SETI@home project, visit here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The science of SETI@home
    SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelligent life outside Earth. One approach, known as radio SETI, uses radio telescopes to listen for narrow-bandwidth radio signals from space. Such signals are not known to occur naturally, so a detection would provide evidence of extraterrestrial technology.

    Radio telescope signals consist primarily of noise (from celestial sources and the receiver’s electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digitally. More computing power enables searches to cover greater frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power.

    Previous radio SETI projects have used special-purpose supercomputers, located at the telescope, to do the bulk of the data analysis. In 1995, David Gedye proposed doing radio SETI using a virtual supercomputer composed of large numbers of Internet-connected computers, and he organized the SETI@home project to explore this idea. SETI@home was originally launched in May 1999.

    SETI@home is not a part of the SETI Institute

    The SET@home screensaver image
    SETI@home screensaver

    To participate in this project, download and install the BOINC software on which it runs. Then attach to the project. While you are at BOINC, look at some of the other projects which you might find of interest.

    My BOINC

     
  • richardmitnick 12:26 pm on June 16, 2017 Permalink | Reply
    Tags: , , , , GBO -Green Bank Observatory, GBT Captures Orion Blazing Bright in Radio Light,   

    From GBO: “GBT Captures Orion Blazing Bright in Radio Light” 

    gbo-logo

    Green Bank Radio Telescope, West Virginia, USA
    Green Bank Radio Telescope, West Virginia, USA

    gbo-sign

    Green Bank Observatory

    1
    A ribbon of ammonia — a tracer of star-forming gas — in the Orion Nebula as seen with the GBT. — GBO/AUI/NSF

    A team of astronomers has unveiled a striking new image of the Orion Molecular Cloud (OMC) – a bustling stellar nursery teeming with bright, young stars and dazzling regions of hot, glowing gas.

    The researchers used the National Science Foundation’s (NSF) Green Bank Telescope (GBT) in West Virginia to study a 50 light-year long filament of star-forming gas that is wending its way through the northern portion of the OMC known as Orion A.

    The GBT rendered this image by detecting the faint radio signals naturally emitted by molecules of ammonia that suffuse interstellar clouds. Scientists study these molecules to trace the motion and temperature of vast swaths of star-forming gas.

    These observations are part of the first data release from a large campaign known as the Green Bank Ammonia Survey. Its purpose is to map all the star-forming ammonia and other key tracer molecules in a massive structure known as the Gould Belt.

    The Gould Belt is an extended ribbon of bright, massive stars stretching about 3,000 light-years in an arc across the sky. This first release covers four distinct Gould Belt clouds, one located in Taurus, one in Perseus, one in Ophiuchus, and Orion A North in Orion.

    “We hope to use these data to understand better how large clouds of gas in our galaxy collapse to form new stars,” said Rachel Friesen, one of the collaboration’s co-principal investigators and, until 31 May 2017, a Dunlap Fellow at the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto in Canada. “The new data are critical to assessing whether certain gas clouds and filaments are stable and enduring features or if they are undergoing collapse and forming new stars.”

    2
    A ribbon of ammonia — a tracer of star-forming gas — in the Orion Nebula as seen with the GBT (orange). Background in blue is a WISE telescope infrared image showing the dust in the region. — GBO/AUI/NSF

    NASA/WISE Telescope

    Prior ammonia observations by many of the survey’s co-authors have targeted smaller portions of similar star-forming clouds. In these individual studies, the researchers identified sharp transitions in the amount of turbulence between the larger cloud and the smaller-scale star-forming cores, studied the stability against gravitational collapse of the gas within a young protocluster, and investigated how mass builds up along gas filaments and flows into stellar cluster-forming regions.

    “These data provide a unique view of the cold dense gas involved in forming stars like our sun,” said Jaime E. Pineda, the collaboration’s other co-principal investigator, with the Max-Planck Institute for Extraterrestrial Physics in Garching, Germany. “We hope they can also help us determine how much rotation is present in the regions that will form stars; this is crucial to understand how protoplanetary disks are formed.”

    The new GBT image is combined with an infrared one taken with NASA’s Wide-field Infrared Survey Explorer (WISE) telescope. The composite image illustrates how star-forming gas in this region relates to the bright stars and dark, dusty regions of the nebula.

    The 100-meter GBT, which is located in the National Radio Quiet Zone, is exquisitely sensitive and uniquely able to study the molecular composition of star-forming clouds and other objects in the cosmos. Future observations of the Gould Belt will provide greater insights into the conditions that give rise to stars like our sun and planets like Earth.

    The Green Bank Observatory (GBO) is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

    This research is presented in a paper titled The Green Bank Ammonia Survey (GAS): First results of NH3 mapping the Gould Belt, R. Friesen and J. Pineda et al. appearing in the Astrophysical Journal Supplements

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    gbo-science-building

    Mission Statement

    Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities. With radio astronomy as its foundation, the Green Bank Observatory is a world leader in advancing research, innovation, and education.

    History

    60 years ago, the trailblazers of American radio astronomy declared this facility their home, establishing the first ever National Radio Astronomy Observatory within the United States and the first ever national laboratory dedicated to open access science. Today their legacy is alive and well.

     
  • richardmitnick 7:16 am on June 16, 2017 Permalink | Reply
    Tags: , , , Dunlap Institute for Astronomy and Astrophysics U Toronto, GBO -Green Bank Observatory, ,   

    From Dunlap: “Radio Astronomers Peer Deep into the Stellar Nursery of the Orion Nebula” 

    Dunlap Institute bloc
    Dunlap Institute for Astronomy and Astrophysics

    June 15, 2017

    Rachel Friesen
    Dunlap Fellow
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    friesen@dunlap.utoronto.ca
    (Note that Friesen is still reachable with this email address.)

    Chris Sasaki
    Communications Coordinator | Press Officer
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    p: 416-978-6613
    e: csasaki@dunlap.utoronto.ca
    w: dunlap.utoronto.ca

    1
    In this composite image combining GBT radio and WISE infrared observations, the filament of ammonia molecules appears red and Orion Nebula gas appears blue. Image: R. Friesen, Dunlap Institute; J. Pineda, MPE; GBO/AUI/NSF



    GBO radio telescope, Green Bank, West Virginia, USA

    NASA/WISE Telescope

    Astronomers have released an image of a vast filament of star-forming gas, 1200 light-years away, in the stellar nursery of the Orion Nebula.

    The image shows ammonia molecules within a 50-light-year long filament detected through radio observations made with the Robert C. Byrd Green Bank Telescope in West Virginia. That image is combined with an image of the Orion Nebula—an object familiar to amateur and professional astronomers alike—taken with NASA’s Wide-field Infrared Survey Explore (WISE) telescope.

    “We still don’t understand in detail how large clouds of gas in our Galaxy collapse to form new stars,” says Rachel Friesen, one of the collaboration’s co-Principal Investigators and, until 31 May 2017, a Dunlap Fellow at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto.

    “But ammonia is an excellent tracer of dense, star-forming gas,” says Friesen, “and these large ammonia maps will allow us to track the motions and temperature of the densest gas. This is critical to assessing whether gas clouds and filaments are stable, or are undergoing collapse on their way to forming new stars.”

    The image accompanies the first release of results from the collaboration’s Green Bank Ammonia Survey (GAS), published in the Astrophysical Journal Supplement. The collaboration’s other co-Principal Investigator is Jaime Pineda, from the Max Planck Institute for Extraterrestrial Physics; the team also includes astronomers from the University of Toronto’s Department of Astronomy & Astrophysics and Canadian Institute for Theoretical Astrophysics.

    The goal of GAS is to survey all the major, nearby star-forming regions in the northern half of the Gould Belt—a ring of young stars and gas clouds that circles the entire sky and runs through the constellation Orion. The survey will eventually provide a clearer picture over a larger portion of the sky of the temperatures and motions of gas within these dynamic stellar nurseries.

    Additional notes:

    1) The first GAS data release includes data from observations of four Gould Belt clouds: B18 in the constellation Taurus; NGC 1333 in Perseus; L1688 in Ophiuchus; and Orion A North in Orion.

    2) The 100-metre Green Bank Telescope is located in the National Radio Quiet Zone, a 34 thousand square kilometre area in which radio transmissions are tightly restricted. The Green Bank Observatory (GBO) is [was]a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Dunlap Institute campus

    The Dunlap Institute is committed to sharing astronomical discovery with the public. Through lectures, the web, social and new media, an interactive planetarium, and major events like the Toronto Science Festival, we are helping to answer the public’s questions about the Universe.
    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics, Canadian Institute for Theoretical Astrophysics, David Dunlap Observatory, Ontario Science Centre, Royal Astronomical Society of Canada, the Toronto Public Library, and many other partners.

     
  • richardmitnick 11:26 am on May 17, 2017 Permalink | Reply
    Tags: , , , , , , GBO -Green Bank Observatory, Maura McLaughlin, , , ,   

    From Physics: Women in STEM – “Q and A: Catching a Gravitational Wave with a Pulsar’s Beam” Maura McLaughlin 

    Physics LogoAbout Physics

    Physics Logo 2

    Physics

    May 12, 2017
    Katherine Wright

    Maura McLaughlin explains how the electromagnetic signals from fast-spinning neutron stars could be used to detect gravitational waves.

    1
    Maura McLaughlin. Greg Ellis/West Virginia University

    Pulsars captivate Maura McLaughlin, a professor at West Virginia University. These highly magnetized neutron stars flash beams of electromagnetic radiation as they spin. And with masses equivalent to that of the Sun, but diameters seventy thousand times smaller, they are—besides black holes—the densest objects in the Universe. Astrophysicists still have many questions about pulsars, ranging from how they emit electromagnetic radiation to why they are so incredibly dense. But it’s exploiting the highly stable, periodic electromagnetic signals of pulsars to study gravitational waves that currently has McLaughlin hooked. In an interview with Physics, she explained where her fascination with pulsars came from, what gravitational-wave sources she hopes to detect, and why she recently visited Washington, D.C., to talk with members of Congress.

    With the 2015 detection of gravitational waves, it’s obviously an exciting time to work in astrophysics. But what initially drew you to the field and to pulsars?

    The astrophysicist Alex Wolszczan. I met him in the early 90s while I was an undergrad at Penn State, and just after he had discovered the first extrasolar planets. These planets were orbiting a pulsar—lots of people don’t know that. I found this pulsar system fascinating and ended up working with Wolszczan one summer as a research assistant. I got to go to Puerto Rico to observe pulsars at the Arecibo Observatory, which is the biggest telescope in the world. The experience was really cool.
    How do researchers detect gravitational waves with pulsars?

    The collaboration that I’m part of—NANOGrav—is searching for changes in the travel time of the pulsar’s radio emission due to the passing of gravitational waves.

    2

    NANOGrave Gravitational waves JPL-Caltech David Champion

    When a gravitational wave passes between us and the pulsar, it stretches and squeezes spacetime, causing the pulse to arrive a bit earlier or later than it would in the absence of the wave. We time the arrival of pulsar signals for years to try to detect these small changes.
    What gravitational-wave-producing events do you expect to detect with pulsars? Could you see the same events as LIGO did?

    LIGO is sensitive to very short time-scale gravitational waves, on the order of milliseconds to seconds, while our experiment is sensitive to very long time-scale gravitational waves, on the order of years. We could never detect gravitational waves from two stellar-mass black holes merging—the time scale of the event is just too short. But we will be able to detect waves from black hole binaries in their inspiralling stage, when they’re still orbiting each other with periods of years. Also, our approach can only detect black holes that are much more massive that those LIGO observed. Our primary targets are supermassive black holes, even more massive than the one at the core of the Milky Way.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    LIGO is basically probing the evolution and end products of stars, whereas our experiment is probing the evolution of galaxies and the cosmos. We’ll be able to look way back in time at the processes by which galaxies formed through mergers.
    The first detection of gravitational waves was front-page news. What impact has it had on your research?

    I, and others in NANOGrav, got lots of condolences after LIGO’s detection, like “oh we’re sorry you weren’t first.” But it’s been good for us. It has really spurred us on to make a detection. And it has made us more optimistic—if it worked for LIGO it should work for us, as our methods are rooted in the same principles. None of us doubted gravitational waves existed, but as far as funding agencies and the public go, LIGO’s detection makes a big difference. Now people can’t say, “Who knows if these things exist?” or “Who knows if these methods work?” LIGO’s detection has shown they do exist and the methods do work.

    Apart from doubters, what other challenges do you face with your pulsar experiment?

    Right now, our most significant challenge is that our radio telescopes are in danger of being shut down. Both Arecibo and the Green Bank Telescope (GBT) in West Virginia are suffering significant funding cuts.

    NAIC/Arecibo Observatory, Puerto Rico, USA



    GBO radio telescope, Green Bank, West Virginia, USA

    Many of our NANOGrav discussions lately are about what we can do to retain access to these telescopes. Losing one of these telescopes would reduce our experiment’s sensitivity by roughly half and increase the time to detection by at least several years. If we lose both, our project is dead in the water. Arecibo and GBT are currently the two most sensitive radio telescopes in the world . I think its crazy that they are possibly being shut down.

    [Do not forget FAST-China]

    FAST radio telescope, now operating, located in the Dawodang depression in Pingtang county Guizhou Province, South China

    What are you doing to address the problem?

    I recently spent two days on Capitol Hill in Washington, D.C., talking to senators and House representatives trying to make the case to keep GBT open. Most of the politicians actually agreed it should stay open; it’s just a matter of funding. Science in general just doesn’t have enough funding.

    How do you frame the issues when talking to politicians about science?

    I try really hard to stress the opportunities for training students, the infrastructure, and the number of people who work at these telescopes. The technologies developed at the facilities are cutting edge and can be used for more than studying space. The science is incredibly interesting, but that in itself doesn’t always appeal to everybody.

    With the current administration, arguments of US prominence are also really valuable. China [has built ans is operating] a bigger telescope than Arecibo, and soon we won’t have the largest radio telescope in the world. Right now we are world leaders, but if the US wants to keeps its dominance then these telescopes have to remain open.

    With the challenges you face, what would you say to someone thinking of joining this field?

    Despite uncertainties with the telescopes, the future is bright. Now is a really good time to join the field: we’re going to make a detection any day now.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments (physics@aps.org).

     
  • richardmitnick 4:35 pm on April 20, 2017 Permalink | Reply
    Tags: , , , GBO -Green Bank Observatory, The largest SETI initiative ever is reviewing 11 promising signals that probably aren’t aliens   

    From Astronomy: “The largest SETI initiative ever is reviewing 11 promising signals that probably aren’t aliens” 

    Astronomy magazine

    Astronomy Magazine

    April 20, 2017
    John Wenz

    1
    The Robert C. Byrd Radio Telescope at the Green Bank Observatory in West Virginia is one of the primary receivers looking for promising SETI signals.

    The Search for Extraterrestrial Intelligence (SETI) has been going for nearly 60 years now, and there have been plenty of false alarms in that time and nothing substantial. Now, a giant SETI initiative is looking into its initial round of data to follow up on 11 signals that they think could be aliens … but admit probably aren’t. Good to check, though, just in case.

    Two years ago, billionaire Yuri Milner put $100 million into a decade-long search for aliens known as the Breakthrough Listen initiative. It was the widest-scale SETI project announced since Project Phoenix in 1995, which itself was the successor of a cancelled 10 year, $100 million SETI effort by NASA.

    Breakthrough Listen is spearheaded by SETI Berkeley and taps into the wider SETI community to listen in worldwide for radio signals that might be artificial. They’ve also opened up the data to the public at large to look for narrowband signals — those in a specific wavelength that are more likely to be from a non-natural source. There are 692 targets in the initial rounds of data.

    The news is coming out of a two-day conference in California from the Breakthrough Initiatives organization, which is also sponsoring Breakthrough Starshot, a project based on using laser propulsion to power tiny spacecraft to the Alpha Centauri system (specifically Proxima Centauri) in a matter of decades.

    A live broadcast will take place today on Facebook at 6:10 p.m. EST (3:10 p.m. PST) with Andrew Siemion of SETI Berkeley discussing the initial results. You can watch it here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 4:32 pm on April 7, 2017 Permalink | Reply
    Tags: , GBO -Green Bank Observatory, National radio quiet zone,   

    From GBO via Science Friday: “Searching For E.T. In An Electronic Dead Zone” 

    gbo-logo

    Green Bank Radio Telescope, West Virginia, USA
    Green Bank Radio Telescope, West Virginia, USA

    gbo-sign

    Green Bank Observatory

    3

    Science Friday on NPR

    2
    There are no filters added to this photo of the Green Bank Telescope in West Virginia. It was taken on a real-film disposable camera. Credit: Charles Bergquist

    The hills of Green Bank, West Virginia are tranquil and serene. But peeking out of a shallow valley is something quite unnatural—the huge ivory dish of the Green Bank Telescope (also referred to as GBT, or the “Great Big Thing” by locals). It is the largest fully steerable radio telescope in the world, with a huge ear that can listen to 85 percent of the sky.

    The massive dish is like a basin, but instead of water it collects radio signals from space. Astronomical signals can be incredibly weak (the telescope often measures signals on the order of 10-29 Watts/m2/Hertz, or milli-Janskies). In order to be able to pick those distant transmissions out of Earthly electronic noise, the observatory must sit in radio silence.

    [Frank Drake is still searching for E.T.]

    3
    In this view of GBT, you can see the elaborate lattice structure on the back of the scope which distributes forces across the entire dish. Credit: Charles Bergquist

    Green Bank Observatory lies within the national radio quiet zone—a 13,000 square mile region of Virginia and West Virginia that is protected from radio frequency interference. “Within that region anyone that puts a fixed license antenna has to talk to us,” Karen O’Neill, Green Bank site director, explained in a video. The observatory helps locals within the zone design special cell towers and antenna that don’t disrupt the observatory’s research.

    “The energy given off by a single snowflake hitting the ground is much more powerful than the radio signal an astronomer is trying to receive,” says Michael Holstine, an engineer and business manager at Green Bank. “Any manmade transmitter, electronic device, unintentional transmitter basically overwhelms the usable signal for the observer.”

    Past a certain point on the Green Bank Observatory campus, you must abandon all of your precious electronics. There can be no radio signals emitted from your cell phone, microwave heating up dinner, or digital camera—so when SciFri visited the sanctuary in February, photos had to be snapped on a low-tech, real-film disposable camera. The result were these blue-tinted, looming views of GBT. Sleet and cobalt clouds cast a gloomy grey over the usually gleaming white reflector surface of the telescope.

    What happens if we detect extraterrestrial intelligence?

    It’s easy to feel minuscule beneath the towering latticed structure. The GBT stands taller than the Statue of Liberty at 485 feet and can fit an entire football field in its 2.3-acre reflector. Its tremendous size is needed to collect those faint signals in space.

    5
    Peering up at GBT from the grounds of the observatory. Credit: Charles Bergquist

    The telescope is used to monitor pulsars, find gravitational waves, view comets, and map diffuse clouds of gas. GBT has been involved in the search for extraterrestrial intelligence (SETI) since the 1960s, and now is currently working on the Breakthrough Listen project, an intensive search for extraterrestrial intelligence, spending hundreds of hours per year searching for potential signs of intelligent life.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    gbo-science-building

    Mission Statement

    Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities. With radio astronomy as its foundation, the Green Bank Observatory is a world leader in advancing research, innovation, and education.

    History

    60 years ago, the trailblazers of American radio astronomy declared this facility their home, establishing the first ever National Radio Astronomy Observatory within the United States and the first ever national laboratory dedicated to open access science. Today their legacy is alive and well.

     
  • richardmitnick 1:35 pm on March 15, 2017 Permalink | Reply
    Tags: , , , , Ellie White, GBO -Green Bank Observatory, , , WV Public Broadcasting   

    From GBO via WV Public Broadcasting: “W.Va. Family Fights to Save Green Bank Observatory” 

    gbo-logo

    Green Bank Radio Telescope, West Virginia, USA
    Green Bank Radio Telescope, West Virginia, USA

    gbo-sign

    Green Bank Observatory

    1

    West Virginia Public Broadcasting

    3.15.17
    Anne Li

    2
    Ellie White of Barboursville, West Virginia, and her family launched a campaign called Go Green Bank Observatory convince the National Science Foundation to not divest from Green Bank Observatory.
    Jesse Wright / West Virginia Public Broadcasting.

    Nestled in the hills in Pocahontas County, West Virginia, is the Green Bank Telescope. At 485 feet tall and about 300 feet across, it’s the largest fully-steerable telescope in the world, and it belongs to Green Bank Observatory.

    Since the observatory opened in 1957, researchers have used the facility to make several discoveries, like organic prebiotic molecules — the building blocks of life. The Green Bank Telescope is also one of only two radio telescopes in the world searching for signs of intelligent life in space.

    3
    Breakthrough Listen

    Breakthrough Listen is the largest ever scientific research program aimed at finding evidence of civilizations beyond Earth. The scope and power of the search are on an unprecedented scale:

    The program includes a survey of the 1,000,000 closest stars to Earth. It scans the center of our galaxy and the entire galactic plane. Beyond the Milky Way, it listens for messages from the 100 closest galaxies to ours.

    The instruments used are among the world’s most powerful. They are 50 times more sensitive than existing telescopes dedicated to the search for intelligence.

    The radio surveys cover 10 times more of the sky than previous programs. They also cover at least 5 times more of the radio spectrum – and do it 100 times faster. They are sensitive enough to hear a common aircraft radar transmitting to us from any of the 1000 nearest stars.

    The GBT plays a key role in the Breakthough Listen project, and roughly 20% of the time available on the GBT is dedicated to this research.

    Breakthrough Listen is also carrying out the deepest and broadest ever search for optical laser transmissions. These spectroscopic searches are 1000 times more effective at finding laser signals than ordinary visible light surveys. They could detect a 100 watt laser (the energy of a normal household bulb) from 25 trillion miles away.

    Listen combines these instruments with innovative software and data analysis techniques.

    The initiative will span 10 years and commit a total of $100,000,000.

    More information on Breakthrough Listen is available at https://breakthroughinitiatives.org/Initiative/1

    But today, the telescope and the facility that supports it are under federal review — with the possibility of losing funding or being dismantled.

    In the face of that threat, one West Virginia family hopes to convince the powers that be of the facility’s value to science, education and the small town in which the telescope resides.

    “It’s almost like a tiny metropolitan city in the middle of rural West Virginia,” said Ellie White, a 16-year-old from Barboursville, West Virginia. “That kind of resource is invaluable for kids across the state and across the country, who are going to be tomorrow’s innovators, engineers, scientists, politicians, artists.”

    White’s family volunteered to start a campaign called Go Green Bank Observatory to rally support from across the country and show the National Science Foundation, which used to almost completely fund the observatory, that Green Bank Observatory is worth keeping. In 2012, the NSF published a portfolio review that recommended at least partially divesting from several observatories around the country that no longer have as large of a scientific impact as they used to. Green Bank Observatory was on that list.

    Proposed operational changes for Green Bank Observatory range from continuing to partially fund its operations to shutting down its research operations and turning it into a technology park, or completely tearing it down.

    “This is one of the difficult things the NSF has to do,” said Edward Ahjar, an astronomer at the NSF. “All of our facilities do great science, and that’s why we fund them. But when we start having less and less money to spread around, then we have to prioritize them. Which are doing the most important science now? Which are lower ranked?”

    The Fight to Keep Green Bank Observatory Open

    Last fall, Go Green Bank Observatory encouraged fans to speak at two public scoping meetings where Ahjar and other representatives from the NSF would be present to hear the public’s input about the divestment process.

    About 350 people filled the seats of an auditorium at the observatory. Several in attendance were affiliated with West Virginia University, which since 2006 has received more than $14.5 million in grant dollars for research related to the Green Bank Telescope.

    “When I started applying for graduate school, WVU was one of my top choices,” said Kaustubh Rajwade, a graduate student from India in the Department of Physics and Astronomy at WVU. “The only reason I came here was so I could use the Green Bank Telescope.”

    Others, like Buster Varner, a local fire chief, were more concerned about Green Bank Observatory’s role in the community as a de facto community center, where people can hold meetings and classes.

    “Whenever we had a catastrophe, we can go to Mike,” Varner said, referring to Mike Holstine, the business manager at Green Bank Observatory. “I don’t know much about this science, and there’s a lot of people here who does and that’s great. But I do not want anything to happen to this facility, period.”

    The NSF once almost completely funded Green Bank Observatory’s operations. But Holstine said that especially in the past five years, the observatory saw a need to diversify its sources of funding — in part because outside organizations and researchers expressed a willingness to pay for time on the telescope, but also due to the clear indicators that the observatory needed to rely less on the NSF.

    Green Bank Observatory employs between 100 and 140 people — more than half of whom are from Pocahontas County — depending on the time of year. The money also helps the observatory maintain its own infrastructure in an isolated and rural area.

    “You kind of need to think of us as a town, a self-contained town,” Holstine explained. “We have our own roads. We have our own water system. We have our own wastewater system. We take care of our own buildings. We mow our own grass; we cut our own trees. We have to plow snow in the winter.”

    A Future Without Green Bank Observatory

    For White, the Observatory isn’t only worth keeping because of its accomplishments — but also because of its efforts to train the next generation of scientists. When she was younger, White was convinced she wanted to be an artist when she grew up. But since playing among the telescopes as a child, she has gone on to work on projects under the mentorship of astronomers and graduate students from all over the world.

    She’s not the only teen who’s been impacted by the observatory’s work; through the Pulsar Search Collaboratory, more than 2,000 high school students have worked with the Green Bank Observatory through a partnership with West Virginia University since 2007.

    “Just generally being here, you learn something every day. It’s like learning a new language through immersion,” White said.

    The NSF will reach its decision about the Green Bank Observatory’s fate by the end of this year or the beginning of next year. At 16 years old, White hopes to get her doctorate in astrophysics and one day find full employment at the observatory. If it shuts down, White said, she might have to look for employment out of state.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    gbo-science-building

    Mission Statement

    Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities. With radio astronomy as its foundation, the Green Bank Observatory is a world leader in advancing research, innovation, and education.

    History

    60 years ago, the trailblazers of American radio astronomy declared this facility their home, establishing the first ever National Radio Astronomy Observatory within the United States and the first ever national laboratory dedicated to open access science. Today their legacy is alive and well.

     
  • richardmitnick 6:12 pm on March 7, 2017 Permalink | Reply
    Tags: , , GBO -Green Bank Observatory, , ,   

    From APS: “Gravitational Waves: Hints, Allegations, and Things Left Unsaid” 

    AmericanPhysicalSociety

    American Physical Society

    APS April Meeting 2017

    If the APS April Meeting 2016 was a champagne-soaked celebration for gravitational wave scientists, the 2017 meeting was more like spring training — there was lots of potential, but the real action is yet to come.



    Caltech/MIT Advanced aLigo Hanford, WA, USA installation

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    The Laser Interferometer Gravitational-Wave Observatory, or LIGO, launched the era of gravitational wave astronomy in February 2016 with the announcement of a collision between two black holes observed in September 2015. “I’m contractually obligated to show the slide [of the original detection] at any LIGO talk for at least another year,” joked Jocelyn Read, a physicist at California State University, Fullerton, during her presentation at this year’s meeting.

    The scientific collaboration that operates the two LIGO detectors netted a second merger between slightly smaller black holes on December 26, 2015. (A third “trigger” showed up in LIGO data on October 12, 2015, but ultimately did not meet the stringent “five-sigma” statistical significance standard that physicists generally insist on.)

    The detectors then went offline in January 2016 for repairs and upgrades. The second observing run began on November 30, but due to weather-related shutdowns and other logistical hurdles, the two detectors had operated simultaneously on only 12 days as of this year’s meeting, which limited the experiment’s statistical power. Collaboration members said they had no new detections to announce.

    Instead, scientists focused on sharpening theoretical estimates of how often various events occur. In particular, they are eager to see collisions involving neutron stars, which lack sufficient mass to collapse all the way to a black hole. Neutron star collisions are thought to be plentiful, but would emit weaker gravitational waves than do mergers of more massive black holes, so the volume of space the LIGO detectors can scan for such events is smaller.

    Even with recent upgrades, failure to detect a neutron star merger during the current observing run would not rule out existing models, said Read. But she added that with future improvements and the long-anticipated addition of Virgo, a LIGO-like detector based in Cascina, Italy, neutron stars should soon come out of hiding.



    VIRGO Gravitational Wave interferometer, near Pisa, Italy [Not yet operational]

    “We’re expecting that with a little more volume and a little more time, we’re going to be starting to make some astrophysically interesting statements.”

    LIGO scientists are also looking for signals from individual pulsars — rapidly rotating neutron stars that are observed on earth as pulses of radio waves. A bump on a pulsar’s surface should produce gravitational waves, but so far, no waves with the right shape have been picked up. This absence puts a limit on the size of any irregularities and on the emission power of gravitational waves from nearby pulsars such as the Crab and Vela pulsars, said Michael Landry, head of the Hanford LIGO observatory, and could soon start putting limits on more distant ones.

    Presenters dropped a few hints of possible excitement to come. LIGO data taken through the end of January produced two short signals that were unusual enough to exceed the experiment’s “false alarm” threshold — signals with shapes and strengths expected to show up once a month or less by chance alone. Both LIGO collaboration members and astronomers at conventional telescopes are investigating the data to determine whether they represent real events.

    For now, potential events will continue to be scrutinized by collaboration members, and released to the public via announcements coming months after initial detection. But LIGO leaders expect to shorten the lag time as detections become more frequent, perhaps eventually putting out monthly updates. “We hope to make it quicker,” said LIGO collaboration spokesperson Gabriela González, a physicist at Louisiana State University in Baton Rouge.

    LIGO is not the only means by which scientists are searching for gravitational waves. Some scientists are using powerful radio telescopes to track signals emanating from dozens of extremely fast-rotating pulsars. A specific pattern of correlations between tiny hiccups in the arrival times of these pulses would be a signature of long-wavelength gravitational waves expected from mergers of distant supermassive black holes.

    Teams in the U.S., Europe, and Australia have monitored pulsars for more than a decade, so far without positive results. But in an invited talk, Laura Sampson of Northwestern University in Evanston, Illinois, coyly announced “hints of some interesting signals.” With 11 years of timing data from 18 pulsars tracked by the Green Bank Telescope in West Virginia and the Arecibo Telescope in Puerto Rico, Sampson and other scientists affiliated with a collaboration called NANOGrav have eked out a result with a statistical significance of around 1.5 to 2 sigma.



    GBO radio telescope, Green Bank, West Virginia, USA


    NAIC/Arecibo Observatory, Puerto Rico, USA

    Data from the Green Bank Telescope in West Virginia and Arecibo Telescope in Puerto Rico help researchers use pulsars to study gravitational waves.

    “It’s the first hint we’ve ever had that there might be a signal in the data,” Sampson said. “Everything we’ve done before was straight-up limits.”

    As NANOGrav continues to gather data, their signal could grow toward the 5-sigma gold standard, or it could vanish. Sampson and her colleagues hope to have an answer in the next year or two. “This is of course very exciting news,” said Gonzalez.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    American Physical Society
    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: