Tagged: Fusion technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:08 pm on November 28, 2022 Permalink | Reply
    Tags: "Covering a cylinder with a magnetic coil triples its energy output in nuclear fusion test", , , From National Ignition Facility, Fusion technology, , ,   

    From The National Ignition Facility At The DOE’s Lawrence Livermore National Laboratory Via “phys.org” : “Covering a cylinder with a magnetic coil triples its energy output in nuclear fusion test” 

    From The National Ignition Facility

    At

    The DOE’s Lawrence Livermore National Laboratory

    Via

    “phys.org”

    11.25.22
    Bob Yirka

    1
    (a) Sketch of the magnetized NIF hohlraum constructed from AuTa4 with solenoidal coil to carry current. (b) X-ray drive measured through one of the LEHs and the incident laser powers for a magnetized and unmagnetized AuTa4 hohlraum and two unmagnetized Au hohlraums. “BF” refers to “BigFoot,” the name of the previous ignition design. Credit: Physical Review Letters (2022)

    A team of researchers working at the National Ignition Facility, part of Lawrence Livermore National Laboratory, has found that covering a cylinder containing a small amount of hydrogen fuel with a magnetic coil and firing lasers at it triples its energy output—another step toward the development of nuclear fusion as a power source.

    In their paper published in the journal Physical Review Letters [below], the team, which has members from several facilities in the U.S., one in the U.K. and one in Japan, describes upgrading their setup to allow for the introduction of the magnetic coil.

    Last year, a team working at the same facility announced that they had come closer to achieving ignition in a nuclear fusion test than anyone has so far. Unfortunately, the were unable to repeat their results. Since that time, the team has been reviewing their original design, looking for ways to make it better.

    The original design involved firing 192 laser beams at a tiny cylinder containing a tiny sphere of hydrogen at its center. This created X-rays that heated the sphere until its atoms began to fuse. Some of the design improvements have involved changing the size of the holes through which the lasers pass, but they have only led to minor changes.

    Looking for a better solution, the team studied prior research and found several studies that had shown, via simulation, that encasing a cylinder in a magnetic field should significantly increase the energy output.

    Putting the suggestion into practice, the researchers had to modify the cylinder—originally, it was made of gold. Placing it in a strong magnetic field would create an electric current strong enough to tear the cylinder apart, so they made a new one from an alloy of gold and tantalum. They also switched the gas from hydrogen to deuterium (another kind of hydrogen), then covered the whole works with a tesla magnetic field using a coil. Then they fired up the lasers. The researchers saw an immediate improvement—the hot spot on the sphere went up by 40% and the energy output was tripled.

    The work marks a step toward the ultimate goal—creating a fusion reactor that can produce more energy than is put into it.

    Science paper:
    Physical Review Letters

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Ignition Facility, is a large laser-based inertial confinement fusion (ICF) research device, located at the DOE’s Lawrence Livermore National Laboratory in Livermore, California. NIF uses lasers to heat and compress a small amount of hydrogen fuel with the goal of inducing nuclear fusion reactions. NIF’s mission is to achieve fusion ignition with high energy gain, and to support nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear weapons. NIF is the largest and most energetic ICF device built to date, and the largest laser in the world.

    Lawrence Livermore National Laboratory/National Ignition Facility

    Construction on the NIF began in 1997 but management problems and technical delays slowed progress into the early 2000s. Progress after 2000 was smoother, but compared to initial estimates, NIF was completed five years behind schedule and was almost four times more expensive than originally budgeted. Construction was certified complete on 31 March 2009 by the U.S. Department of Energy, and a dedication ceremony took place on 29 May 2009. The first large-scale laser target experiments were performed in June 2009 and the first “integrated ignition experiments” (which tested the laser’s power) were declared completed in October 2010.

    Bringing the system to its full potential was a lengthy process that was carried out from 2009 to 2012. During this period a number of experiments were worked into the process under the National Ignition Campaign, with the goal of reaching ignition just after the laser reached full power, some time in the second half of 2012. The Campaign officially ended in September 2012, at about 1⁄10 the conditions needed for ignition. Experiments since then have pushed this closer to 1⁄3, but considerable theoretical and practical work is required if the system is ever to reach ignition. Since 2012, NIF has been used primarily for materials science and weapons research.

    National Igniton Facility- NIF at LLNL

    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration

    NNSA

     
  • richardmitnick 4:33 pm on November 15, 2022 Permalink | Reply
    Tags: "LLNL researchers observe that ions behave differently in fusion reactions", , , For a thermal plasma there is a fixed relationship between how extra energy changes for increased temperature., Fusion technology, , The average neutron energy produced is higher than expected for a deuterium-tritium (D-T) plasma that is in thermal equilibrium., The deuterium and tritium ions collide at higher velocity and that extra energy is shared among the neutron and alpha particle released by the reaction., , The ions undergoing fusion have more energy than expected in the highest-performing shots.   

    From The DOE’s Lawrence Livermore National Laboratory: “LLNL researchers observe that ions behave differently in fusion reactions” 

    From The DOE’s Lawrence Livermore National Laboratory

    11.14.22
    Michael Padilla
    padilla37@llnl.gov
    925-341-8692

    1
    Work conducted at Lawrence Livermore National Laboratory and featured in Nature Physics, shows that ions behave differently in fusion reactions than previously expected. Image by John Jett and Jake Long/LLNL.

    Researchers at Lawrence Livermore National Laboratory (LLNL) have discovered that ions behave differently in fusion reactions than previously expected, thus providing important insights for the future design of a laser­–fusion energy source.

    The findings are featured in a new paper in the Nov. 14 issue of Nature Physics [below].”

    The work shows that neutron energy measurements on the high-yield burning and igniting inertial confinement fusion experiments (ICF) showed that the average neutron energy produced is higher than expected for a deuterium-tritium (D-T) plasma that is in thermal equilibrium.

    “This implies that the ions undergoing fusion have more energy than expected in the highest-performing shots, something that isn’t predicted — or able to be predicted — by the normal radiation hydrodynamics codes used to simulate ICF implosions,” said Alastair Moore, LLNL physicist and lead author of the paper.

    While researchers don’t have a clear understanding of what is driving this observation, it is one of the most direct measurements of the ions undergoing fusion and is not captured by the simulations that are used to understand how to improve ICF implosions and deliver on the Lab’s mission generating a robust and reliable ignition platform.

    Moore explains that the measurement described in the paper is a bit like the Doppler shift that results in the change in tone heard when a police car drives past with its siren on.

    “In National Ignition Facilty (NIF)[below] implosions, if the deuterium and tritium ions are moving toward the detector when a fusion reaction occurs, we observe a higher energy — or ‘tone’ — neutron from the reaction,” Moore said. “This allows us to diagnose important imbalances in the drive and capsule symmetry that can lead to poor implosion performance because some detectors measure higher average neutron energy than others.”

    This also gives researchers a window into how hot the plasma is. For a hotter plasma, the ions are on average all moving faster in every direction, so the deuterium and tritium ions collide at higher velocity and that extra energy is shared among the neutron and alpha particle released by the reaction.

    “This means that all detectors measure a higher average neutron velocity; because it is seen in all the detectors we call it an isotropic velocity, but it’s really a measure of the extra energy available when the deuterium and tritium ions collide,” Moore said. “Because of that, it is a direct measurement of the ions that are undergoing fusion.”

    For a thermal plasma there is a fixed relationship between how this extra energy changes for increased temperature.

    “What is fascinating about this result is that we found that for DT reactions, NIF implosions exceed this relationship once they start to burn and ignite, indicating that the ions have more energy than expected based on the plasma temperature we measure, which led us to the term suprathermal,” Moore said.

    Researchers observe years of data

    The observation for the research built on the work of many people in the NIF nuclear diagnostics team over the past 5-10 years. Moore said that the work was made possible by the development of state-of-the art, high-precision measurements using the five neutron time-of-flight spectrometers on NIF.

    The creation of new Čerenkov nToF detector technology meant that researchers were able to measure velocity with only a 5 kilometer-per-second uncertainty. This is a precision of 1 part in 10,000 without which this effect would not have been observed.

    To put this into context, the average energy of the neutrons generated by the DT fusion reaction in ICF means they travel at a rate of more than 51,000 kilometers per second. This is equivalent to traveling from San Francisco to New York in less than a tenth of a second.

    The data in the paper was submitted prior to the 1.35MJ result in August 2021 and researchers continue to see exciting results that continue this trend in deviating from expectations as we have moved from burning to igniting experiments.

    “One explanation for the result is that the D and T ions are not in equilibrium,” Moore said. “More advanced simulation capabilities are required to better understand this and we are working with collaborators at The DOE’s Los Alamos National Laboratory, Imperial College London (UK) and The Massachusetts Institute of Technology to apply those capabilities to understanding this problem.”

    In addition to Moore, co-authors from LLNL include Edward Hartouni, Peter Amendt, Kevin Baker, Daniel Casey, Daniel Clark, Tilo Doppner, Mark Eckart, John Field, Gary Grim, Robert Hatarik, Justin Jeet, Shaun Kerr, Andrea Kritcher, Jose Milovich, David Munro, Ryan Nora, Arthur Pak, Joseph Ralph, Steven Ross, David Schlossberg, Scott Sepke, Brian Spears, Chris Young and Alex Zylstra; Kevin Meaney and Harry Robey from The DOE’s Los Alamos National Laboratory; Aidan Crilly and Brian Appelbe, from Imperial College in London (UK); Joseph Kilkenny from General Atomics; and Maria Gatu-Johnson from The Massachusetts Institute of Technology.

    Science paper:
    Nature Physics

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California- Berzerkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by The U.S. Department of Energy and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.
    The National Ignition Facility, is a large laser-based inertial confinement fusion (ICF) research device, located at The DOE’s Lawrence Livermore National Laboratory in Livermore, California. NIF uses lasers to heat and compress a small amount of hydrogen fuel with the goal of inducing nuclear fusion reactions. NIF’s mission is to achieve fusion ignition with high energy gain, and to support nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear weapons. NIF is the largest and most energetic ICF device built to date, and the largest laser in the world.

    Construction on the NIF began in 1997 but management problems and technical delays slowed progress into the early 2000s. Progress after 2000 was smoother, but compared to initial estimates, NIF was completed five years behind schedule and was almost four times more expensive than originally budgeted. Construction was certified complete on 31 March 2009 by the U.S. Department of Energy, and a dedication ceremony took place on 29 May 2009. The first large-scale laser target experiments were performed in June 2009 and the first “integrated ignition experiments” (which tested the laser’s power) were declared completed in October 2010.

    Bringing the system to its full potential was a lengthy process that was carried out from 2009 to 2012. During this period a number of experiments were worked into the process under the National Ignition Campaign, with the goal of reaching ignition just after the laser reached full power, sometime in the second half of 2012. The Campaign officially ended in September 2012, at about 1⁄10 the conditions needed for ignition. Experiments since then have pushed this closer to 1⁄3, but considerable theoretical and practical work is required if the system is ever to reach ignition. Since 2012, NIF has been used primarily for materials science and weapons research.

    National Igniton Facility- NIF at LLNL

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration


     
  • richardmitnick 9:07 pm on November 7, 2022 Permalink | Reply
    Tags: , "Magnetic Field Heats Up Fusion", A magnetic field can significantly boost the performance of a large-scale fusion experiment that may lead to a future source of clean power., , Fusion technology, , Researchers have shown that a magnetic field can help in a large-scale experiment with a more complicated design that produces far more energy.   

    From “Physics” : “Magnetic Field Heats Up Fusion” 

    About Physics

    From “Physics”

    11.4.22

    A magnetic field can significantly boost the performance of a large-scale fusion experiment that may lead to a future source of clean power.

    1
    Fusion in a can. In this experiment at the National Ignition Facility [below], 192 laser beams (violet) heat a metal cylinder whose x-ray glow heats the spherical fuel capsule (center), driving a fusion reaction. A wire coil (copper color) generates a strong magnetic field that can triple the fusion reaction’s energy output. Credit: John Moody/LLNL.

    Nuclear fusion could provide a clean power source, but one of the technological challenges is maintaining the fuel at a high enough temperature for a long enough time. In a technique called inertial confinement fusion (ICF)—where lasers initiate the nuclear reaction—a magnetic field has been shown to improve heating. Now researchers have shown that a magnetic field can also help in a large-scale experiment with a more complicated design that produces far more energy [1]. The applied field increased the fuel’s temperature by 40% and tripled the fusion reaction’s efficiency. The work provides a step toward increasing the robustness and energy output of the fusion reaction and provides the first proof of concept of magnetization-assisted fusion in a large-scale experiment.

    In the simplest version of ICF, synchronized laser pulses hit a capsule filled with cold hydrogen fuel, causing it to implode. The implosion heats the fuel and creates a spot of burning plasma (see Viewpoint: Fusion Turns Up the Heat). The “hot spot” serves as a spark that initiates burning throughout the fuel, driving a self-sustaining fusion reaction that releases energy. However, these implosions can fail to generate significant fusion energy if the fuel pellet has small imperfections on its surface or if the lasers are not perfectly timed. But if the fuel could be heated to temperatures higher than was possible in recent experiments, there would be more margin for error, which could alleviate the sensitivity to such details.

    In 2012, researchers at the OMEGA laser facility at the University of Rochester, New York, demonstrated that a magnetic field significantly changes the heat flow within a laser-heated fuel.

    This field, in effect, provides insulation around the hottest region of the fuel, offering a way to improve heating and eventually the reaction yield. “It’s like a thick Styrofoam sleeve that keeps your coffee hot without burning your hand,” says John Moody of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in California.

    In the presence of a magnetic field, electrons in the plasma are forced to follow helical paths along the magnetic-field lines, thereby colliding less frequently with each other. This behavior slows the flow of heat to the colder surrounding fuel and provides additional heat within the hot spot.

    2
    Lilliputian fusion. The cylinder, or “hohlraum,” containing the fuel pellet is a few millimeters wide. Credit: LLNL.

    Researchers at LLNL have used computer simulations to study the potential benefits of magnetization for performance at NIF, the world’s largest ICF experiment and the one that has come closest to the goal of producing more energy than it consumes. The OMEGA results proved the basic concept, but they could not be applied directly to NIF, since NIF uses a design called indirect drive, in which the laser pulses heat a hollow gold cylinder so much that it glows in x-rays. This radiation in turn illuminates and heats the fuel capsule, which is located inside the cylinder, and causes the capsule to implode.

    Exposing a gold cylinder to a strong magnetic field would generate electric currents in its walls that would destroy it (see Trend: Boosting Inertial-Confinement-Fusion Yield with Magnetized Fuel). To get around this problem, Moody and his colleagues experimented with alloys to create a metal cylinder with low electrical conductivity. They found that an alloy of gold and tantalum (AuTa4) could tolerate the high magnetic field.

    The NIF team ran experiments using a cylinder made from this alloy along with a fuel capsule filled with pure deuterium, a form of hydrogen. They applied a 26-tesla magnetic field by passing a current through a wire coil wrapped around the cylinder, just before turning on the lasers. Compared with experiments without the magnetic field, the laser-generated hot spot increased in temperature by 40%. The energy output, measured by counting the number of neutrons produced during fusion, increased by 3 times. According to Pascal Loiseau, a plasma physicist at the French Alternative Energies and Atomic Energy Commission (CEA), these results are “remarkable” and constitute a proof of concept for magnetic assistance at NIF.

    To reduce the risk to equipment and to lower infrastructure expenses, the NIF team simplified the configuration for these initial experiments. They reduced the laser power, kept the fuel at room temperature, and used deuterium alone. In future higher power experiments that use two forms of hydrogen fuel (deuterium and tritium), Moody anticipates a second effect that will boost performance. High-energy particles generated during the nuclear reactions will become trapped by the field lines. These charged particles will spend more time depositing energy within the hot spot, providing more heat before they escape.

    [1] J. D. Moody et al., Increased ion temperature and neutron yield observed in magnetized indirectly driven D2-filled capsule implosions on the National Ignition Facility, Phys. Rev. Lett. 129, 195002 (2022).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments.

     
  • richardmitnick 9:42 pm on November 1, 2022 Permalink | Reply
    Tags: "Machine learning facilitates 'turbulence tracking' in fusion reactors", , , For more than 70 years scientists have sought to use controlled thermonuclear fusion reactions to develop an energy source., Fusion technology, Fusion-which promises practically unlimited carbonfree energy using the same processes that power the sun-is at the heart of a worldwide research effort that could help mitigate climate change., Individual "blob" information must be tracked by marking them manually in video data., Monitoring the formation and movements of structures-called filaments or “blobs”-is important for understanding the heat and particle flows exiting from the reacting fuel., Researchers use a unique imaging technique to capture video of the plasma’s turbulent edge during experiments., Scientists from MIT and elsewhere have used computer-vision models to identify and track turbulent structures that appear under the conditions needed to facilitate fusion reactions., Scientists trained their computer models to pinpoint blobs in the same ways that humans would., , The Plasma Science and Fusion Center, The researchers created a vast dataset of synthetic video clips that captured the "blobs"’ random and unpredictable nature., , When the researchers tested the trained models using real video clips the models could identify blobs with high accuracy.   

    From The Plasma Science and Fusion Center At The Massachusetts Institute of Technology: “Machine learning facilitates ‘turbulence tracking’ in fusion reactors” 

    1

    From The Plasma Science and Fusion Center

    At

    The Massachusetts Institute of Technology

    11.1.22
    Adam Zewe

    1
    A team of researchers has demonstrated the use of computer vision models to monitor turbulent structures, known as “blobs,” that appear on the edge of the super-hot fuel used in controlled-nuclear-fusion research. The super-hot fuel, or plasma, is held inside a tokamak device (right photo). On the left, a “blob” highlighted in yellow is shown in a synthetic image. Credits: Tokamak image courtesy A. Herzog/École Polytechnique Fédérale de Lausanne. Foreground “blob” image courtesy of the researchers. Edited by MIT News.

    Fusion, which promises practically unlimited, carbon-free energy using the same processes that power the sun, is at the heart of a worldwide research effort that could help mitigate climate change.

    A multidisciplinary team of researchers is now bringing tools and insights from machine learning to aid this effort. Scientists from MIT and elsewhere have used computer-vision models to identify and track turbulent structures that appear under the conditions needed to facilitate fusion reactions.

    Monitoring the formation and movements of these structures, called filaments or “blobs,” is important for understanding the heat and particle flows exiting from the reacting fuel, which ultimately determines the engineering requirements for the reactor walls to meet those flows. However, scientists typically study “blobs” using averaging techniques, which trade details of individual structures in favor of aggregate statistics. Individual “blob” information must be tracked by marking them manually in video data.

    The researchers built a synthetic video dataset of plasma turbulence to make this process more effective and efficient. They used it to train four computer vision models, each of which identifies and tracks “blobs”. They trained the models to pinpoint blobs in the same ways that humans would.

    When the researchers tested the trained models using real video clips, the models could identify “blobs” with high accuracy — more than 80 percent in some cases. The models were also able to effectively estimate the size of “blobs” and the speeds at which they moved.

    Because millions of video frames are captured during just one fusion experiment, using machine-learning models to track “blobs” could give scientists much more detailed information.

    “Before, we could get a macroscopic picture of what these structures are doing on average. Now, we have a microscope and the computational power to analyze one event at a time. If we take a step back, what this reveals is the power available from these machine-learning techniques, and ways to use these computational resources to make progress,” says Theodore Golfinopoulos, a research scientist at the MIT Plasma Science and Fusion Center and co-author of a paper detailing these approaches.

    His fellow co-authors include lead author Woonghee “Harry” Han, a physics PhD candidate; senior author Iddo Drori, a visiting professor in the Computer Science and Artificial Intelligence Laboratory (CSAIL), faculty associate professor at Boston University, and adjunct at Columbia University; as well as others from the MIT Plasma Science and Fusion Center, the MIT Department of Civil and Environmental Engineering, and the Swiss Federal Institute of Technology at Lausanne in Switzerland. The research appears today in Nature Scientific Reports [below].

    Heating things up

    For more than 70 years, scientists have sought to use controlled thermonuclear fusion reactions to develop an energy source. To reach the conditions necessary for a fusion reaction, fuel must be heated to temperatures above 100 million degrees Celsius. (The core of the sun is about 15 million degrees Celsius.)

    A common method for containing this super-hot fuel, called plasma, is to use a tokamak. These devices utilize extremely powerful magnetic fields to hold the plasma in place and control the interaction between the exhaust heat from the plasma and the reactor walls.

    However, “blobs” appear like filaments falling out of the plasma at the very edge, between the plasma and the reactor walls. These random, turbulent structures affect how energy flows between the plasma and the reactor.

    “Knowing what the “blobs” are doing strongly constrains the engineering performance that your tokamak power plant needs at the edge,” adds Golfinopoulos.

    Researchers use a unique imaging technique to capture video of the plasma’s turbulent edge during experiments. An experimental campaign may last months; a typical day will produce about 30 seconds of data, corresponding to roughly 60 million video frames, with thousands of “blobs” appearing each second. This makes it impossible to track all “blobs” manually, so researchers rely on average sampling techniques that only provide broad characteristics of “blob” size, speed, and frequency.

    “On the other hand, machine learning provides a solution to this by blob-by-blob tracking for every frame, not just average quantities. This gives us much more knowledge about what is happening at the boundary of the plasma,” Han says.

    He and his co-authors took four well-established computer vision models, which are commonly used for applications like autonomous driving, and trained them to tackle this problem.

    Simulating “blobs”

    To train these models, they created a vast dataset of synthetic video clips that captured the “blobs”’ random and unpredictable nature.

    “Sometimes they change direction or speed, sometimes multiple “blobs” merge, or they split apart. These kinds of events were not considered before with traditional approaches, but we could freely simulate those behaviors in the synthetic data,” Han says.

    Creating synthetic data also allowed them to label each “blob”, which made the training process more effective, Drori adds.

    Using these synthetic data, they trained the models to draw boundaries around “blobs”, teaching them to closely mimic what a human scientist would draw.

    Then they tested the models using real video data from experiments. First, they measured how closely the boundaries the models drew matched up with actual “blob” contours.

    But they also wanted to see if the models predicted objects that humans would identify. They asked three human experts to pinpoint the centers of “blobs” in video frames and checked to see if the models predicted “blobs” in those same locations.

    The models were able to draw accurate “blob” boundaries, overlapping with brightness contours which are considered ground-truth, about 80 percent of the time. Their evaluations were similar to those of human experts, and successfully predicted the theory-defined regime of the “blob”, which agrees with the results from a traditional method.

    Now that they have shown the success of using synthetic data and computer vision models for tracking “blobs”, the researchers plan to apply these techniques to other problems in fusion research, such as estimating particle transport at the boundary of a plasma, Han says.

    They also made the dataset and models publicly available, and look forward to seeing how other research groups apply these tools to study the dynamics of “blobs”, says Drori.

    “Prior to this, there was a barrier to entry that mostly the only people working on this problem were plasma physicists, who had the datasets and were using their methods. There is a huge machine-learning and computer-vision community. One goal of this work is to encourage participation in fusion research from the broader machine-learning community toward the broader goal of helping solve the critical problem of climate change,” he adds.

    This research is supported, in part, by the U.S. Department of Energy and the Swiss National Science Foundation.

    Science paper:
    Nature Scientific Reports
    See the science paper for detailed material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    2

    How is The PSFC contributing?

    Making clean and economical fusion energy available to our society is a grand challenge of 21st century science and engineering. The PSFC, along with global research partners, seeks to answer this challenge by exploring innovative ways to accelerate the pace of fusion’s development. The PSFC is an interdisciplinary research center because fusion requires an approach that folds in the majority of the engineering and science disciplines found at MIT: physics, nuclear science and engineering, mechanical engineering, chemistry, and material science, to name a few. Our mission is to identify and understand how cutting-edge advances in science and technology can provide fusion energy “smaller and sooner”. The PSFC hosts a wide variety of experimental facilities at the Albany Street corridor on the campus of MIT including plasma devices, powerful superconductor magnets and high-energy accelerators. In parallel, novel measurements are developed for the very challenging fusion environment, which are then compared to leading-edge theory and simulation. This research mission is completely integrated with the training and mentoring a new generation of multidisciplinary fusion scientists and engineers. All in all this makes the PSFC a vital and important contributor to the fusion energy mission.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 10:11 am on October 27, 2022 Permalink | Reply
    Tags: , , Current experiments and simulations show how to avoid destructive plasma instabilities in fusion reactors like ITER., Fusion technology, , Research is being carried out worldwide on fusion technology., ,   

    From The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE) And The Vienna University of Technology [Technische Universität Wien](AT) : “A new solution to one of the major problems of fusion research” 

    MPIPP bloc

    From The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE)

    And

    The Vienna University of Technology [Technische Universität Wien](AT)

    10.11.22
    Frank Fleschner
    Press officer
    +49 89 3299-1317
    press@ipp.mpg.de

    Current experiments and simulations show how to avoid destructive plasma instabilities in fusion reactors like ITER.

    Type-I ELM plasma instabilities can melt the walls of fusion devices. A team of researchers from the Max Planck Institute for Plasma Physics (IPP) and the Vienna University of Technology (TU Wien) found a way to get them under control. Their work is published in the renowned journal Physical Review Letters [below].

    Nuclear fusion power plants could one day provide a sustainable solution to our energy problems. That is why research is being carried out worldwide on this method of energy generation, which imitates processes on the sun. For the principle to work on Earth, plasmas must be heated to at least 100 million degrees Celsius in reactors. Magnetic fields enclose the plasma so that the wall of the reactor does not melt. This only works because the outermost centimetres in the magnetically formed plasma edge are extremely well insulated. In this region, however, plasma instabilities, so-called edge localised modes (ELMs), occur frequently. During such an event, energetic particles from the plasma may hit the wall of the reactor, potentially damaging it.

    1
    From left to right: Georg Harrer (TU Wien), Lidija Radovanovic (TU Wien), Elisabeth Wolfrum (IPP Garching), Friedrich Aumayr (TU Wien) holding a 3D printed 1:100 model of ITER.

    Researchers from the Max Planck Institute for Plasma Physics (IPP) in Garching and from the Vienna University of Technology have now been able to show: There is an operating mode for fusion reactors that avoids this problem. Instead of large, potentially destructive instabilities, one intentionally accepts many small instabilities that do not pose a problem for the reactor’s wall. “Our work represents a breakthrough in understanding the occurrence and prevention of large Type I ELMs,” says Elisabeth Wolfrum, research group leader at IPP in Garching, Germany, and professor at TU Wien. “The operation regime we propose is probably the most promising scenario for future fusion power plant plasmas.” The results have now been published in the journal Physical Review Letters [below] as “Editors’ Suggestion”.

    The renaissance of a disregarded mode of operation

    In a toroidal tokamak fusion reactor, ultra-hot plasma particles move at high speeds. Powerful magnetic coils ensure that the particles remain confined instead of hitting the reactor wall with destructive force. “However, you don’t want to isolate the plasma perfectly from the reactor wall either; after all, new fuel has to be added and the helium produced during fusion has to be removed,” explains Friedrich Aumayr, professor of Ion & Plasma Physics at the Institute of Applied Physics of TU Wien in Vienna, Austria.

    3
    Cross-section of the toroidal tokamak plasma in ASDEX Upgrade; The left picture shows the usual operation regime, where strong instabilities (called Type-I ELMs) occur; right, the new regime of operation, with its more triangular cross section. If at the same time the density of the plasma at the edge is increased, the dangerous Type-I ELMs can be prevented and a quasi-continuous exhaust (QCE) operational regime can be achieved. Credit: G. Harrer & L. Radovanovic, TU Wien.

    The details of the dynamics inside the reactor are complicated: The motion of the particles depends on plasma density, temperature and magnetic field. Depending on how one chooses these parameters, different regimes of operation are possible. A long-standing collaboration between the TU Vienna group of Friedrich Aumayr and the IPP Garching group coordinated by Elisabeth Wolfrum now lead to in an operating regime that can prevent the particularly destructive plasma instabilities called “Type-I ELMs”.

    Already a few years ago, experiments have shown a recipe against the dangerous Type-I ELMs: the plasma is slightly deformed by the magnetic coils so that its plasma cross-section is no longer elliptical but resembles a rounded triangle. Simultanously, the density of the plasma is increased, especially at the edge. “At first, however, this was thought to be a scenario that only occurs in currently running smaller machines such as ASDEX Upgrade at IPP in Garching and is irrelevant for a reactor,” explains Lidija Radovanovic, who is currently working on her PhD thesis on this topic at TU Wien. “However, with new experiments and simulations, we have now been able to show: The regime can prevent the dangerous instabilities even in parameter ranges foreseen for reactors.”

    Like a pot with a lid

    Due to the triangular shape of the plasma and the controlled injection of additional particles at the plasma edge, many small instabilities occur – several thousand times per second. “These small particle bursts hit the wall of the reactor faster than it can heat up and cool down again,” says Georg Harrer, lead author of the paper, who received a two-year EUROfusion Researcher Grant from the EU to further study the new operation regime. “Therefore, these individual instabilities do not play a major role for the reactor wall.” But as the team has been able to show through detailed simulation calculations, these mini-instabilities prevent the large instabilities that would otherwise cause damage.

    “It’s a bit like a cooking pot with a lid, where the water starts to boil,” Georg Harrer explains. “If pressure keeps building up, the lid will lift and rattle heavily due to the escaping steam. But if you tilt the lid slightly, then steam can continuously escape, and the lid remains stable and doesn’t rattle.” This fusion reactor operation regime can be implemented in a variety of reactors – not only at the ASDEX Upgrade reactor in Garching [below], but also at ITER currently under construction in France, or even in future DEMO fusion plants.

    Science paper:
    Physical Review Letters

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    At The Vienna University of Technology [Technische Universität Wien](AT), we have been conducting research, teaching and learning under the motto ‘Technology for people’ for over 200 years. TU Wien has evolved into an open academic institution where discussions can happen, opinions can be voiced and arguments will be heard. Although everyone may have different individual philosophies and approaches to life, the staff, management personnel and students at TU Wien all promote open-mindedness and tolerance.

    The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE) is a physics institute for the investigation of plasma physics, with the aim of working towards fusion power. The institute also works on surface physics, also with focus on problems of fusion power.

    The IPP is an institute of the Max Planck Society, part of the European Atomic Energy Community, and an associated member of the Helmholtz Association.

    The IPP has two sites: Garching near Munich (founded 1960) and Greifswald (founded 1994), both in Germany.

    It owns several large devices, namely

    the experimental tokamak ASDEX Upgrade (in operation since 1991)

    ASDEX tokamak at MPG Institute for Plasma Physics.

    It also cooperates with the ITER and JET projects.


    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 9:30 am on October 27, 2022 Permalink | Reply
    Tags: "This discovery made ITER possible", , Central questions concerning H-mode are still unanswered 40 years after its discovery., Fusion technology, High-Confinement Mode-or “H-mode” for short., Physicists also discovered an unpleasant side effect of the H-mode: violent energy flares – called edge localized modes (ELMs) – occur at the plasma edge at regular intervals., , , There is still no numerical model that can completely represent the H-mode., Today this design is standard in all fusion facilities that use magnetic fields to confine the plasma.   

    From The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE): “This discovery made ITER possible” 

    MPIPP bloc

    From The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE)

    10.26.22

    Frank Fleschner
    Press officer
    +49 89 3299-1317
    press@ipp.mpg.de

    Forty years ago, physicists at the MPG Institute for Plasma Physics found a new plasma state that could be particularly suitable for energy production: the H-mode. On 8 November 1982, the corresponding paper [Physical Review Letters (below)] was published, giving fusion research a worldwide boost. To this day, the investigation of the H-mode is one of their most important fields of work.

    The breakthrough came on a Thursday when – as often before – plasmas with neutral beam heating were to be studied at high temperatures. These plasmas were of a stubborn uniformity. “But in the middle of the series, the important plasma parameters suddenly changed. All the scientists in the ASDEX [below] control room realized that something extraordinary had happened,” Prof. Dr. Friedrich Wagner recalled, who was responsible for this area of research at ASDEX at the time. At first on this 4 February 1982, many believed that they were dealing with “dirty discharges” and large sawtooths, i.e. internal energy relaxations. In fact, Prof. Wagner and his colleagues at the MPG Institute for Plasma Physics (IPP) in Garching made one of the most important discoveries in nuclear fusion research to date: they found the H-mode.

    The corresponding article appeared in the journal Physical Review Letters [below] 40 years ago, on 8 November 1982. It ended a long phase of stagnation and disappointment in the fusion community about the usefulness of neutral beam heating. It is true that in the 1970s researchers had been able to heat plasmas to remarkable ion temperatures of seven kiloelectronvolts, which briefly triggered a veritable euphoria. But it soon turned out that the high plasma temperatures were bought by a decrease in energy confinement. It was like heating a room vigorously while simultaneously opening the windows. This plasma behavior posed a threat to the further development of a fusion power plant.

    2
    Computer simulation of a Type I ELM lasting 500 microseconds. The image shows a cross-section through the donut-shaped vacuum vessel of a tokamak. Recurrent eruptions form at the edge of the fusion plasma at regular intervals. These ELMs occur when the plasma is operated in the H-mode. The figure is based on calculations with the code JOREK in the publication A. Cathey et al 2020 Nucl. Fusion [below] 60 124007. Credit: A. Cathey, M. Hoelzl/MPG Institute for Plasma Physics.

    Many in the fusion community thought the H-mode was a measurement error

    Today, this unfavorable operating state is called L-mode (Low-Confinement Mode). Wagner’s discovery at ASDEX, the predecessor of the current Garching experiment ASDEX Upgrade, is called High-Confinement Mode, or H-mode for short. That this was actually a new plasma state was initially disputed. “I went to the Varenna Summer School in Italy in June 1982, where I presented our results publicly for the first time. American colleagues in particular spread the word afterwards that we were not measuring the plasma flow correctly in ASDEX,” Prof. Wagner stated, who later became director at IPP. It was only at the next important symposium in September in Baltimore that he convinced his colleagues after they had “grilled” him in an hour-long discussion beforehand. A little later, they too were able to produce the new plasma state in their facilities.


    22 minutes. Prof. Friedrich Wagner tells us how he discovered H-mode.

    “The discovery of the H-mode is what made ITER possible in the first place,” Prof. Dr. Elisabeth Wolfrum explained, who continues research on the H-mode at IPP today.

    ITER, the largest fusion device in the world, is currently being built in Cadarache in southern France. It is designed to generate ten times more power from fusion plasma than is supplied in heating power. The fact that ITER is modeled on ASDEX and also ASDEX Upgrade is also due to the H-mode. This plasma state first appeared in ASDEX because the plasma in the donut-shaped vacuum vessel of the tokamak type was shaped for the first time not round, but pointed. Physicists call the tip the X-point. This is where excess energy is guided into the diverter, more or less the ash box of a fusion reactor. Today, this design is standard in all fusion facilities that use magnetic fields to confine the plasma.

    The H-mode leads to the formation of an insulating layer at the plasma edge

    Shortly after the discovery of the H-mode, it was shown at ASDEX why plasmas in this state can confine energy twice as well as in the L-mode. “A very effective insulating layer forms at the outer edge of the plasma,” Prof. Wolfrum explained. “The temperature difference between its outside and the side facing the plasma interior is several million degrees Celsius.” However, the physicists also discovered an unpleasant side effect of the H-mode: violent energy flares – called edge localized modes (ELMs) – occur at the plasma edge at regular intervals. “In ASDEX Upgrade, ELMs are tolerable, but in the much larger ITER they would be so strong that they would melt the wall of the vacuum vessel,” Prof. Wolfrum said. ITER is being built with four times the vessel radius of ASDEX Upgrade, which would probably result in ELM energies ten to 15 times as strong as in ASDEX Upgrade. Therefore, suppression of these perturbations is one of the most important areas of research in fusion physics.


    Computer simulation of Type I ELMs occurring periodically and ejecting particles and heat from the plasma. The figure shows a cross-section through the donut-shaped vacuum vessel of a tokamak. These recurring eruptions form at regular intervals at the edge of the fusion plasma. ELMs occur when the plasma is operated in the H-mode. The figure is based on calculations with the code JOREK in the publication A. Cathey et al 2020 Nucl. Fusion 60 124007. Credit: A. Cathey, M. Hoelzl/MPG Institute for Plasma Physics.

    Central questions concerning H-mode are still unanswered 40 years after its discovery. For example: How exactly can the transition from L-mode to H-mode be explained physically? Or: How thick is the insulation layer, the edge transport barrier? There is still no numerical model that can completely represent the H-mode. So far, theorists have to feed their computer codes with certain initial assumptions to calculate individual phenomena of the H-mode. What they have not yet succeeded in doing is programming a model in which the transition from L-mode to H-mode follows quasi inevitably from physics. With such a model, it would then also be possible to predict the accessibility of the H-mode and the parameters of the ELMs in the not yet completed ITER experiment.

    In search of the perfect numerical model

    This perfect code would have to combine three physical approaches to plasmas: neoclassical transport, magnetohydrodynamics (see explanations below) and turbulence-focused models. Current codes tend to focus on one of these approaches and, even with this simplification, often keep the world’s best supercomputers busy for months answering limited questions. But the models are getting better and the computers are getting faster.

    Two numerical, non-linear models in particular are in use at IPP, both of which are being further developed by international teams with IPP’s participation:

    JOREK is based on the magnetohydrodynamic equations.
    GENE focuses on micro-turbulences in plasmas.

    “Through the interplay of experiments and computer models, we have learned a lot in understanding the H-mode in recent years,” explains Wolfrum. “The theorists compare our experimental results with their numerical models, incorporate necessary physical refinements and thereby in turn obtain results that point us in the direction of new experiments.”

    These also always involve adjusting the parameters of plasma density, temperature and magnetic field, which ultimately determine the movement of the particles in the plasma and produce certain modes, i.e. operating modes. Because measurement technology has improved rapidly over the last four decades, plasmas can now be measured more precisely than when the H-mode was discovered, which helps to better describe and understand the plasma state.

    What researchers now know: the plasma flows with different velocities at the edge, and it is these flow shears that play a decisive role in the formation of the edge transport barrier. They reduce turbulence at the plasma edge and thus lead to the specific properties of the H-mode.

    Strategies for suppressing eruptions at the plasma edge

    Science has also recently made great strides in the suppression of large edge localised modes called Type-I ELMs. There are two promising strategies against the large energy eruptions:

    1. Weak magnetic pertubation fields can completely eliminate ELMs in the best case. In this method, the otherwise completely axisymmetric magnetic field to confine the plasma is slightly deformed, which, however, reduces the energy confinement time by 10 to 20 percent. Since 2011, the IPP has been researching at ASDEX Upgrade how these pertubation fields must be placed. This method is particularly effective for low plasma densities at the edge. the pertubation fields amount to one part per thousand of the strong toroidal field.
    2. The formation of large Type I ELMs can also be prevented by promoting the formation of smaller harmless ELMs. To do this, the otherwise elliptical shape of the plasma cross-section is deformed in the direction of a rounded triangle with the help of magnets. The plasma density at the edge is increased. By selectively blowing more particles into the plasma from the outside, small plasma eruptions then occur at the edge several thousand times per second, which are so benign that they cannot endanger the vessel wall.

    “Through H-mode research, we are getting closer and closer to plasma operating states that are most suitable for large fusion facilities like ITER,” Prof. Elisabeth Wolfrum summarised. The now emeritus H-mode discoverer Prof. Friedrich Wagner is excited about the completely new possibilities that the fusion facility in southern France will offer once it is completed: “ITER will be an instrument like we’ve never had on Earth before.” From his work on ASDEX – and especially from the H-mode year 1982 – he has learned one thing: “Progress does not always develop linearly. In between, there are completely unexpected big leaps forward. That’s what makes science so exciting.”

    Science papers:
    Physical Review Letters 1982
    Nuclear Fusion 2020

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE) is a physics institute for the investigation of plasma physics, with the aim of working towards fusion power. The institute also works on surface physics, also with focus on problems of fusion power.

    The IPP is an institute of the Max Planck Society, part of the European Atomic Energy Community, and an associated member of the Helmholtz Association.

    The IPP has two sites: Garching near Munich (founded 1960) and Greifswald (founded 1994), both in Germany.

    It owns several large devices, namely

    the experimental tokamak ASDEX Upgrade (in operation since 1991)

    ASDEX tokamak at MPG Institute for Plasma Physics.

    It also cooperates with the ITER and JET projects.


    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 9:05 am on October 12, 2022 Permalink | Reply
    Tags: , , Fusion technology, , ,   

    From The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE) And The Vienna University of Technology [TU Wien-Technische Universität Wien] (AT) : “A new solution to one of the major problems of fusion research” 

    MPIPP bloc

    From The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE)

    And

    The Vienna University of Technology [TU Wien-Technische Universität Wien] (AT)

    10.11.22

    Frank Fleschner
    Press officer
    +49 89 3299-1317
    press@ipp.mpg.de

    Dr. Georg Harrer
    Institute of Applied Physics
    TU Wien
    +43 1 58801 13434
    +43 664 4001145
    harrer@iap.tuwien.ac.at

    Prof. Friedrich Aumayr
    Institute of Applied Physics
    TU Wien
    +43 1 58801 13430
    +43 664 605883471
    friedrich.aumayr@tuwien.ac.at

    Current experiments and simulations show how to avoid destructive plasma instabilities in fusion reactors like ITER.

    Type-I ELM plasma instabilities can melt the walls of fusion devices. A team of researchers from the Max Planck Institute for Plasma Physics (IPP) and the Vienna University of Technology (TU Wien) found a way to get them under control. Their work is published in the renowned journal Physical Review Letters [below].

    Nuclear fusion power plants could one day provide a sustainable solution to our energy problems. That is why research is being carried out worldwide on this method of energy generation, which imitates processes on the sun. For the principle to work on Earth, plasmas must be heated to at least 100 million degrees Celsius in reactors. Magnetic fields enclose the plasma so that the wall of the reactor does not melt. This only works because the outermost centimetres in the magnetically formed plasma edge are extremely well insulated. In this region, however, plasma instabilities, so-called edge localised modes (ELMs), occur frequently. During such an event, energetic particles from the plasma may hit the wall of the reactor, potentially damaging it.

    Researchers from the Max Planck Institute for Plasma Physics (IPP) in Garching and from the Vienna University of Technology have now been able to show: There is an operating mode for fusion reactors that avoids this problem. Instead of large, potentially destructive instabilities, one intentionally accepts many small instabilities that do not pose a problem for the reactor’s wall. “Our work represents a breakthrough in understanding the occurrence and prevention of large Type I ELMs,” says Elisabeth Wolfrum, research group leader at IPP in Garching, Germany, and professor at TU Wien. “The operation regime we propose is probably the most promising scenario for future fusion power plant plasmas.” The results have now been published in the journal Physical Review Letters as Editors’ Suggestion.

    The renaissance of a disregarded mode of operation

    In a toroidal tokamak fusion reactor, ultra-hot plasma particles move at high speeds. Powerful magnetic coils ensure that the particles remain confined instead of hitting the reactor wall with destructive force. “However, you don’t want to isolate the plasma perfectly from the reactor wall either; after all, new fuel has to be added and the helium produced during fusion has to be removed,” explains Friedrich Aumayr, professor of Ion & Plasma Physics at the Institute of Applied Physics of TU Wien in Vienna, Austria.

    The details of the dynamics inside the reactor are complicated: The motion of the particles depends on plasma density, temperature and magnetic field. Depending on how one chooses these parameters, different regimes of operation are possible. A long-standing collaboration between the TU Vienna group of Friedrich Aumayr and the IPP Garching group coordinated by Elisabeth Wolfrum now lead to in an operating regime that can prevent the particularly destructive plasma instabilities called “Type-I ELMs”.

    Already a few years ago, experiments have shown a recipe against the dangerous Type-I ELMs: the plasma is slightly deformed by the magnetic coils so that its plasma cross-section is no longer elliptical but resembles a rounded triangle. Simultanously, the density of the plasma is increased, especially at the edge. “At first, however, this was thought to be a scenario that only occurs in currently running smaller machines such as ASDEX Upgrade at IPP in Garching and is irrelevant for a reactor,” explains Lidija Radovanovic, who is currently working on her PhD thesis on this topic at TU Wien.

    3
    Cross-section of the toroidal tokamak plasma in ASDEX Upgrade; The left picture shows the usual operation regime, where strong instabilities (called Type-I ELMs) occur; right, the new regime of operation, with its more triangular cross section. If at the same time the density of the plasma at the edge is increased, the dangerous Type-I ELMs can be prevented and a quasi-continuous exhaust (QCE) operational regime can be achieved. Credit: G. Harrer & L. Radovanovic, TU Wien.

    “However, with new experiments and simulations, we have now been able to show: The regime can prevent the dangerous instabilities even in parameter ranges foreseen for reactors.”

    Like a pot with a lid

    Due to the triangular shape of the plasma and the controlled injection of additional particles at the plasma edge, many small instabilities occur – several thousand times per second. “These small particle bursts hit the wall of the reactor faster than it can heat up and cool down again,” says Georg Harrer, lead author of the paper, who received a two-year EUROfusion Researcher Grant from the EU to further study the new operation regime. “Therefore, these individual instabilities do not play a major role for the reactor wall.” But as the team has been able to show through detailed simulation calculations, these mini-instabilities prevent the large instabilities that would otherwise cause damage.

    “It’s a bit like a cooking pot with a lid, where the water starts to boil,” Georg Harrer explains. “If pressure keeps building up, the lid will lift and rattle heavily due to the escaping steam. But if you tilt the lid slightly, then steam can continuously escape, and the lid remains stable and doesn’t rattle.” This fusion reactor operation regime can be implemented in a variety of reactors – not only at the ASDEX Upgrade reactor in Garching, but also at ITER currently under construction in France, or even in future DEMO fusion plants.

    Science paper:
    Physical Review Letters

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    At The Vienna University of Technology [TU Wien-Technische Universität Wien] (AT) we have been conducting research, teaching and learning under the motto “Technology for people” for over 200 years. TU Wien has evolved into an open academic institution where discussions can happen, opinions can be voiced and arguments will be heard. Although everyone may have different individual philosophies and approaches to life, the staff, management personnel and students at TU Wien all promote open-mindedness and tolerance.

    The Vienna University of Technology [TU Wien Technische Universität Wien] is one of the major universities in Vienna, Austria. The university has received extensive international and domestic recognition in teaching as well as in research, and it is a highly esteemed partner of innovation-oriented enterprises. It currently has about 28,100 students (29% women), eight faculties and about 5,000 staff members (3,800 academics).

    The university’s teaching and research is focused on engineering, computer science, and natural sciences. The university’s educational offerings have achieved wide international and domestic recognition.

    Research

    Development work in almost all areas of technology is encouraged by the interaction between basic research and the different fields of engineering sciences at TU Wien. Also, the framework of cooperative projects with other universities, research institutes and business sector partners is established by the research section of TU Wien. TU Wien has sharpened its research profile by defining competence fields and setting up interdisciplinary collaboration centres, and clearer outlines will be developed.

    Research focus points of TU Wien are introduced as computational science and engineering, quantum physics and quantum technologies, materials and matter, information and communication technology and energy and environment.

    The EU Research Support (EURS) provides services at TU Wien and informs both researchers and administrative staff in preparing and carrying out EU research projects.

    The MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik] (DE) is a physics institute for the investigation of plasma physics, with the aim of working towards fusion power. The institute also works on surface physics, also with focus on problems of fusion power.

    The IPP is an institute of the Max Planck Society, part of the European Atomic Energy Community, and an associated member of the Helmholtz Association.

    The IPP has two sites: Garching near Munich (founded 1960) and Greifswald (founded 1994), both in Germany.

    It owns several large devices, namely

    the experimental tokamak ASDEX Upgrade (in operation since 1991)

    ASDEX tokamak at MPG Institute for Plasma Physics.

    It also cooperates with the ITER and JET projects.


    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 10:15 pm on September 19, 2022 Permalink | Reply
    Tags: "New method for measuring high energy density plasmas and facilitating inertial confinement fusion", , Fusion technology, , ,   

    From The DOE’s Princeton Plasma Physics Laboratory: “New method for measuring high energy density plasmas and facilitating inertial confinement fusion” 

    From The DOE’s Princeton Plasma Physics Laboratory

    at

    Princeton University

    Princeton University

    9.19.22
    John Greenwald

    3
    Scheme of the experimental setup for each shot: (i) selection of a 500 keV energy proton beam from an initial broadband TNSA spectrum generated by the main beam, (ii) WDM sample generation by the heater beam, (iii) measurement of the downshifted proton energy spectrum of the selected beam after passing through the WDM target and (iv) characterization of the WDM sample by the SOP and the XPHG diagnostics. Typical raw experimental data acquired for each shot are shown for the magnet spectrometer as well as for the SOP and the XPHG diagnostics.

    5
    Target profiles along the plasma central axis for t = 0–500 ps after the beginning of the laser heating. a Mass-density. b Electron temperature. c Electron coupling Γ. d Electron degeneracy Θ. e Velocity ratio vp/vth for 500 keV energy projectiles. f Mean ionization calculated with the FLYCHK code at LTE. Discontinuities at early time are a calculation artefact. The x-axis is reported in areal-density units (μg/cm2). Sharp edges located at the target rear face (areal density ≈ 130 μg/cm2) are an isolated numerical simulation artefact.

    6
    a Streaked Optical Pyrometry (SOP) measurement. Temperature evolution as a function of time (red curve) averaged within the 50 μm diameter proton probing area compared with the temperatures extracted from the 2D RALEF2D (blue curve) and the 1D MULTI-fs (dashed grey curve) hydrodynamic codes, determined at the critical density for a 532 nm wavelength. b X-ray pinhole grating camera (XPHG) measurement. Experimental time-integrated X-ray emission (red curve) compared with the prediction obtained with the PrismSPECT code by post-processing the hydrodynamic profiles obtained with the RALEF2D (blue curve) and MULTI-fs (dashed grey curve) hydrodynamic codes. The simulation curves are convoluted with the respective resolutions of 10 ps for the SOP diagnostic and 15 nm for the XPHG diagnostic.

    More results graphics are available in the science paper.

    1
    Physicist Sophia Malko with figures from her ion-stopping paper. (Photo by Valeria Ospina-Bohorquez; collage by Kiran Sudarsanan)

    2
    Experiments displayed in the parameter space of the velocity ratio vp/vth of the beam-plasma interaction and the target electron coupling Γ. The grey symbols mark the plasma generation method used. The shaded blue zone represents the approximate range of vp/vth and Γ values corresponding to the α-particle emission in an igniting ICF experiment, ranging from the cold fuel to the hot spot conditions. The experiment described in this work, indicated by the shaded green zone, lies in an unexplored parameter range that is relevant for α-particle stopping conditions in the cold fuel.

    An international team of scientists has uncovered a new method for advancing the development of fusion energy through increased understanding of the properties of warm dense matter, an extreme state of matter similar to that found at the heart of giant planets like Jupiter. The findings, led by Sophia Malko of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), detail a new technique to measure the “stopping power” of nuclear particles in plasma using high repetition-rate ultraintense lasers. The understanding of proton stopping power is particularly important for inertial confinement fusion (ICF).

    Powering the sun and stars

    This process contrasts with the creation of fusion at PPPL, which heats plasma to million-degree temperatures in magnetic confinement facilities. Plasma, the hot, charged state of matter composed of free electrons and atomic nuclei, or ions, fuels fusion reactions in both types of research, which aim to reproduce on Earth the fusion that powers the sun and stars as a source of safe, clean and virtually limitless energy to generate the world’s electricity.

    “Stopping power” is a force acting on charged particles due to collisions with electrons in the matter that result in energy loss. “For example, if you don’t know the proton stopping power you cannot calculate the amount of energy deposited in the plasma and hence design lasers with the right energy level to create fusion ignition,” said Malko, lead author of a paper that outlines the findings in Nature Communications [below]. “Theoretical descriptions of the stopping power in high-energy density matter and particularly in warm dense matter are difficult, and measurements are largely missing,” she said. “Our paper compares experimental data of the loss of proton energy in warm dense matter with theoretical models of stopping power.”

    The Nature Communications research investigated proton stopping power in a largely unexplored regime by using low-energy ion beams and laser-produced warm dense plasmas. To produce the low-energy ions, researchers used a special magnet-based device that selects the low-energy fixed energy system from a broad proton spectrum generated by the interaction of lasers and plasma. The selected beam then passes through laser-driven warm dense matter and its energy loss is measured. Theoretical comparison with experimental data showed that the closest match sharply disagreed with classical models.

    Instead, the closest agreement came from recently developed first-principle simulations based on a many-body, or interacting, quantum mechanical approach, Malko said.

    Precise stopping measurements

    Precise stopping measurements can also advance understanding of how protons produce what is known as fast ignition, an advanced scheme of inertial confinement fusion. “In proton-driven fast ignition, where protons must heat compressed fuel from very low temperature states to high temperature, the proton stopping power and the material state are tightly coupled,” Malko said.

    “The stopping power depends on the density and temperature of the material state,” she explained, and both are in turn affected by the energy deposited by the proton beam. “Thus, uncertainties in the stopping power lead directly to uncertainties in the total proton energy and laser energy needed for ignition,” she said.

    Malko and her team are performing new experiments at the DOE LaserNetUS facilities at Colorado State University to extend their measurements to the so-called Bragg peak region, where the maximum energy loss occurs and where theoretical predictions are most uncertain.

    Coauthors of this paper included 27 researchers from the U.S., Spain, France, Germany, Canada and Italy.

    Support for this work comes from the DOE National Nuclear Security Administration together with the Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) and from European and Spanish ministries. Experiments were conducted on the VEGA II laser facility in Spain with the German GSI Target Laboratory preparing and delivering sample targets. Computing was provided by the LANL Institutional Computing and Advanced Scientific Computing programs.

    Science paper:
    Nature Communications

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition


    PPPL campus

    The Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

    Princeton University

    Princeton University

    See the full article here .

    <

    About Princeton: Overview

    Princeton University is a private Ivy League research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution. The institution moved to Newark in 1747, then to the current site nine years later. It was renamed Princeton University in 1896.

    Princeton provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences, and engineering. It offers professional degrees through the Princeton School of Public and International Affairs, the School of Engineering and Applied Science, the School of Architecture and the Bendheim Center for Finance. The university also manages the DOE’s Princeton Plasma Physics Laboratory. Princeton has the largest endowment per student in the United States.

    As of October 2020, 69 Nobel laureates, 15 Fields Medalists and 14 Turing Award laureates have been affiliated with Princeton University as alumni, faculty members or researchers. In addition, Princeton has been associated with 21 National Medal of Science winners, 5 Abel Prize winners, 5 National Humanities Medal recipients, 215 Rhodes Scholars, 139 Gates Cambridge Scholars and 137 Marshall Scholars. Two U.S. Presidents, twelve U.S. Supreme Court Justices (three of whom currently serve on the court) and numerous living billionaires and foreign heads of state are all counted among Princeton’s alumni body. Princeton has also graduated many prominent members of the U.S. Congress and the U.S. Cabinet, including eight Secretaries of State, three Secretaries of Defense and the current Chairman of the Joint Chiefs of Staff.

    Princeton University, founded as the College of New Jersey, was considered the successor of the “Log College” founded by the Reverend William Tennent at Neshaminy, PA in about 1726. New Light Presbyterians founded the College of New Jersey in 1746 in Elizabeth, New Jersey. Its purpose was to train ministers. The college was the educational and religious capital of Scottish Presbyterian America. Unlike Harvard University, which was originally “intensely English” with graduates taking the side of the crown during the American Revolution, Princeton was founded to meet the religious needs of the period and many of its graduates took the American side in the war. In 1754, trustees of the College of New Jersey suggested that, in recognition of Governor Jonathan Belcher’s interest, Princeton should be named as Belcher College. Belcher replied: “What a name that would be!” In 1756, the college moved its campus to Princeton, New Jersey. Its home in Princeton was Nassau Hall, named for the royal House of Orange-Nassau of William III of England.

    Following the untimely deaths of Princeton’s first five presidents, John Witherspoon became president in 1768 and remained in that post until his death in 1794. During his presidency, Witherspoon shifted the college’s focus from training ministers to preparing a new generation for secular leadership in the new American nation. To this end, he tightened academic standards and solicited investment in the college. Witherspoon’s presidency constituted a long period of stability for the college, interrupted by the American Revolution and particularly the Battle of Princeton, during which British soldiers briefly occupied Nassau Hall; American forces, led by George Washington, fired cannon on the building to rout them from it.

    In 1812, the eighth president of the College of New Jersey, Ashbel Green (1812–23), helped establish the Princeton Theological Seminary next door. The plan to extend the theological curriculum met with “enthusiastic approval on the part of the authorities at the College of New Jersey.” Today, Princeton University and Princeton Theological Seminary maintain separate institutions with ties that include services such as cross-registration and mutual library access.

    Before the construction of Stanhope Hall in 1803, Nassau Hall was the college’s sole building. The cornerstone of the building was laid on September 17, 1754. During the summer of 1783, the Continental Congress met in Nassau Hall, making Princeton the country’s capital for four months. Over the centuries and through two redesigns following major fires (1802 and 1855), Nassau Hall’s role shifted from an all-purpose building, comprising office, dormitory, library, and classroom space; to classroom space exclusively; to its present role as the administrative center of the University. The class of 1879 donated twin lion sculptures that flanked the entrance until 1911, when that same class replaced them with tigers. Nassau Hall’s bell rang after the hall’s construction; however, the fire of 1802 melted it. The bell was then recast and melted again in the fire of 1855.

    James McCosh became the college’s president in 1868 and lifted the institution out of a low period that had been brought about by the American Civil War. During his two decades of service, he overhauled the curriculum, oversaw an expansion of inquiry into the sciences, and supervised the addition of a number of buildings in the High Victorian Gothic style to the campus. McCosh Hall is named in his honor.

    In 1879, the first thesis for a Doctor of Philosophy (Ph.D.) was submitted by James F. Williamson, Class of 1877.

    In 1896, the college officially changed its name from the College of New Jersey to Princeton University to honor the town in which it resides. During this year, the college also underwent large expansion and officially became a university. In 1900, the Graduate School was established.

    In 1902, Woodrow Wilson, graduate of the Class of 1879, was elected the 13th president of the university. Under Wilson, Princeton introduced the preceptorial system in 1905, a then-unique concept in the United States that augmented the standard lecture method of teaching with a more personal form in which small groups of students, or precepts, could interact with a single instructor, or preceptor, in their field of interest.

    In 1906, the reservoir Carnegie Lake was created by Andrew Carnegie. A collection of historical photographs of the building of the lake is housed at the Seeley G. Mudd Manuscript Library on Princeton’s campus. On October 2, 1913, the Princeton University Graduate College was dedicated. In 1919 the School of Architecture was established. In 1933, Albert Einstein became a lifetime member of the Institute for Advanced Study with an office on the Princeton campus. While always independent of the university, the Institute for Advanced Study occupied offices in Jones Hall for 6 years, from its opening in 1933, until its own campus was finished and opened in 1939.

    Coeducation

    In 1969, Princeton University first admitted women as undergraduates. In 1887, the university actually maintained and staffed a sister college, Evelyn College for Women, in the town of Princeton on Evelyn and Nassau streets. It was closed after roughly a decade of operation. After abortive discussions with Sarah Lawrence College to relocate the women’s college to Princeton and merge it with the University in 1967, the administration decided to admit women and turned to the issue of transforming the school’s operations and facilities into a female-friendly campus. The administration had barely finished these plans in April 1969 when the admissions office began mailing out its acceptance letters. Its five-year coeducation plan provided $7.8 million for the development of new facilities that would eventually house and educate 650 women students at Princeton by 1974. Ultimately, 148 women, consisting of 100 freshmen and transfer students of other years, entered Princeton on September 6, 1969 amidst much media attention. Princeton enrolled its first female graduate student, Sabra Follett Meservey, as a PhD candidate in Turkish history in 1961. A handful of undergraduate women had studied at Princeton from 1963 on, spending their junior year there to study “critical languages” in which Princeton’s offerings surpassed those of their home institutions. They were considered regular students for their year on campus, but were not candidates for a Princeton degree.

    As a result of a 1979 lawsuit by Sally Frank, Princeton’s eating clubs were required to go coeducational in 1991, after Tiger Inn’s appeal to the U.S. Supreme Court was denied. In 1987, the university changed the gendered lyrics of “Old Nassau” to reflect the school’s co-educational student body. From 2009 to 2011, Princeton professor Nannerl O. Keohane chaired a committee on undergraduate women’s leadership at the university, appointed by President Shirley M. Tilghman.

    The main campus sits on about 500 acres (2.0 km^2) in Princeton. In 2011, the main campus was named by Travel+Leisure as one of the most beautiful in the United States. The James Forrestal Campus is split between nearby Plainsboro and South Brunswick. The University also owns some property in West Windsor Township. The campuses are situated about one hour from both New York City and Philadelphia.

    The first building on campus was Nassau Hall, completed in 1756 and situated on the northern edge of campus facing Nassau Street. The campus expanded steadily around Nassau Hall during the early and middle 19th century. The McCosh presidency (1868–88) saw the construction of a number of buildings in the High Victorian Gothic and Romanesque Revival styles; many of them are now gone, leaving the remaining few to appear out of place. At the end of the 19th century much of Princeton’s architecture was designed by the Cope and Stewardson firm (same architects who designed a large part of Washington University in St Louis and University of Pennsylvania) resulting in the Collegiate Gothic style for which it is known today. Implemented initially by William Appleton Potter and later enforced by the University’s supervising architect, Ralph Adams Cram, the Collegiate Gothic style remained the standard for all new building on the Princeton campus through 1960. A flurry of construction in the 1960s produced a number of new buildings on the south side of the main campus, many of which have been poorly received. Several prominent architects have contributed some more recent additions, including Frank Gehry (Lewis Library), I. M. Pei (Spelman Halls), Demetri Porphyrios (Whitman College, a Collegiate Gothic project), Robert Venturi and Denise Scott Brown (Frist Campus Center, among several others), and Rafael Viñoly (Carl Icahn Laboratory).

    A group of 20th-century sculptures scattered throughout the campus forms the Putnam Collection of Sculpture. It includes works by Alexander Calder (Five Disks: One Empty), Jacob Epstein (Albert Einstein), Henry Moore (Oval with Points), Isamu Noguchi (White Sun), and Pablo Picasso (Head of a Woman). Richard Serra’s The Hedgehog and The Fox is located between Peyton and Fine halls next to Princeton Stadium and the Lewis Library.

    At the southern edge of the campus is Carnegie Lake, an artificial lake named for Andrew Carnegie. Carnegie financed the lake’s construction in 1906 at the behest of a friend who was a Princeton alumnus. Carnegie hoped the opportunity to take up rowing would inspire Princeton students to forsake football, which he considered “not gentlemanly.” The Shea Rowing Center on the lake’s shore continues to serve as the headquarters for Princeton rowing.

    Cannon Green

    Buried in the ground at the center of the lawn south of Nassau Hall is the “Big Cannon,” which was left in Princeton by British troops as they fled following the Battle of Princeton. It remained in Princeton until the War of 1812, when it was taken to New Brunswick. In 1836 the cannon was returned to Princeton and placed at the eastern end of town. It was removed to the campus under cover of night by Princeton students in 1838 and buried in its current location in 1840.

    A second “Little Cannon” is buried in the lawn in front of nearby Whig Hall. This cannon, which may also have been captured in the Battle of Princeton, was stolen by students of Rutgers University in 1875. The theft ignited the Rutgers-Princeton Cannon War. A compromise between the presidents of Princeton and Rutgers ended the war and forced the return of the Little Cannon to Princeton. The protruding cannons are occasionally painted scarlet by Rutgers students who continue the traditional dispute.

    In years when the Princeton football team beats the teams of both Harvard University and Yale University in the same season, Princeton celebrates with a bonfire on Cannon Green. This occurred in 2012, ending a five-year drought. The next bonfire happened on November 24, 2013, and was broadcast live over the Internet.

    Landscape

    Princeton’s grounds were designed by Beatrix Farrand between 1912 and 1943. Her contributions were most recently recognized with the naming of a courtyard for her. Subsequent changes to the landscape were introduced by Quennell Rothschild & Partners in 2000. In 2005, Michael Van Valkenburgh was hired as the new consulting landscape architect for the campus. Lynden B. Miller was invited to work with him as Princeton’s consulting gardening architect, focusing on the 17 gardens that are distributed throughout the campus.

    Buildings

    Nassau Hall

    Nassau Hall is the oldest building on campus. Begun in 1754 and completed in 1756, it was the first seat of the New Jersey Legislature in 1776, was involved in the battle of Princeton in 1777, and was the seat of the Congress of the Confederation (and thus capitol of the United States) from June 30, 1783, to November 4, 1783. It now houses the office of the university president and other administrative offices, and remains the symbolic center of the campus. The front entrance is flanked by two bronze tigers, a gift of the Princeton Class of 1879. Commencement is held on the front lawn of Nassau Hall in good weather. In 1966, Nassau Hall was added to the National Register of Historic Places.

    Residential colleges

    Princeton has six undergraduate residential colleges, each housing approximately 500 freshmen, sophomores, some juniors and seniors, and a handful of junior and senior resident advisers. Each college consists of a set of dormitories, a dining hall, a variety of other amenities—such as study spaces, libraries, performance spaces, and darkrooms—and a collection of administrators and associated faculty. Two colleges, First College and Forbes College (formerly Woodrow Wilson College and Princeton Inn College, respectively), date to the 1970s; three others, Rockefeller, Mathey, and Butler Colleges, were created in 1983 following the Committee on Undergraduate Residential Life (CURL) report, which suggested the institution of residential colleges as a solution to an allegedly fragmented campus social life. The construction of Whitman College, the university’s sixth residential college, was completed in 2007.

    Rockefeller and Mathey are located in the northwest corner of the campus; Princeton brochures often feature their Collegiate Gothic architecture. Like most of Princeton’s Gothic buildings, they predate the residential college system and were fashioned into colleges from individual dormitories.

    First and Butler, located south of the center of the campus, were built in the 1960s. First served as an early experiment in the establishment of the residential college system. Butler, like Rockefeller and Mathey, consisted of a collection of ordinary dorms (called the “New New Quad”) before the addition of a dining hall made it a residential college. Widely disliked for their edgy modernist design, including “waffle ceilings,” the dormitories on the Butler Quad were demolished in 2007. Butler is now reopened as a four-year residential college, housing both under- and upperclassmen.

    Forbes is located on the site of the historic Princeton Inn, a gracious hotel overlooking the Princeton golf course. The Princeton Inn, originally constructed in 1924, played regular host to important symposia and gatherings of renowned scholars from both the university and the nearby Institute for Advanced Study for many years. Forbes currently houses nearly 500 undergraduates in its residential halls.

    In 2003, Princeton broke ground for a sixth college named Whitman College after its principal sponsor, Meg Whitman, who graduated from Princeton in 1977. The new dormitories were constructed in the Collegiate Gothic architectural style and were designed by architect Demetri Porphyrios. Construction finished in 2007, and Whitman College was inaugurated as Princeton’s sixth residential college that same year.

    The precursor of the present college system in America was originally proposed by university president Woodrow Wilson in the early 20th century. For over 800 years, however, the collegiate system had already existed in Britain at University of Cambridge (UK) andUniversity of Oxford (UK). Wilson’s model was much closer to Yale University’s present system, which features four-year colleges. Lacking the support of the trustees, the plan languished until 1968. That year, Wilson College was established to cap a series of alternatives to the eating clubs. Fierce debates raged before the present residential college system emerged. The plan was first attempted at Yale, but the administration was initially uninterested; an exasperated alumnus, Edward Harkness, finally paid to have the college system implemented at Harvard in the 1920s, leading to the oft-quoted aphorism that the college system is a Princeton idea that was executed at Harvard with funding from Yale.

    Princeton has one graduate residential college, known simply as the Graduate College, located beyond Forbes College at the outskirts of campus. The far-flung location of the GC was the spoil of a squabble between Woodrow Wilson and then-Graduate School Dean Andrew Fleming West. Wilson preferred a central location for the college; West wanted the graduate students as far as possible from the campus. Ultimately, West prevailed. The Graduate College is composed of a large Collegiate Gothic section crowned by Cleveland Tower, a local landmark that also houses a world-class carillon. The attached New Graduate College provides a modern contrast in architectural style.

    McCarter Theatre

    The Tony-award-winning McCarter Theatre was built by the Princeton Triangle Club, a student performance group, using club profits and a gift from Princeton University alumnus Thomas McCarter. Today, the Triangle Club performs its annual freshmen revue, fall show, and Reunions performances in McCarter. McCarter is also recognized as one of the leading regional theaters in the United States.

    Art Museum

    The Princeton University Art Museum was established in 1882 to give students direct, intimate, and sustained access to original works of art that complement and enrich instruction and research at the university. This continues to be a primary function, along with serving as a community resource and a destination for national and international visitors.

    Numbering over 92,000 objects, the collections range from ancient to contemporary art and concentrate geographically on the Mediterranean regions, Western Europe, China, the United States, and Latin America. There is a collection of Greek and Roman antiquities, including ceramics, marbles, bronzes, and Roman mosaics from faculty excavations in Antioch. Medieval Europe is represented by sculpture, metalwork, and stained glass. The collection of Western European paintings includes examples from the early Renaissance through the 19th century, with masterpieces by Monet, Cézanne, and Van Gogh, and features a growing collection of 20th-century and contemporary art, including iconic paintings such as Andy Warhol’s Blue Marilyn.

    One of the best features of the museums is its collection of Chinese art, with important holdings in bronzes, tomb figurines, painting, and calligraphy. Its collection of pre-Columbian art includes examples of Mayan art, and is commonly considered to be the most important collection of pre-Columbian art outside of Latin America. The museum has collections of old master prints and drawings and a comprehensive collection of over 27,000 original photographs. African art and Northwest Coast Indian art are also represented. The Museum also oversees the outdoor Putnam Collection of Sculpture.

    University Chapel

    The Princeton University Chapel is located on the north side of campus, near Nassau Street. It was built between 1924 and 1928, at a cost of $2.3 million [approximately $34.2 million in 2020 dollars]. Ralph Adams Cram, the University’s supervising architect, designed the chapel, which he viewed as the crown jewel for the Collegiate Gothic motif he had championed for the campus. At the time of its construction, it was the second largest university chapel in the world, after King’s College Chapel, Cambridge. It underwent a two-year, $10 million restoration campaign between 2000 and 2002.

    Measured on the exterior, the chapel is 277 feet (84 m) long, 76 feet (23 m) wide at its transepts, and 121 feet (37 m) high. The exterior is Pennsylvania sandstone, with Indiana limestone used for the trim. The interior is mostly limestone and Aquia Creek sandstone. The design evokes an English church of the Middle Ages. The extensive iconography, in stained glass, stonework, and wood carvings, has the common theme of connecting religion and scholarship.

    The Chapel seats almost 2,000. It hosts weekly ecumenical Christian services, daily Roman Catholic mass, and several annual special events.

    Murray-Dodge Hall

    Murray-Dodge Hall houses the Office of Religious Life (ORL), the Murray Dodge Theater, the Murray-Dodge Café, the Muslim Prayer Room and the Interfaith Prayer Room. The ORL houses the office of the Dean of Religious Life, Alison Boden, and a number of university chaplains, including the country’s first Hindu chaplain, Vineet Chander; and one of the country’s first Muslim chaplains, Sohaib Sultan.

    Sustainability

    Published in 2008, Princeton’s Sustainability Plan highlights three priority areas for the University’s Office of Sustainability: reduction of greenhouse gas emissions; conservation of resources; and research, education, and civic engagement. Princeton has committed to reducing its carbon dioxide emissions to 1990 levels by 2020: Energy without the purchase of offsets. The University published its first Sustainability Progress Report in November 2009. The University has adopted a green purchasing policy and recycling program that focuses on paper products, construction materials, lightbulbs, furniture, and electronics. Its dining halls have set a goal to purchase 75% sustainable food products by 2015. The student organization “Greening Princeton” seeks to encourage the University administration to adopt environmentally friendly policies on campus.

    Organization

    The Trustees of Princeton University, a 40-member board, is responsible for the overall direction of the University. It approves the operating and capital budgets, supervises the investment of the University’s endowment and oversees campus real estate and long-range physical planning. The trustees also exercise prior review and approval concerning changes in major policies, such as those in instructional programs and admission, as well as tuition and fees and the hiring of faculty members.

    With an endowment of $26.1 billion, Princeton University is among the wealthiest universities in the world. Ranked in 2010 as the third largest endowment in the United States, the university had the greatest per-student endowment in the world (over $2 million for undergraduates) in 2011. Such a significant endowment is sustained through the continued donations of its alumni and is maintained by investment advisers. Some of Princeton’s wealth is invested in its art museum, which features works by Claude Monet, Vincent van Gogh, Jackson Pollock, and Andy Warhol among other prominent artists.

    Academics

    Undergraduates fulfill general education requirements, choose among a wide variety of elective courses, and pursue departmental concentrations and interdisciplinary certificate programs. Required independent work is a hallmark of undergraduate education at Princeton. Students graduate with either the Bachelor of Arts (A.B.) or the Bachelor of Science in Engineering (B.S.E.).

    The graduate school offers advanced degrees spanning the humanities, social sciences, natural sciences, and engineering. Doctoral education is available in most disciplines. It emphasizes original and independent scholarship whereas master’s degree programs in architecture, engineering, finance, and public affairs and public policy prepare candidates for careers in public life and professional practice.

    The university has ties with the Institute for Advanced Study, Princeton Theological Seminary and the Westminster Choir College of Rider University.

    Undergraduate

    Undergraduate courses in the humanities are traditionally either seminars or lectures held 2 or 3 times a week with an additional discussion seminar that is called a “precept.” To graduate, all A.B. candidates must complete a senior thesis and, in most departments, one or two extensive pieces of independent research that are known as “junior papers.” Juniors in some departments, including architecture and the creative arts, complete independent projects that differ from written research papers. A.B. candidates must also fulfill a three or four semester foreign language requirement and distribution requirements (which include, for example, classes in ethics, literature and the arts, and historical analysis) with a total of 31 classes. B.S.E. candidates follow a parallel track with an emphasis on a rigorous science and math curriculum, a computer science requirement, and at least two semesters of independent research including an optional senior thesis. All B.S.E. students must complete at least 36 classes. A.B. candidates typically have more freedom in course selection than B.S.E. candidates because of the fewer number of required classes. Nonetheless, in the spirit of a liberal arts education, both enjoy a comparatively high degree of latitude in creating a self-structured curriculum.

    Undergraduates agree to adhere to an academic integrity policy called the Honor Code, established in 1893. Under the Honor Code, faculty do not proctor examinations; instead, the students proctor one another and must report any suspected violation to an Honor Committee made up of undergraduates. The Committee investigates reported violations and holds a hearing if it is warranted. An acquittal at such a hearing results in the destruction of all records of the hearing; a conviction results in the student’s suspension or expulsion. The signed pledge required by the Honor Code is so integral to students’ academic experience that the Princeton Triangle Club performs a song about it each fall. Out-of-class exercises fall under the jurisdiction of the Faculty-Student Committee on Discipline. Undergraduates are expected to sign a pledge on their written work affirming that they have not plagiarized the work.

    Graduate

    The Graduate School has about 2,600 students in 42 academic departments and programs in social sciences; engineering; natural sciences; and humanities. These departments include the Department of Psychology; Department of History; and Department of Economics.

    In 2017–2018, it received nearly 11,000 applications for admission and accepted around 1,000 applicants. The University also awarded 319 Ph.D. degrees and 170 final master’s degrees. Princeton has no medical school, law school, business school, or school of education. (A short-lived Princeton Law School folded in 1852.) It offers professional graduate degrees in architecture; engineering; finance and public policy- the last through the Princeton School of Public and International Affairs founded in 1930 as the School of Public and International Affairs and renamed in 1948 after university president (and U.S. president) Woodrow Wilson, and most recently renamed in 2020.

    Libraries

    The Princeton University Library system houses over eleven million holdings including seven million bound volumes. The main university library, Firestone Library, which houses almost four million volumes, is one of the largest university libraries in the world. Additionally, it is among the largest “open stack” libraries in existence. Its collections include the autographed manuscript of F. Scott Fitzgerald’s The Great Gatsby and George F. Kennan’s Long Telegram. In addition to Firestone library, specialized libraries exist for architecture, art and archaeology, East Asian studies, engineering, music, public and international affairs, public policy and university archives, and the sciences. In an effort to expand access, these libraries also subscribe to thousands of electronic resources.

    Institutes

    High Meadows Environmental Institute

    The High Meadows Environmental Institute is an “interdisciplinary center of environmental research, education, and outreach” at the university. The institute was started in 1994. About 90 faculty members at Princeton University are affiliated with it.

    The High Meadows Environmental Institute has the following research centers:

    Carbon Mitigation Initiative (CMI): This is a 15-year-long partnership between PEI and British Petroleum with the goal of finding solutions to problems related to climate change. The Stabilization Wedge Game has been created as part of this initiative.
    Center for BioComplexity (CBC)
    Cooperative Institute for Climate Science (CICS): This is a collaboration with the National Oceanographic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory.
    Energy Systems Analysis Group
    Grand Challenges

    Princeton Plasma Physics Laboratory

    The Princeton Plasma Physics Laboratory, was founded in 1951 as Project Matterhorn, a top secret cold war project aimed at achieving controlled nuclear fusion. Princeton astrophysics professor Lyman Spitzer became the first director of the project and remained director until the lab’s declassification in 1961 when it received its current name.

    PPPL currently houses approximately half of the graduate astrophysics department, the Princeton Program in Plasma Physics. The lab is also home to the Harold P. Furth Plasma Physics Library. The library contains all declassified Project Matterhorn documents, included the first design sketch of a stellarator by Lyman Spitzer.

    Princeton is one of five US universities to have and to operate a Department of Energy national laboratory.

    Student life and culture

    University housing is guaranteed to all undergraduates for all four years. More than 98% of students live on campus in dormitories. Freshmen and sophomores must live in residential colleges, while juniors and seniors typically live in designated upperclassman dormitories. The actual dormitories are comparable, but only residential colleges have dining halls. Nonetheless, any undergraduate may purchase a meal plan and eat in a residential college dining hall. Recently, upperclassmen have been given the option of remaining in their college for all four years. Juniors and seniors also have the option of living off-campus, but high rent in the Princeton area encourages almost all students to live in university housing. Undergraduate social life revolves around the residential colleges and a number of coeducational eating clubs, which students may choose to join in the spring of their sophomore year. Eating clubs, which are not officially affiliated with the university, serve as dining halls and communal spaces for their members and also host social events throughout the academic year.

    Princeton’s six residential colleges host a variety of social events and activities, guest speakers, and trips. The residential colleges also sponsor trips to New York for undergraduates to see ballets, operas, Broadway shows, sports events, and other activities. The eating clubs, located on Prospect Avenue, are co-ed organizations for upperclassmen. Most upperclassmen eat their meals at one of the eleven eating clubs. Additionally, the clubs serve as evening and weekend social venues for members and guests. The eleven clubs are Cannon; Cap and Gown; Charter; Cloister; Colonial; Cottage; Ivy; Quadrangle; Terrace; Tiger; and Tower.

    Princeton hosts two Model United Nations conferences, PMUNC in the fall for high school students and PDI in the spring for college students. It also hosts the Princeton Invitational Speech and Debate tournament each year at the end of November. Princeton also runs Princeton Model Congress, an event that is held once a year in mid-November. The four-day conference has high school students from around the country as participants.

    Although the school’s admissions policy is need-blind, Princeton, based on the proportion of students who receive Pell Grants, was ranked as a school with little economic diversity among all national universities ranked by U.S. News & World Report. While Pell figures are widely used as a gauge of the number of low-income undergraduates on a given campus, the rankings article cautions “the proportion of students on Pell Grants isn’t a perfect measure of an institution’s efforts to achieve economic diversity,” but goes on to say that “still, many experts say that Pell figures are the best available gauge of how many low-income undergrads there are on a given campus.”

    TigerTrends is a university-based student run fashion, arts, and lifestyle magazine.

    Demographics

    Princeton has made significant progress in expanding the diversity of its student body in recent years. The 2019 freshman class was one of the most diverse in the school’s history, with 61% of students identifying as students of color. Undergraduate and master’s students were 51% male and 49% female for the 2018–19 academic year.

    The median family income of Princeton students is $186,100, with 57% of students coming from the top 10% highest-earning families and 14% from the bottom 60%.

    In 1999, 10% of the student body was Jewish, a percentage lower than those at other Ivy League schools. Sixteen percent of the student body was Jewish in 1985; the number decreased by 40% from 1985 to 1999. This decline prompted The Daily Princetonian to write a series of articles on the decline and its reasons. Caroline C. Pam of The New York Observer wrote that Princeton was “long dogged by a reputation for anti-Semitism” and that this history as well as Princeton’s elite status caused the university and its community to feel sensitivity towards the decrease of Jewish students. At the time many Jewish students at Princeton dated Jewish students at the University of Pennsylvania in Philadelphia because they perceived Princeton as an environment where it was difficult to find romantic prospects; Pam stated that there was a theory that the dating issues were a cause of the decline in Jewish students.

    In 1981, the population of African Americans at Princeton University made up less than 10%. Bruce M. Wright was admitted into the university in 1936 as the first African American, however, his admission was a mistake and when he got to campus he was asked to leave. Three years later Wright asked the dean for an explanation on his dismissal and the dean suggested to him that “a member of your race might feel very much alone” at Princeton University.

    Traditions

    Princeton enjoys a wide variety of campus traditions, some of which, like the Clapper Theft and Nude Olympics, have faded into history:

    Arch Sings – Late-night concerts that feature one or several of Princeton’s undergraduate a cappella groups, such as the Princeton Nassoons; Princeton Tigertones; Princeton Footnotes; Princeton Roaring 20; and The Princeton Wildcats. The free concerts take place in one of the larger arches on campus. Most are held in Blair Arch or Class of 1879 Arch.

    Bonfire – Ceremonial bonfire that takes place in Cannon Green behind Nassau Hall. It is held only if Princeton beats both Harvard University and Yale University at football in the same season. The most recent bonfire was lighted on November 18, 2018.

    Bicker – Selection process for new members that is employed by selective eating clubs. Prospective members, or bickerees, are required to perform a variety of activities at the request of current members.

    Cane Spree – An athletic competition between freshmen and sophomores that is held in the fall. The event centers on cane wrestling, where a freshman and a sophomore will grapple for control of a cane. This commemorates a time in the 1870s when sophomores, angry with the freshmen who strutted around with fancy canes, stole all of the canes from the freshmen, hitting them with their own canes in the process.

    The Clapper or Clapper Theft – The act of climbing to the top of Nassau Hall to steal the bell clapper, which rings to signal the start of classes on the first day of the school year. For safety reasons, the clapper has been removed permanently.

    Class Jackets (Beer Jackets) – Each graduating class designs a Class Jacket that features its class year. The artwork is almost invariably dominated by the school colors and tiger motifs.

    Communiversity – An annual street fair with performances, arts and crafts, and other activities that attempts to foster interaction between the university community and the residents of Princeton.

    Dean’s Date – The Tuesday at the end of each semester when all written work is due. This day signals the end of reading period and the beginning of final examinations. Traditionally, undergraduates gather outside McCosh Hall before the 5:00 PM deadline to cheer on fellow students who have left their work to the very last minute.

    FitzRandolph Gates – At the end of Princeton’s graduation ceremony, the new graduates process out through the main gate of the university as a symbol of the fact that they are leaving college. According to tradition, anyone who exits campus through the FitzRandolph Gates before his or her own graduation date will not graduate.

    Holder Howl – The midnight before Dean’s Date, students from Holder Hall and elsewhere gather in the Holder courtyard and take part in a minute-long, communal primal scream to vent frustration from studying with impromptu, late night noise making.

    Houseparties – Formal parties that are held simultaneously by all of the eating clubs at the end of the spring term.

    Ivy stones – Class memorial stones placed on the exterior walls of academic buildings around the campus.

    Lawnparties – Parties that feature live bands that are held simultaneously by all of the eating clubs at the start of classes and at the conclusion of the academic year.

    Princeton Locomotive – Traditional cheer in use since the 1890s. It is commonly heard at Opening Exercises in the fall as alumni and current students welcome the freshman class, as well as the P-rade in the spring at Princeton Reunions. The cheer starts slowly and picks up speed, and includes the sounds heard at a fireworks show.

    Hip! Hip!
    Rah, Rah, Rah,
    Tiger, Tiger, Tiger,
    Sis, Sis, Sis,
    Boom, Boom, Boom, Ah!
    Princeton! Princeton! Princeton!

    Or if a class is being celebrated, the last line consists of the class year repeated three times, e.g. “Eighty-eight! Eighty-eight! Eighty-eight!”

    Newman’s Day – Students attempt to drink 24 beers in the 24 hours of April 24. According to The New York Times, “the day got its name from an apocryphal quote attributed to Paul Newman: ’24 beers in a case, 24 hours in a day. Coincidence? I think not.'” Newman had spoken out against the tradition, however.

    Nude Olympics – Annual nude and partially nude frolic in Holder Courtyard that takes place during the first snow of the winter. Started in the early 1970s, the Nude Olympics went co-educational in 1979 and gained much notoriety with the American press. For safety reasons, the administration banned the Olympics in 2000 to the chagrin of students.

    Prospect 11 – The act of drinking a beer at all 11 eating clubs in a single night.
    P-rade – Traditional parade of alumni and their families. They process through campus by class year during Reunions.
    Reunions – Massive annual gathering of alumni held the weekend before graduation.

    Athletics
    Princeton supports organized athletics at three levels: varsity intercollegiate, club intercollegiate, and intramural. It also provides “a variety of physical education and recreational programs” for members of the Princeton community. According to the athletics program’s mission statement, Princeton aims for its students who participate in athletics to be “‘student athletes’ in the fullest sense of the phrase. Most undergraduates participate in athletics at some level.

    Princeton’s colors are orange and black. The school’s athletes are known as Tigers, and the mascot is a tiger. The Princeton administration considered naming the mascot in 2007, but the effort was dropped in the face of alumni opposition.

    Varsity

    Princeton is an NCAA Division I school. Its athletic conference is the Ivy League. Princeton hosts 38 men’s and women’s varsity sports. The largest varsity sport is rowing, with almost 150 athletes.

    Princeton’s football team has a long and storied history. Princeton played against Rutgers University in the first intercollegiate football game in the U.S. on Nov 6, 1869. By a score of 6–4, Rutgers won the game, which was played by rules similar to modern rugby. Today Princeton is a member of the Football Championship Subdivision of NCAA Division I. As of the end of the 2010 season, Princeton had won 26 national football championships, more than any other school.

    Club and intramural

    In addition to varsity sports, Princeton hosts about 35 club sports teams. Princeton’s rugby team is organized as a club sport. Princeton’s sailing team is also a club sport, though it competes at the varsity level in the MAISA conference of the Inter-Collegiate Sailing Association.

    Each year, nearly 300 teams participate in intramural sports at Princeton. Intramurals are open to members of Princeton’s faculty, staff, and students, though a team representing a residential college or eating club must consist only of members of that college or club. Several leagues with differing levels of competitiveness are available.

    Songs

    Notable among a number of songs commonly played and sung at various events such as commencement, convocation, and athletic games is Princeton Cannon Song, the Princeton University fight song.

    Bob Dylan wrote Day of The Locusts (for his 1970 album New Morning) about his experience of receiving an honorary doctorate from the University. It is a reference to the negative experience he had and it mentions the Brood X cicada infestation Princeton experienced that June 1970.

    “Old Nassau”

    Old Nassau has been Princeton University’s anthem since 1859. Its words were written that year by a freshman, Harlan Page Peck, and published in the March issue of the Nassau Literary Review (the oldest student publication at Princeton and also the second oldest undergraduate literary magazine in the country). The words and music appeared together for the first time in Songs of Old Nassau, published in April 1859. Before the Langlotz tune was written, the song was sung to Auld Lang Syne’s melody, which also fits.

    However, Old Nassau does not only refer to the university’s anthem. It can also refer to Nassau Hall, the building that was built in 1756 and named after William III of the House of Orange-Nassau. When built, it was the largest college building in North America. It served briefly as the capitol of the United States when the Continental Congress convened there in the summer of 1783. By metonymy, the term can refer to the university as a whole. Finally, it can also refer to a chemical reaction that is dubbed “Old Nassau reaction” because the solution turns orange and then black.
    Princeton Shield

     
  • richardmitnick 12:51 pm on August 8, 2022 Permalink | Reply
    Tags: "Three peer-reviewed papers highlight scientific results of National Ignition Facility record yield shot", , , Fusion technology,   

    From The DOE’s Lawrence Livermore National Laboratory: “Three peer-reviewed papers highlight scientific results of National Ignition Facility record yield shot” 

    From The DOE’s Lawrence Livermore National Laboratory

    8.8.22

    1
    On the one-year anniversary of achieving a yield of more than 1.3 megajoules at LLNL’s National Ignition Facility [below], the scientific results of this record experiment have been published in three peer-reviewed papers: one in Physical Review Letters and two in Physical Review E. This stylized image shows a cryogenic target used for these record-setting inertial fusion experiments. Image by James Wickboldt/LLNL.

    After decades of inertial confinement fusion research, a yield of more than 1.3 megajoules (MJ) was achieved at Lawrence Livermore National Laboratory’s (LLNL’s) National Ignition Facility (NIF) [below] for the first time on Aug. 8, 2021, putting researchers at the threshold of fusion gain and achieving scientific ignition.

    On the one-year anniversary of this historic achievement, the scientific results of this record experiment have been published in three peer-reviewed papers: one in Physical Review Letters [below] and two in Physical Review E (See papers one [below] and two [below]). More than 1,000 authors are included in the Physical Review Letters paper [below] to recognize and acknowledge the many individuals who have worked over many decades to enable this significant advance.

    “The record shot was a major scientific advance in fusion research, which establishes that fusion ignition in the lab is possible at NIF,” said Omar Hurricane, chief scientist for LLNL’s inertial confinement fusion program. “Achieving the conditions needed for ignition has been a long-standing goal for all inertial confinement fusion research and opens access to a new experimental regime where alpha-particle self-heating outstrips all the cooling mechanisms in the fusion plasma.”

    The papers describe, in detail, the results from Aug. 8, 2021 and the associated design, improvements and experimental measurements. LLNL physicist Alex Zylstra, lead experimentalist and first author of the experimental Physical Review E paper, noted that in 2020 and early 2021 the Lab conducted experiments in the “burning plasma” regime for the first time, which set the stage for the record shot.

    “From that design, we made several improvements to get to the Aug. 8, 2021, shot,” he said. “Improvements to the physics design and quality of target all helped lead to the success of the August shot, which is discussed in the Physical Review E papers.”

    This experiment incorporated a few changes, including improved target design. “Reducing the coasting-time with more efficient hohlraums compared to prior experiments was key in moving between the burning plasma and ignition regimes,” said LLNL physicist Annie Kritcher, lead designer and first author of the design Physical Review E paper. “The other main changes were improved capsule quality and a smaller fuel fill tube.”

    2
    This three-part image shows the cut-away characteristic target geometry (a) that includes a gold-lined depleted uranium hohlraum surrounding an HDC capsule with some features labeled. The capsule, ~2 mm in diameter, at the center of the ~1 cm height hohlraum, occupies a small fraction of the volume. Laser beams enter the target at the top and bottom apertures, called laser entrance holes. In (b), total laser power (blue) vs. time and simulated hohlraum radiation temperature for the Aug. 8, 2021 experiment are shown with a few key elements labeled. All images are 100 square microns. Imaging data is used to reconstruct the hotspot plasma volume needed for inferring pressure and other plasma properties.

    Since the experiment last August, the team has been executing a series of experiments to attempt to repeat the performance and to understand the experimental sensitivities in this new regime.

    “Many variables can impact each experiment,” Kritcher said. “The 192 laser beams do not perform exactly the same from shot to shot, the quality of targets varies and the ice layer grows at differing roughness on each target. These experiments provided an opportunity to test and understand the inherent variability in this new, sensitive experimental regime.”

    While the repeat attempts have not reached the same level of fusion yield as the August 2021 experiment, all of them demonstrated capsule gain greater than unity with yields in the 430-700 kJ range, significantly higher than the previous highest yield of 170 kJ from February 2021. The data gained from these and other experiments are providing crucial clues as to what went right and what changes are needed in order to repeat that experiment and exceed its performance in the future. The team also is utilizing the experimental data to further understanding of the fundamental processes of fusion ignition and burn and to enhance simulation tools in support of stockpile stewardship.

    Looking ahead, the team is working to leverage the accumulated experimental data and simulations to move toward a more robust regime – further beyond the ignition cliff – where general trends found in this new experimental regime can be better separated from variability in targets and laser performance.

    Efforts to increase fusion performance and robustness are underway via improvements to the laser, improvements to the targets and modifications to the design that further improve energy delivery to the hotspot while maintaining or even increasing the hot-spot pressure. This includes improving the compression of the fusion fuel, increasing the amount of fuel and other avenues.

    “It is extremely exciting to have an ‘existence proof’ of ignition in the lab,” Hurricane said. “We’re operating in a regime that no researchers have accessed since the end of nuclear testing, and it’s an incredible opportunity to expand our knowledge as we continue to make progress.”

    Science papers:

    Physical Review E
    Physical Review E
    Physical Review Letters

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California- Berzerkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by The U.S. Department of Energy and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.
    The National Ignition Facility, is a large laser-based inertial confinement fusion (ICF) research device, located at The DOE’s Lawrence Livermore National Laboratory in Livermore, California. NIF uses lasers to heat and compress a small amount of hydrogen fuel with the goal of inducing nuclear fusion reactions. NIF’s mission is to achieve fusion ignition with high energy gain, and to support nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear weapons. NIF is the largest and most energetic ICF device built to date, and the largest laser in the world.

    Construction on the NIF began in 1997 but management problems and technical delays slowed progress into the early 2000s. Progress after 2000 was smoother, but compared to initial estimates, NIF was completed five years behind schedule and was almost four times more expensive than originally budgeted. Construction was certified complete on 31 March 2009 by the U.S. Department of Energy, and a dedication ceremony took place on 29 May 2009. The first large-scale laser target experiments were performed in June 2009 and the first “integrated ignition experiments” (which tested the laser’s power) were declared completed in October 2010.

    Bringing the system to its full potential was a lengthy process that was carried out from 2009 to 2012. During this period a number of experiments were worked into the process under the National Ignition Campaign, with the goal of reaching ignition just after the laser reached full power, sometime in the second half of 2012. The Campaign officially ended in September 2012, at about 1⁄10 the conditions needed for ignition. Experiments since then have pushed this closer to 1⁄3, but considerable theoretical and practical work is required if the system is ever to reach ignition. Since 2012, NIF has been used primarily for materials science and weapons research.

    National Igniton Facility- NIF at LLNL

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration


     
  • richardmitnick 11:38 pm on July 27, 2022 Permalink | Reply
    Tags: "Smaller and stronger magnets could improve devices that harness the fusion power of the sun and stars", , Fusion technology, , , Spherical tokamaks,   

    From The DOE’s Princeton Plasma Physics Laboratory: “Smaller and stronger magnets could improve devices that harness the fusion power of the sun and stars” 

    From The DOE’s Princeton Plasma Physics Laboratory

    at

    Princeton University

    Princeton University

    July 25, 2022
    Raphael Rosen

    1
    PPPL principal engineer Yuhu Zhai with images of a high-temperature superconducting magnet, which could improve the performance of spherical tokamak fusion devices. (Collage by Kiran Sudarsanan)

    Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a way to build powerful magnets smaller than before, aiding the design and construction of machines that could help the world harness the power of the sun to create electricity without producing greenhouse gases that contribute to climate change.

    The scientists found a way to build high-temperature superconducting magnets that are made of material that conducts electricity with little or no resistance at temperatures warmer than before. Such powerful magnets would more easily fit within the tight space inside spherical tokamaks, which are shaped more like a cored apple than the doughnut-like shape of conventional tokamaks, and are being explored as a possible design for future fusion power plants.

    Since the magnets could be positioned apart from other machinery in the spherical tokamak’s central cavity to corral the hot plasma that fuels fusion reactions, researchers could repair them without having to take anything else apart. “To do this, you need a magnet with a stronger magnetic field and a smaller size than current magnets,” said Yuhu Zhai, a principal engineer at PPPL and lead author of a paper reporting the results in IEEE Transactions on Applied Superconductivity [below]. “The only way you do that is with superconducting wires, and that’s what we’ve done.”

    Fusion, the power that drives the sun and stars, combines light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei — that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of safe and clean power to generate electricity.

    High-temperature superconducting magnets have several advantages over copper magnets. They can be turned on for longer periods than copper magnets can because they don’t heat up as quickly, making them better suited for use in future fusion power plants that will have to run for months at a time. Superconducting wires are also powerful, able to transmit the same amount of electrical current as a copper wire many times wider while producing a stronger magnetic field.

    The magnets could also help scientists continue to shrink the size of tokamaks, improving performance and reducing construction cost. “Tokamaks are sensitive to the conditions in their central regions, including the size of the central magnet, or solenoid, the shielding, and the vacuum vessel,” said Jon Menard, PPPL’s deputy director for research. “A lot depends on the center. So if you can shrink things in the middle, you can shrink the whole machine and reduce cost while, in theory, improving performance.”

    These new magnets take advantage of a technique refined by Zhai and researchers at Advanced Conductor Technologies, the University of Colorado, Boulder, and the National High Magnetic Field Laboratory, in Tallahassee, Florida. The technique means that the wires do not need conventional epoxy and glass fiber insulation to ensure the flow of electricity. While simplifying construction, the technique also lowers costs. “The costs to wind the coils are much lower because we don’t have to go through the expensive and error-prone epoxy vacuum-impregnation process,” Zhai said. “Instead, you’re directly winding the conductor into the coil form.”

    Moreover, “high-temperature superconducting magnets can help spherical tokamak design because the higher current density and smaller windings provide more space for support structure that helps the device withstand the high magnetic fields, enhancing operating conditions,” said Thomas Brown, a PPPL engineer who contributed to the research. “Also, the smaller, more powerful magnets give the machine designer more options to design a spherical tokamak with geometry that could enhance overall tokamak performance. We’re not quite there yet but we’re closer, and maybe close enough.”

    This research was supported by the U.S. Department of Energy (Small Business Innovation Research and Laboratory Directed Research and Development).

    Science paper:
    IEEE Transactions on Applied Superconductivity

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: