Tagged: GBO -Green Bank Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:35 pm on April 20, 2017 Permalink | Reply
    Tags: , , , GBO -Green Bank Observatory, The largest SETI initiative ever is reviewing 11 promising signals that probably aren’t aliens   

    From Astronomy: “The largest SETI initiative ever is reviewing 11 promising signals that probably aren’t aliens” 

    Astronomy magazine

    Astronomy Magazine

    April 20, 2017
    John Wenz

    1
    The Robert C. Byrd Radio Telescope at the Green Bank Observatory in West Virginia is one of the primary receivers looking for promising SETI signals.

    The Search for Extraterrestrial Intelligence (SETI) has been going for nearly 60 years now, and there have been plenty of false alarms in that time and nothing substantial. Now, a giant SETI initiative is looking into its initial round of data to follow up on 11 signals that they think could be aliens … but admit probably aren’t. Good to check, though, just in case.

    Two years ago, billionaire Yuri Milner put $100 million into a decade-long search for aliens known as the Breakthrough Listen initiative. It was the widest-scale SETI project announced since Project Phoenix in 1995, which itself was the successor of a cancelled 10 year, $100 million SETI effort by NASA.

    Breakthrough Listen is spearheaded by SETI Berkeley and taps into the wider SETI community to listen in worldwide for radio signals that might be artificial. They’ve also opened up the data to the public at large to look for narrowband signals — those in a specific wavelength that are more likely to be from a non-natural source. There are 692 targets in the initial rounds of data.

    The news is coming out of a two-day conference in California from the Breakthrough Initiatives organization, which is also sponsoring Breakthrough Starshot, a project based on using laser propulsion to power tiny spacecraft to the Alpha Centauri system (specifically Proxima Centauri) in a matter of decades.

    A live broadcast will take place today on Facebook at 6:10 p.m. EST (3:10 p.m. PST) with Andrew Siemion of SETI Berkeley discussing the initial results. You can watch it here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 4:32 pm on April 7, 2017 Permalink | Reply
    Tags: , GBO -Green Bank Observatory, National radio quiet zone,   

    From GBO via Science Friday: “Searching For E.T. In An Electronic Dead Zone” 

    gbo-logo

    Green Bank Radio Telescope, West Virginia, USA
    Green Bank Radio Telescope, West Virginia, USA

    gbo-sign

    Green Bank Observatory

    3

    Science Friday on NPR

    2
    There are no filters added to this photo of the Green Bank Telescope in West Virginia. It was taken on a real-film disposable camera. Credit: Charles Bergquist

    The hills of Green Bank, West Virginia are tranquil and serene. But peeking out of a shallow valley is something quite unnatural—the huge ivory dish of the Green Bank Telescope (also referred to as GBT, or the “Great Big Thing” by locals). It is the largest fully steerable radio telescope in the world, with a huge ear that can listen to 85 percent of the sky.

    The massive dish is like a basin, but instead of water it collects radio signals from space. Astronomical signals can be incredibly weak (the telescope often measures signals on the order of 10-29 Watts/m2/Hertz, or milli-Janskies). In order to be able to pick those distant transmissions out of Earthly electronic noise, the observatory must sit in radio silence.

    [Frank Drake is still searching for E.T.]

    3
    In this view of GBT, you can see the elaborate lattice structure on the back of the scope which distributes forces across the entire dish. Credit: Charles Bergquist

    Green Bank Observatory lies within the national radio quiet zone—a 13,000 square mile region of Virginia and West Virginia that is protected from radio frequency interference. “Within that region anyone that puts a fixed license antenna has to talk to us,” Karen O’Neill, Green Bank site director, explained in a video. The observatory helps locals within the zone design special cell towers and antenna that don’t disrupt the observatory’s research.

    “The energy given off by a single snowflake hitting the ground is much more powerful than the radio signal an astronomer is trying to receive,” says Michael Holstine, an engineer and business manager at Green Bank. “Any manmade transmitter, electronic device, unintentional transmitter basically overwhelms the usable signal for the observer.”

    Past a certain point on the Green Bank Observatory campus, you must abandon all of your precious electronics. There can be no radio signals emitted from your cell phone, microwave heating up dinner, or digital camera—so when SciFri visited the sanctuary in February, photos had to be snapped on a low-tech, real-film disposable camera. The result were these blue-tinted, looming views of GBT. Sleet and cobalt clouds cast a gloomy grey over the usually gleaming white reflector surface of the telescope.

    What happens if we detect extraterrestrial intelligence?

    It’s easy to feel minuscule beneath the towering latticed structure. The GBT stands taller than the Statue of Liberty at 485 feet and can fit an entire football field in its 2.3-acre reflector. Its tremendous size is needed to collect those faint signals in space.

    5
    Peering up at GBT from the grounds of the observatory. Credit: Charles Bergquist

    The telescope is used to monitor pulsars, find gravitational waves, view comets, and map diffuse clouds of gas. GBT has been involved in the search for extraterrestrial intelligence (SETI) since the 1960s, and now is currently working on the Breakthrough Listen project, an intensive search for extraterrestrial intelligence, spending hundreds of hours per year searching for potential signs of intelligent life.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    gbo-science-building

    Mission Statement

    Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities. With radio astronomy as its foundation, the Green Bank Observatory is a world leader in advancing research, innovation, and education.

    History

    60 years ago, the trailblazers of American radio astronomy declared this facility their home, establishing the first ever National Radio Astronomy Observatory within the United States and the first ever national laboratory dedicated to open access science. Today their legacy is alive and well.

     
  • richardmitnick 1:35 pm on March 15, 2017 Permalink | Reply
    Tags: , , , , Ellie White, GBO -Green Bank Observatory, , , WV Public Broadcasting   

    From GBO via WV Public Broadcasting: “W.Va. Family Fights to Save Green Bank Observatory” 

    gbo-logo

    Green Bank Radio Telescope, West Virginia, USA
    Green Bank Radio Telescope, West Virginia, USA

    gbo-sign

    Green Bank Observatory

    1

    West Virginia Public Broadcasting

    3.15.17
    Anne Li

    2
    Ellie White of Barboursville, West Virginia, and her family launched a campaign called Go Green Bank Observatory convince the National Science Foundation to not divest from Green Bank Observatory.
    Jesse Wright / West Virginia Public Broadcasting.

    Nestled in the hills in Pocahontas County, West Virginia, is the Green Bank Telescope. At 485 feet tall and about 300 feet across, it’s the largest fully-steerable telescope in the world, and it belongs to Green Bank Observatory.

    Since the observatory opened in 1957, researchers have used the facility to make several discoveries, like organic prebiotic molecules — the building blocks of life. The Green Bank Telescope is also one of only two radio telescopes in the world searching for signs of intelligent life in space.

    3
    Breakthrough Listen

    Breakthrough Listen is the largest ever scientific research program aimed at finding evidence of civilizations beyond Earth. The scope and power of the search are on an unprecedented scale:

    The program includes a survey of the 1,000,000 closest stars to Earth. It scans the center of our galaxy and the entire galactic plane. Beyond the Milky Way, it listens for messages from the 100 closest galaxies to ours.

    The instruments used are among the world’s most powerful. They are 50 times more sensitive than existing telescopes dedicated to the search for intelligence.

    The radio surveys cover 10 times more of the sky than previous programs. They also cover at least 5 times more of the radio spectrum – and do it 100 times faster. They are sensitive enough to hear a common aircraft radar transmitting to us from any of the 1000 nearest stars.

    The GBT plays a key role in the Breakthough Listen project, and roughly 20% of the time available on the GBT is dedicated to this research.

    Breakthrough Listen is also carrying out the deepest and broadest ever search for optical laser transmissions. These spectroscopic searches are 1000 times more effective at finding laser signals than ordinary visible light surveys. They could detect a 100 watt laser (the energy of a normal household bulb) from 25 trillion miles away.

    Listen combines these instruments with innovative software and data analysis techniques.

    The initiative will span 10 years and commit a total of $100,000,000.

    More information on Breakthrough Listen is available at https://breakthroughinitiatives.org/Initiative/1

    But today, the telescope and the facility that supports it are under federal review — with the possibility of losing funding or being dismantled.

    In the face of that threat, one West Virginia family hopes to convince the powers that be of the facility’s value to science, education and the small town in which the telescope resides.

    “It’s almost like a tiny metropolitan city in the middle of rural West Virginia,” said Ellie White, a 16-year-old from Barboursville, West Virginia. “That kind of resource is invaluable for kids across the state and across the country, who are going to be tomorrow’s innovators, engineers, scientists, politicians, artists.”

    White’s family volunteered to start a campaign called Go Green Bank Observatory to rally support from across the country and show the National Science Foundation, which used to almost completely fund the observatory, that Green Bank Observatory is worth keeping. In 2012, the NSF published a portfolio review that recommended at least partially divesting from several observatories around the country that no longer have as large of a scientific impact as they used to. Green Bank Observatory was on that list.

    Proposed operational changes for Green Bank Observatory range from continuing to partially fund its operations to shutting down its research operations and turning it into a technology park, or completely tearing it down.

    “This is one of the difficult things the NSF has to do,” said Edward Ahjar, an astronomer at the NSF. “All of our facilities do great science, and that’s why we fund them. But when we start having less and less money to spread around, then we have to prioritize them. Which are doing the most important science now? Which are lower ranked?”

    The Fight to Keep Green Bank Observatory Open

    Last fall, Go Green Bank Observatory encouraged fans to speak at two public scoping meetings where Ahjar and other representatives from the NSF would be present to hear the public’s input about the divestment process.

    About 350 people filled the seats of an auditorium at the observatory. Several in attendance were affiliated with West Virginia University, which since 2006 has received more than $14.5 million in grant dollars for research related to the Green Bank Telescope.

    “When I started applying for graduate school, WVU was one of my top choices,” said Kaustubh Rajwade, a graduate student from India in the Department of Physics and Astronomy at WVU. “The only reason I came here was so I could use the Green Bank Telescope.”

    Others, like Buster Varner, a local fire chief, were more concerned about Green Bank Observatory’s role in the community as a de facto community center, where people can hold meetings and classes.

    “Whenever we had a catastrophe, we can go to Mike,” Varner said, referring to Mike Holstine, the business manager at Green Bank Observatory. “I don’t know much about this science, and there’s a lot of people here who does and that’s great. But I do not want anything to happen to this facility, period.”

    The NSF once almost completely funded Green Bank Observatory’s operations. But Holstine said that especially in the past five years, the observatory saw a need to diversify its sources of funding — in part because outside organizations and researchers expressed a willingness to pay for time on the telescope, but also due to the clear indicators that the observatory needed to rely less on the NSF.

    Green Bank Observatory employs between 100 and 140 people — more than half of whom are from Pocahontas County — depending on the time of year. The money also helps the observatory maintain its own infrastructure in an isolated and rural area.

    “You kind of need to think of us as a town, a self-contained town,” Holstine explained. “We have our own roads. We have our own water system. We have our own wastewater system. We take care of our own buildings. We mow our own grass; we cut our own trees. We have to plow snow in the winter.”

    A Future Without Green Bank Observatory

    For White, the Observatory isn’t only worth keeping because of its accomplishments — but also because of its efforts to train the next generation of scientists. When she was younger, White was convinced she wanted to be an artist when she grew up. But since playing among the telescopes as a child, she has gone on to work on projects under the mentorship of astronomers and graduate students from all over the world.

    She’s not the only teen who’s been impacted by the observatory’s work; through the Pulsar Search Collaboratory, more than 2,000 high school students have worked with the Green Bank Observatory through a partnership with West Virginia University since 2007.

    “Just generally being here, you learn something every day. It’s like learning a new language through immersion,” White said.

    The NSF will reach its decision about the Green Bank Observatory’s fate by the end of this year or the beginning of next year. At 16 years old, White hopes to get her doctorate in astrophysics and one day find full employment at the observatory. If it shuts down, White said, she might have to look for employment out of state.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    gbo-science-building

    Mission Statement

    Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities. With radio astronomy as its foundation, the Green Bank Observatory is a world leader in advancing research, innovation, and education.

    History

    60 years ago, the trailblazers of American radio astronomy declared this facility their home, establishing the first ever National Radio Astronomy Observatory within the United States and the first ever national laboratory dedicated to open access science. Today their legacy is alive and well.

     
  • richardmitnick 6:12 pm on March 7, 2017 Permalink | Reply
    Tags: , , GBO -Green Bank Observatory, , ,   

    From APS: “Gravitational Waves: Hints, Allegations, and Things Left Unsaid” 

    AmericanPhysicalSociety

    American Physical Society

    APS April Meeting 2017

    If the APS April Meeting 2016 was a champagne-soaked celebration for gravitational wave scientists, the 2017 meeting was more like spring training — there was lots of potential, but the real action is yet to come.



    Caltech/MIT Advanced aLigo Hanford, WA, USA installation

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    The Laser Interferometer Gravitational-Wave Observatory, or LIGO, launched the era of gravitational wave astronomy in February 2016 with the announcement of a collision between two black holes observed in September 2015. “I’m contractually obligated to show the slide [of the original detection] at any LIGO talk for at least another year,” joked Jocelyn Read, a physicist at California State University, Fullerton, during her presentation at this year’s meeting.

    The scientific collaboration that operates the two LIGO detectors netted a second merger between slightly smaller black holes on December 26, 2015. (A third “trigger” showed up in LIGO data on October 12, 2015, but ultimately did not meet the stringent “five-sigma” statistical significance standard that physicists generally insist on.)

    The detectors then went offline in January 2016 for repairs and upgrades. The second observing run began on November 30, but due to weather-related shutdowns and other logistical hurdles, the two detectors had operated simultaneously on only 12 days as of this year’s meeting, which limited the experiment’s statistical power. Collaboration members said they had no new detections to announce.

    Instead, scientists focused on sharpening theoretical estimates of how often various events occur. In particular, they are eager to see collisions involving neutron stars, which lack sufficient mass to collapse all the way to a black hole. Neutron star collisions are thought to be plentiful, but would emit weaker gravitational waves than do mergers of more massive black holes, so the volume of space the LIGO detectors can scan for such events is smaller.

    Even with recent upgrades, failure to detect a neutron star merger during the current observing run would not rule out existing models, said Read. But she added that with future improvements and the long-anticipated addition of Virgo, a LIGO-like detector based in Cascina, Italy, neutron stars should soon come out of hiding.



    VIRGO Gravitational Wave interferometer, near Pisa, Italy [Not yet operational]

    “We’re expecting that with a little more volume and a little more time, we’re going to be starting to make some astrophysically interesting statements.”

    LIGO scientists are also looking for signals from individual pulsars — rapidly rotating neutron stars that are observed on earth as pulses of radio waves. A bump on a pulsar’s surface should produce gravitational waves, but so far, no waves with the right shape have been picked up. This absence puts a limit on the size of any irregularities and on the emission power of gravitational waves from nearby pulsars such as the Crab and Vela pulsars, said Michael Landry, head of the Hanford LIGO observatory, and could soon start putting limits on more distant ones.

    Presenters dropped a few hints of possible excitement to come. LIGO data taken through the end of January produced two short signals that were unusual enough to exceed the experiment’s “false alarm” threshold — signals with shapes and strengths expected to show up once a month or less by chance alone. Both LIGO collaboration members and astronomers at conventional telescopes are investigating the data to determine whether they represent real events.

    For now, potential events will continue to be scrutinized by collaboration members, and released to the public via announcements coming months after initial detection. But LIGO leaders expect to shorten the lag time as detections become more frequent, perhaps eventually putting out monthly updates. “We hope to make it quicker,” said LIGO collaboration spokesperson Gabriela González, a physicist at Louisiana State University in Baton Rouge.

    LIGO is not the only means by which scientists are searching for gravitational waves. Some scientists are using powerful radio telescopes to track signals emanating from dozens of extremely fast-rotating pulsars. A specific pattern of correlations between tiny hiccups in the arrival times of these pulses would be a signature of long-wavelength gravitational waves expected from mergers of distant supermassive black holes.

    Teams in the U.S., Europe, and Australia have monitored pulsars for more than a decade, so far without positive results. But in an invited talk, Laura Sampson of Northwestern University in Evanston, Illinois, coyly announced “hints of some interesting signals.” With 11 years of timing data from 18 pulsars tracked by the Green Bank Telescope in West Virginia and the Arecibo Telescope in Puerto Rico, Sampson and other scientists affiliated with a collaboration called NANOGrav have eked out a result with a statistical significance of around 1.5 to 2 sigma.



    GBO radio telescope, Green Bank, West Virginia, USA


    NAIC/Arecibo Observatory, Puerto Rico, USA

    Data from the Green Bank Telescope in West Virginia and Arecibo Telescope in Puerto Rico help researchers use pulsars to study gravitational waves.

    “It’s the first hint we’ve ever had that there might be a signal in the data,” Sampson said. “Everything we’ve done before was straight-up limits.”

    As NANOGrav continues to gather data, their signal could grow toward the 5-sigma gold standard, or it could vanish. Sampson and her colleagues hope to have an answer in the next year or two. “This is of course very exciting news,” said Gonzalez.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    American Physical Society
    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries.

     
  • richardmitnick 3:11 pm on January 4, 2017 Permalink | Reply
    Tags: , , , GBO -Green Bank Observatory, ,   

    From NRAO: “Precise Location, Distance Provide Breakthrough in Study of Fast Radio Bursts” 

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    4 January 2017

    1
    Visible-light image of host galaxy.
    Credit: Gemini Observatory/AURA/NSF/NRC.

    For the first time, astronomers have pinpointed the location in the sky of a Fast Radio Burst (FRB), allowing them to determine the distance and home galaxy of one of these mysterious pulses of radio waves. The new information rules out several suggested explanations for the source of FRBs.

    “We now know that this particular burst comes from a dwarf galaxy more than three billion light-years from Earth,” said Shami Chatterjee, of Cornell University. “That simple fact is a huge advance in our understanding of these events,” he added. Chatterjee and other astronomers presented their findings to the American Astronomical Society’s meeting in Grapevine, Texas, in the scientific journal Nature, and in companion papers in the Astrophysical Journal Letters.

    Fast Radio Bursts are highly-energetic, but very short-lived (millisecond) bursts of radio waves whose origins have remained a mystery since the first one was discovered in 2007. That year, researchers scouring archived data from Australia’s Parkes Radio Telescope in search of new pulsars found the first known FRB — one that had burst in 2001.

    There now are 18 known FRBs. All were discovered using single-dish radio telescopes that are unable to narrow down the object’s location with enough precision to allow other observatories to identify its host environment or to find it at other wavelengths. Unlike all the others, however, one FRB, discovered in November of 2012 at the Arecibo Observatory in Puerto Rico, has recurred numerous times.

    NAIC/Arecibo Observatory, Puerto Rico, USA
    NAIC/Arecibo Observatory, Puerto Rico, USA

    The repeating bursts from this object, named FRB 121102 after the date of the initial burst, allowed astronomers to watch for it using the National Science Foundation’s (NSF) Karl G. Jansky Very Large Array (VLA), a multi-antenna radio telescope system with the resolving power, or ability to see fine detail, needed to precisely determine the object’s location in the sky.

    In 83 hours of observing time over six months in 2016, the VLA detected nine bursts from FRB 121102.

    “For a long time, we came up empty, then got a string of bursts that gave us exactly what we needed,” said Casey Law, of the University of California at Berkeley.

    “The VLA data allowed us to narrow down the position very accurately,” said Sarah Burke-Spolaor, of the National Radio Astronomy Observatory (NRAO) and West Virginia University.

    Using the precise VLA position, researchers used the Gemini North telescope in Hawaii to make a visible-light image that identified a faint dwarf galaxy at the location of the bursts. The Gemini observations also determined that the dwarf galaxy is more than 3 billion light-years from Earth.

    Gemini/North telescope at Mauna Kea, Hawaii, USA
    Gemini/North telescope at Mauna Kea, Hawaii, USA

    “Before we knew the distance to any FRBs, several proposed explanations for their origins said they could be coming from within or near our own Milky Way Galaxy. We now have ruled out those explanations, at least for this FRB,” said Shriharsh Tendulkar, of McGill University in Montreal, Canada.

    In addition to detecting the bright bursts from FRB 121102, the VLA observations also revealed an ongoing, persistent source of weaker radio emission in the same region.

    Next, a team of observers used the multiple radio telescopes of the European VLBI Network (EVN), along with the 1,000-foot-diameter William E. Gordon Telescope of the Arecibo Observatory, and the NSF’s Very Long Baseline Array (VLBA) to determine the object’s position with even greater accuracy.

    European VLBI
    European VLBI

    NRAO VLBA
    NRAO VLBA

    “These ultra high precision observations showed that the bursts and the persistent source must be within 100 light-years of each other,” said Jason Hessels, of the Netherlands Institute for Radio Astronomy and the University of Amsterdam.

    “We think that the bursts and the continuous source are likely to be either the same object or that they are somehow physically associated with each other,” said Benito Marcote, of the Joint Institute for VLBI ERIC, Dwingeloo, Netherlands.

    The top candidates, the astronomers suggested, are a neutron star, possibly a highly-magnetic magnetar, surrounded by either material ejected by a supernova explosion or material ejected by a resulting pulsar, or an active nucleus in the galaxy, with radio emission coming from jets of material emitted from the region surrounding a supermassive black hole.

    “We do have to keep in mind that this FRB is the only one known to repeat, so it may be physically different from the others,” cautioned Bryan Butler of NRAO.

    “Finding the host galaxy of this FRB, and its distance, is a big step forward, but we still have much more to do before we fully understand what these things are,” Chatterjee said.

    “This impressive result shows the power of several telescopes working in concert — first detecting the radio burst and then precisely locating and beginning to characterize the emitting source,” said Phil Puxley, a program director at the National Science Foundation that funds the VLA, VLBA, Gemini and Arecibo observatories. “It will be exciting to collect more data and better understand the nature of these radio bursts.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    ALMA Array

    NRAO ALMA

    GBO radio telescope, Green Bank, West Virginia, USA
    GBO Radio Observatory telescope, Green Bank, West Virginia, USA, formerly supported by NSF, but now on its own

    NRAO VLA
    NRAO VLA

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).
    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 2:11 pm on January 2, 2017 Permalink | Reply
    Tags: , , Automated Planet Finder at Lick Observatory, , Breakthrough Prize Foundation, , , GBO -Green Bank Observatory,   

    From Seeker: “Kepler’s ‘Alien Megastructure’ Star to Spill SETI Secrets?” 

    Seeker bloc

    SEEKER

    Oct 26, 2016 [I missed this, but it is important]
    IAN O’NEILL

    gbo-logo

    GBO radio telescope, Green Bank, West Virginia, USA
    GBO – Green Bank Radio Telescope, Green Bank, West Virginia, USA

    The star KIC 8462852 — informally known as Tabby’s Star — has been the focus of the worlds’ attention for months now, and for good reason. Its strange behavior could be a sign that there’s a super-advanced alien civilization carrying out the mother of all engineering projects in orbit. But the mysterious dips in observed light from the star could alternatively just be a huge swarm of comets or some other as-yet-to-be-understood stellar phenomenon.

    Although astronomers are generally skeptical that there really is an extraterrestrial civilization constructing a starlight-blocking megastructure only 1,480 light-years from Earth, the Breakthrough Listen SETI (Search for Extraterrestrial Intelligence) project is committing radio telescope time of one of the most powerful observatories on the planet to at least test the intelligent alien hypothesis.

    The project is a part of the $100 million Breakthrough Prize Foundation that’s funded by Russian entrepreneur Yuri Milner and backed by British theoretical physicist Stephen Hawking and Facebook founder Mark Zuckerberg.

    Starting Wednesday (Oct. 26), a team of astronomers will use the renowned 100-meter Green Bank Telescope (pictured above) that is located deep in a radio-silent corner of West Virginia to study Tabby’s Star. For eight hours per night for three nights over the next two months, a special instrument attached to the huge radio telescope will be used to carry out an unprecedented observation campaign of the star.

    “The Breakthrough Listen program has the most powerful SETI equipment on the planet, and access to the largest telescopes on the planet,” said Andrew Siemion, director of the Berkeley SETI Research Center and co-director of Breakthrough Listen, in a statement. “We can look at it with greater sensitivity and for a wider range of signal types than any other experiment in the world.”

    Although other projects have tried to eavesdrop on the star before, SETI campaigns have typically been limited by the number of radio frequencies that can be recorded simultaneously and the amount of time committed to just one star in the sky. This new instrument [new only to the project, the telescope began regular science operations in 2001.] is able to record a huge amount of data across a range of frequencies at the same time, potentially allowing us to detect the radio transmissions from any transmitting intelligent aliens at Tabby’s Star.

    “The Green Bank Telescope is the largest fully steerable radio telescope on the planet, and it’s the largest, most sensitive telescope that’s capable of looking at Tabby’s star given its position in the sky,” said Siemion. “We’ve deployed a fantastic new SETI instrument that connects to that telescope, that can look at many gigahertz of bandwidth simultaneously and many, many billions of different radio channels all at the same time so we can explore the radio spectrum very, very quickly.”

    It’s estimated that up to one petabyte of data may be collected over the observing run — that’s enough data to fill a thousand computer hard drives (assuming each can store one terabyte). The researchers say that it could be over a month before we know whether or not a signal was detected because it will take a long time to process all the observations.

    With Siemion, Tabetha Boyajian, from Louisiana State University, and visiting UC Berkeley astronomer Jason Wright will be heading the study. Boyajian was the first to report on KIC 8462852’s peculiar light-curve in September 2015, which was initially flagged by citizen scientists participating in the Planet Hunters project. Tabby’s Star is so-named in honor of Boyajian.

    The project asks for the help of the public to look at candidate exoplanet transits from NASA’s Kepler Space Telescope. Kepler has confirmed hundreds of worlds orbiting other stars by detecting the dip in brightness of a star (described by the star’s “light-curve”) by an exoplanet passing in front — an event known as a “transit.” And the transit signal produced by Tabby’s star was as dramatic as it was bizarre.

    Typically, an exoplanet signal might dim a star’s light by around 2%. But several of the irregular transits of Tabby’s Star caused the starlight to drop by up to 22%. This means that something very big must be passing in front. What’s more, it seems the star’s brightness has been dimming for hundreds of years according to historical astronomical records, only adding to the intrigue. Although several ideas have been put forward to explain the signal, the key one being the possibility of a huge cloud of comets drifting in front of the star, all have fallen short of fully explaining the Kepler observation.

    After the weirdness of Tabby’s Star was known, Jason Wright discussed the possibility of Tabby’s Star’s dimming not being caused by natural phenomena; could the dimming be caused by an advanced alien intelligence creating a “megastructure” around the star? Could this be the first observational evidence of a huge solar array (like a Dyson Sphere) being built?

    For now, this is pure speculation, but Breakthrough Listen hopes to investigate further. If this hypothetical alien civilization is transmitting powerful radio signals into space, perhaps we’ll detect it. Though it is highly unlikely an artificial radio signal will be detected, the mere chance Tabby’s Star might spill its secrets in the form of transmissions from an advanced alien race is enough for us to at least try.

    [Also participating are Parkes Radio Telescope in Australia, and the Automated Planet Finder at UCO Lick, Mt Hamilton, California.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia
    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA
    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA]

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: