Tagged: Fusion technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:41 am on November 28, 2015 Permalink | Reply
    Tags: , Fusion technology,   

    From SA: “Why Fusion Researchers Are Going Small” 

    Scientific American

    Scientific American


    David Biello

    You can accuse fusion power advocates of being overly optimistic but never of thinking small. Fusion occurs when two elements combine, or “fuse,” together to form a new, third element, converting matter to energy. It is the process that powers the sun, and the fusion world’s marquee projects are accordingly grand.

    This image shows the Sun as viewed by the Soft X-Ray Telescope (SXT) onboard the orbiting Yohkoh satellite.

    JAXA ISAS YOKHOH Soft X-ray telescope
    JAXA ISAS YOKHOH Soft X-ray telescope

    JAXA ISAS YOHKOH satellite
    JAXA ISAS YOHKOH satellite

    The bright, loop-like structures are hot (millions of degrees) plasma confined by magnetic fields rooted in the solar interior. An image of the sun in visible light would show sunspots at the feet of many of these loops. The halo of gas extending well beyond the sun is called the corona. The darker regions at the North and South poles of the Sun are coronal holes, where the magnetic field lines are open to space and allow particles to escape.

    Consider the International Thermonuclear Experimental Reactor (ITER), which a consortium of seven nations is building in France.

    ITER Tokamak
    ITER tokamak

    This $21-billion tokomak reactor will use superconducting magnets to create plasma hot and dense enough to achieve fusion. When finished, ITER will weigh 23,000 metric tons, three times the weight of the Eiffel Tower. The National Ignition Facility (NIF), its main competitor, is equally complex: it fires 192 lasers at a fuel pellet until it is subjected to temperatures of 50 million degrees Celsius and pressures of 150 billion atmospheres.


    Despite all this, a working fusion power plant based on ITER or NIF remains decades away. A new crop of researchers are pursuing a different strategy: going small. This year the U.S. Advanced Research Projects Agency–Energy invested nearly $30 million in nine smaller projects aimed at affordable fusion through a program called Accelerating Low-Cost Plasma Heating and Assembly (ALPHA). One representative project, run by Tustin, Calif.–based company Magneto-Inertial Fusion Technologies, is designed to “pinch” a plasma with an electric current until it compresses itself enough induce fusion.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

  • richardmitnick 5:13 pm on November 21, 2015 Permalink | Reply
    Tags: , Fusion technology,   

    From MIT: “Alex Tinguely: Working toward a fusion future” 

    MIT News

    Alex Tinguely manipulates plasma in a glow discharge tube to introduce visitors to the concept of magnetic confinement fusion. Photo: Paul Rivenberg

    After starting his physics education with online courses, an MIT graduate student is now practicing cutting-edge research in nuclear fusion at MIT.

    Alex Tinguely wonders where he might be today if he had not taken an online physics class in high school. The second-year Department of Physics graduate student from Fort Madison, Iowa, attended a high school with a population of no more than 100 students, and with no available physics courses.

    In his junior year he decided if he was going to explore the world of physics he would need to do it online, and on his own. With no lab space available, Tinguely adapted the school chapel to his needs.

    “One experiment I did was stack our hymnals to form a ramp that I could roll a ball down. I was trying to calculate the acceleration due to gravity by varying the slope of the ramp. At least one teacher knew that I was in the chapel, but I’m not sure about the others. They probably would not have been too happy.”

    In the process of his chapel experiments, Tinguely found physics so compelling he decided to take an online Advanced Placement Physics course during his senior year.

    Attracted by the breadth of research possible in the field, Alex majored in physics and mathematics at Iowa State University. Between his junior and senior years he had the opportunity, through the U.S. Department of Energy (DOE) Science Undergraduate Laboratory Internship program, to study at a DOE lab. Feeling that the topic of nuclear fusion sounded promising, he ended up at the Princeton Plasma Physics Laboratory (PPPL). He spent the summer studying dusty plasmas with Arturo Dominguez, whose graduate work at MIT’s Plasma Science and Fusion Center (PSFC) had led to his position as PPPL’s science education and program leader.

    Today, Tinguely finds himself in a PSFC control room, acquiring data from the same Alcator C-Mod tokamak Dominguez used for his thesis research.

    Schematic of a tokamak

    Working with his advisor, principal research scientist Bob Granetz, he studies how to magnetically confine plasmas in a toroidal vacuum vessel, so that fusion can occur. His focus now is on disruptions, often caused by instabilities in the plasma, which can damage the walls of the fusion vessel.

    “We need to figure out how to prevent disruptions if we want our tokamak to work and survive.”

    Tinguely is particularly interested in runaway electrons, which can be caused by disruptions. These electrons, which have accelerated to nearly the speed of light, can carry a lot of energy: 1,000 times more than the normal thermal energy of electrons in the plasma. If runaway electron beams are created in a fusion device, they can eventually strike a wall and cause serious — potentially catastrophic — damage to the vessel.

    The disruption scenarios Tinguely studies are comparable to what could occur in the ITER Project, a large-scale fusion experiment being built in France to demonstrate the technological and scientific feasibility of magnetic confinement fusion.

    ITER Tokamak
    ITER tokamak

    “If we can predict disruptions on C-Mod, hopefully we can predict them on ITER,” Alex says.

    His research takes Tinguely inside the compact vacuum vessel of the Alcator C-Mod tokamak, an opportunity he describes as “one of the coolest experiences ever.” Inside a machine that can reach temperatures of 100 million degrees, he calibrates spectrometers so that they can accurately measure the amount of light coming from the synchrotron radiation of runaway electrons. For Tinguely, working inside the tokamak provides a unique learning experience, one that places a lot of responsibility on the students, but teaches great skills.

    Tinguely is eager to share his enjoyment of physics and fusion research with others. At the PSFC he is honing the talent for educational outreach that he nurtured as a member of the Iowa State University Physics and Astronomy Club, where he helped put on science demonstrations at local elementary schools and on campus. Giving a tour of the PSFC, he might be found explaining how to play a video game that challenges participants to keep a plasma from touching the walls of the vessel, or inviting a high school student to hold a large magnet up to a glow-discharge tube filled with plasma, to illustrate how plasmas respond to magnetic fields.

    “I think it’s really fun to do and hopefully gets kids interested in science,” Tinguely says. “It was very much by chance that I became interested in physics.”

    Looking back on his decision to take an online physics course, and how it led him on a path to MIT, Tinguely seems committed to sparking that same interest in the minds of the students he meets.

    “My end goal is to hopefully help build a fusion reactor some day,” he says. And it looks like he’s hoping to inspire others to join him.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 10:40 am on November 20, 2015 Permalink | Reply
    Tags: , , Fusion technology,   

    From AAAS: “ITER fusion project to take at least 6 years longer than planned” 



    19 November 2015
    Daniel Clery

    ITER construction earlier this year. ITER Collaborative

    The multibillion-dollar ITER fusion project will take another 6 years to build beyond the—now widely discredited—official schedule, a meeting of the governing council was told this week. ITER management has also asked the seven international partners backing the project for additional funding to finish the job.

    It remains unclear whether the project will get what it wants: Delegations from the partners—China, the European Union, India, Japan, Russia, South Korea, and the United States—concluded the council meeting today by announcing the council would conduct its own review of the schedule and funding to look for ways to tighten them up. In the meantime, the council approved the proposed schedule for 2016 and 2017, set out milestones for the project to reach in that time, and agreed to make available extra resources to help achieve it. After consulting their governments, the delegations committed themselves to agreeing on a final schedule at the next council meeting, in June 2016.

    “It was a very important meeting for us and it went well,” says ITER Director-General Bernard Bigot. “Every member expressed their concerns and in the end they reached an agreement.” Jianlin Cao, vice minister at the Chinese Ministry of Science and Technology, stressed the challenges the meeting faced. The council delegates “have been so careful about this work. But ITER is a new thing, and success does not come easily,” Cao told Science.

    The ITER project aims to show that nuclear fusion—the power source of the sun and stars—is technically feasible as a source of energy. Despite more than 60 years of work, researchers have failed to achieve a fusion reaction that produces more energy than it consumes. ITER, with a doughnut-shaped tokamak reaction chamber able to contain 840 cubic meters of superheated hydrogen gas, or plasma, is the biggest attempt so far and is predicted to produce at least 500 megawatts of power from a 50 megawatt input.

    ITER Tokamak
    ITER tokamak

    The project was officially begun in 2006 with an estimated cost of €5 billion and date for the beginning of operations—or first plasma—in 2016. Those figures quickly changed to €15 billion and 2019, but confidence in those numbers has eroded over the years.

    When Bigot took over as Director-General earlier this year, he ordered a bottom-up review of the whole project, which currently has numerous buildings springing up at the Cadarache site in southern France and components arriving from contractors in the partner states around the globe. That review produced a new description of the entire project, known as the “baseline,” including a revamped schedule and cost estimate. The baseline was presented to the council for approval this week. Although the official communique does not mention the proposed date for first plasma, it is widely acknowledged to be 2025.

    “The council acknowledged this resource-loaded schedule but they need more time to fully endorse this or another schedule and to reconcile it with the resources they have,” Bigot says. Delegates confirmed such plans. “We must take the schedule home and discuss it with the finance ministry,” says Anatoly Krasilnikov, head of Russia’s ITER domestic agency, the body responsible for awarding industrial contracts.

    “In the meantime, they have agreed to give us extra resources to meet the milestones in 2016–17. It keeps the momentum,” Bigot says. To make that possible, the council will move around some money already allocated for 2016 and possibly provide new money for 2017. The project will hire 150 new staff to top up the 640 currently employed by the ITER organization. In return, the council wants ITER to meet 17 major milestones from the new schedule in 2016 and another eight in 2017. “If we meet the milestones, it will consolidate the trust,” Bigot says.

    The true cost of ITER is almost impossible to define. When the project agreement was drawn up in 2006, all the necessary components were divided up among the partners according to their contributions: 45% for the European Union (as host), and 9% for each of the others. How much each partner pays to have those components manufactured is the partner’s individual concern and is not revealed. In addition to the components, which are shipped to Cadarache as in-kind contributions, each partner must make a cash contribution to the central ITER organization to cover its costs.

    The ITER organization’s role is to draw up the design, ensure everyone sticks to it, and then to supervise assembly of the reactor while also satisfying the local French regulators, especially the nuclear safety authority ASN. That has not been an easy job, as the organization does not deal directly with the industrial companies doing the manufacturing; that is handled by each partner’s domestic agency. Last year, a highly critical management assessment faulted the organization for failing to establish a workable “project culture.” Bigot has gone to great lengths to get contractors, domestic agencies, and ITER staff working better together. “I want that the ITER organization and the domestic agencies are never the limiting step for contractors to deliver,” he says. Previously, work on the tokamak building had been held up because ITER staff hadn’t agreed on a final version of its design.

    The problem that the next council meeting will have to resolve is that some member states are further ahead than others in their assigned tasks for the assembly of ITER. Those that are ahead, and are closer to meeting the old schedule, don’t see why they have to fund a slower—and hence more expensive—schedule imposed on them by other partners.

    See the full article here .

    The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

  • richardmitnick 6:12 pm on November 11, 2015 Permalink | Reply
    Tags: , Fusion technology, ,   

    From phys.org: “Physicists uncover mechanism that stabilizes plasma within tokamaks” 


    November 10, 2015

    A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once. Credit: Stephen Jardin

    A team of physicists led by Stephen Jardin of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a sawtooth cycle and can cause instabilities within the plasma’s core. The results have been accepted for publication in Physical Review Letters. The research was supported by the DOE Office of Science (Office of Fusion Energy Sciences).

    The team, which included scientists from General Atomics and the Max Planck Institute for Plasma Physics, performed calculations on the Edison computer at the National Energy Research Scientific Computing Center, a division of the Lawrence Berkeley National Laboratory. Using M3D-C1, a program they developed that creates three-dimensional simulations of fusion plasmas, they found that under certain conditions a helix-shaped whirlpool of plasma forms around the center of the tokamak.

    PPPL NSTX tokamak

    The swirling plasma acts like a dynamo—a moving fluid that creates electric and magnetic fields. Together these fields prevent the current flowing through plasma from peaking and crashing.

    The researchers found two specific conditions under which the plasma behaves like a dynamo. First, the magnetic lines that circle the plasma must rotate exactly once, both the long way and the short way around the doughnut-shaped configuration, so an electron or ion following a magnetic field line would end up exactly where it began (Figure 1). Second, the pressure in the center of the plasma must be significantly greater than at the edge, creating a gradient between the two sections. This gradient combines with the rotating magnetic field lines to create spinning rolls of plasma that swirl around the tokamak and gives rise to the dynamo that maintains equilibrium and produces stability.

    This dynamo behavior arises only during certain conditions. Both the electrical current running through the plasma and the pressure that the plasma’s electrons and ions exert on their neighbors must be in a certain range that is “not too large and not too small,” said Jardin. In addition, the speed at which the conditions for the fusion reaction are established must be “not too fast and not too slow.”

    Jardin stressed that once a range of conditions like pressure and current are set, the dynamo phenomenon occurs all by itself. “We don’t have to do anything else from the outside,” he noted. “It’s something like when you drain your bathtub and a whirlpool forms over the drain by itself. But because a plasma is more complicated than water, the whirlpool that forms in the tokamak needs to also generate the voltage to sustain itself.”

    During the simulations the scientists were able to virtually add new diagnostics, or probes, to the computer code. “These diagnostics were able to measure the helical velocity fields, electric potential, and magnetic fields to clarify how the dynamo forms and persists,” said Jardin. The persistence produces the “voltage in the center of the discharge that keeps the plasma current from peaking.”

    Physicists have indirectly observed what they believe to be the dynamo behavior on the DIII-D National Fusion Facility that General Atomics operates for the Department of Energy in San Diego and the ASDEX Upgrade in Garching, Germany. They hope to learn to create these conditions on demand, especially in ITER, the huge multinational fusion machine being constructed in France to demonstrate the practicality of fusion power.

    ITER Tokamak
    ITER tokamak

    “Now that we understand it better, we think that computer simulations will show us under what conditions this will occur in ITER,” said Jardin. “That will be the focus of our research in the near future.”

    Learning how to create these conditions has important implications for ITER, which will produce helium nuclei that could amplify the sawtooth disruptions. If large enough, these disruptions could cause other instabilities that could halt the fusion process. Preventing the cycle from starting would therefore be highly beneficial for the ITER experiment.

    Journal reference: Physical Review Letters

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

  • richardmitnick 8:58 am on October 22, 2015 Permalink | Reply
    Tags: , , Fusion technology, Stellarators   

    From AAAS: “The bizarre reactor that might save nuclear fusion” 



    21 October 2015
    Daniel Clery

    Adapted from IPP by C. Bickel/ Science

    If you’ve heard of fusion energy, you’ve probably heard of tokamaks. These doughnut-shaped devices are meant to cage ionized gases called plasmas in magnetic fields while heating them to the outlandish temperatures needed for hydrogen nuclei to fuse. Tokamaks are the workhorses of fusion—solid, symmetrical, and relatively straightforward to engineer—but progress with them has been plodding.

    Now, tokamaks’ rebellious cousin is stepping out of the shadows. In a gleaming research lab in Germany’s northeastern corner, researchers are preparing to switch on a fusion device called a stellarator, the largest ever built. The €1 billion machine, known as Wendelstein 7-X (W7-X), appears now as a 16-meter-wide ring of gleaming metal bristling with devices of all shapes and sizes, innumerable cables trailing off to unknown destinations, and technicians tinkering with it here and there. It looks a bit like Han Solo’s Millennium Falcon, towed in for repairs after a run-in with the Imperial fleet. Inside are 50 6-tonne magnet coils, strangely twisted as if trampled by an angry giant.

    Although stellarators are similar in principle to tokamaks, they have long been dark horses in fusion energy research because tokamaks are better at keeping gas trapped and holding on to the heat needed to keep reactions ticking along. But the Dali-esque devices have many attributes that could make them much better prospects for a commercial fusion power plant: Once started, stellarators naturally purr along in a steady state, and they don’t spawn the potentially metal-bending magnetic disruptions that plague tokamaks. Unfortunately, they are devilishly hard to build, making them perhaps even more prone to cost overruns and delays than other fusion projects. “No one imagined what it means” to build one, says Thomas Klinger, leader of the German effort.

    W7-X could mark a turning point. The machine, housed at a branch of the Max Planck Institute for Plasma Physics (IPP) that Klinger directs, is awaiting regulatory approval for a startup in November. It is the first large-scale example of a new breed of supercomputer-designed stellarators that have had most of their containment problems computed out. If W7-X matches or beats the performance of a similarly sized tokamak, fusion researchers may have to reassess the future course of their field. “Tokamak people are waiting to see what happens. There’s an excitement around the world about W7-X,” says engineer David Anderson of the University of Wisconsin (UW), Madison.


    Wendelstein 7-X, the first large-scale optimized stellarator, took 1.1 million working hours to assemble, using one of the most complex engineering models ever devised, and must withstand huge temperature ranges and enormous forces.

    Stellarators face the same challenge as all fusion devices: They must heat and hold on to a gas at more than 100 million degrees Celsius—seven times the temperature of the sun’s core. Such heat strips electrons from atoms, leaving a plasma of electrons and ions, and it makes the ions travel fast enough to overcome their mutual repulsion and fuse. But it also makes the gas impossible to contain in a normal vessel.

    Instead, it is held in a magnetic cage. A current-carrying wire wound around a tube creates a straight magnetic field down the center of the tube that draws the plasma away from the walls. To keep particles from escaping at the ends, many early fusion researchers bent the tube into a doughnut-shaped ring, or torus, creating an endless track.

    But the torus shape creates another problem: Because the windings of the wire are closer together inside the hole of the doughnut, the magnetic field is stronger there and weaker toward the doughnut’s outer rim. The imbalance causes particles to drift off course and hit the wall. The solution is to add a twist that forces particles through regions of high and low magnetic fields, so the effects of the two cancel each other out.

    Stellarators impose the twist from outside. The first stellarator, invented by astro-physicist Lyman Spitzer at Princeton University in 1951, did it by bending the tube into a figure-eight shape. But the lab he set up—the Princeton Plasma Physics Laboratory (PPPL) in New Jersey—switched to a simpler method for later stellarators: winding more coils of wire around a conventional torus tube like stripes on a candy cane to create a twisting magnetic field inside.

    In a tokamak, a design invented in the Soviet Union in the 1950s, the twist comes from within. Tokamaks use a setup like an electrical transformer to induce the electrons and ions to flow around the tube as an electric current. This current produces a vertical looping magnetic field that, when added to the field already running the length of the tube, creates the required spiraling field lines.

    ITER Tokamak
    ITER tokamak

    Both methods work, but the tokamak is better at holding on to a plasma. In part that’s because a tokamak’s symmetry gives particles smoother paths to follow. In stellarators, Anderson says, “particles see lots of ripples and wiggles” that cause many of them to be lost. As a result, most fusion research since the 1970s has focused on tokamaks—culminating in the huge ITER reactor project in France, a €16 billion international effort to build a tokamak that produces more energy than it consumes, paving the way for commercial power reactors.

    But tokamaks have serious drawbacks. A transformer can drive a current in the plasma only in short pulses that would not suit a commercial fusion reactor. Current in the plasma can also falter unexpectedly, resulting in “disruptions”: sudden losses of plasma confinement that can unleash magnetic forces powerful enough to damage the reactor. Such problems plague even up-and-coming designs such as the spherical tokamak (Science, 22 May, p. 854).

    Stellarators, however, are immune. Their fields come entirely from external coils, which don’t need to be pulsed, and there is no plasma current to suffer disruptions. Those two factors have kept some teams pursuing the concept.

    The largest working stellarator is the Large Helical Device (LHD) in Toki, Japan, which began operating in 1998.

    LHD Large Helical Device stellarator

    Lyman Spitzer would recognize the design, a variation on the classic stellarator with two helical coils to twist the plasma and other coils to add further control. The LHD holds all major records for stellarator performance, shows good steady-state operation, and is approaching the performance of a similarly sized tokamak.

    Two researchers—IPP’s Jürgen Nührenberg and Allen Boozer of PPPL (now at Columbia University)—calculated that they could do better with a different design that would confine plasma with a magnetic field of constant strength but changing direction. Such a “quasi-symmetric” field wouldn’t be a perfect particle trap, says IPP theorist Per Helander, “but you can get arbitrarily close and get losses to a satisfactory level.” In principle, it could make a stellarator perform as well as a tokamak.

    The design strategy, known as optimization, involves defining the shape of magnetic field that best confines the plasma, then designing a set of magnets to produce the field. That takes considerable computing power, and supercomputers weren’t up to the job until the 1980s.

    The first attempt at a partially optimized stellarator, dubbed Wendelstein 7-AS, was built at the IPP branch in Garching near Munich and operated between 1988 and 2002.

    Wendelstein 7-AS
    Wendelstein 7-AS

    It broke all stellarator records for machines of its size. Researchers at UW Madison set out to build the first fully optimized device in 1993. The result, a small machine called the Helically Symmetric Experiment (HSX), began operating in 1999. “W7-AS and HSX showed the idea works,” says David Gates, head of stellarator physics at PPPL.


    download the mp4 video here.

    That success gave U.S. researchers confidence to try something bigger. PPPL began building the National Compact Stellarator Experiment (NCSX) in 2004 using an optimization strategy different from IPP’s.


    But the difficulty of assembling the intricately shaped parts with millimeter accuracy led to cost hikes and schedule slips. In 2008, with 80% of the major components either built or purchased, the Department of Energy pulled the plug on the project (Science, 30 May 2008, p. 1142). “We flat out underestimated the cost and the schedule,” says PPPL’s George “Hutch” Neilson, manager of NCSX.

    IPP/Wolfgang Filser

    Wendelstein 7-X’s bizarrely shaped components must be put together with millimeter precision. All welding was computer controlled and monitored with laser scanners.

    BACK IN GERMANY, the project to build W7-X was well underway. The government of the recently reunified country had given the green light in 1993 and 1994 and decided to establish a new branch institute at Greifswald, in former East Germany, to build the machine. Fifty staff members from IPP moved from Garching to Greifswald, 800 kilometers away, and others made frequent trips between the sites, says Klinger, director of the Greifswald branch. New hires brought staff numbers up to today’s 400. W7-X was scheduled to start up in 2006 at a cost of €550 million.

    But just like the ill-fated American NCSX, W7-X soon ran into problems. The machine has 425 tonnes of superconducting magnets and support structure that must be chilled close to absolute zero. Cooling the magnets with liquid helium is “hell on Earth,” Klinger says. “All cold components must work, leaks are not possible, and access is poor” because of the twisted magnets. Among the weirdly shaped magnets, engineers must squeeze more than 250 ports to supply and remove fuel, heat the plasma, and give access for diagnostic instruments. Everything needs extremely complex 3D modeling. “It can only be done on computer,” Klinger says. “You can’t adapt anything on site.”

    By 2003, W7-X was in trouble. About a third of the magnets produced by industry failed in tests and had to be sent back. The forces acting on the reactor structure turned out to be greater than the team had calculated. “It would have broken apart,” Klinger says. So construction of some major components had to be halted for redesigning. One magnet supplier went bankrupt. The years 2003 to 2007 were a “crisis time,” Klinger says, and the project was “close to cancellation.” But civil servants in the research ministry fought hard for the project; finally, the minister allowed it to go ahead with a cost ceiling of €1.06 billion and first plasma scheduled for 2015.

    After 1.1 million construction hours, the Greifswald institute finished the machine in May 2014 and spent the past year carrying out commissioning checks, which W7-X passed without a hitch. Tests with electron beams show that the magnetic field in the still-empty reactor is the right shape. “Everything looks, to an extremely high accuracy, exactly as it should,” IPP’s Thomas Sunn Pedersen says.

    Approval to go ahead is expected from Germany’s nuclear regulators by the end of this month. The real test will come once W7-X is full of plasma and researchers finally see how it holds on to heat. The key measure is energy confinement time, the rate at which the plasma loses energy to the environment. “The world’s waiting to see if we get the confinement time and then hold it for a long pulse,” PPPL’s Gates says.

    Success could mean a course change for fusion. The next step after ITER is a yet-to-be-designed prototype power plant called DEMO. Most experts have assumed it would be some sort of tokamak, but now some are starting to speculate about a stellarator. “People are already talking about it,” Gates says. “It depends how good the results are. If the results are positive, there’ll be a lot of excitement.”

    See the full article here .

    The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

  • richardmitnick 6:27 pm on October 13, 2015 Permalink | Reply
    Tags: Applied Research, Fusion technology,   

    From PPPL: “Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in “State of the Laboratory” address” 


    October 13, 2015
    Jeanne Jackson DeVoe

    PPPL Director Stewart Prager. (Photo by Elle Starkman/PPPL Office of Communications )

    The completion of the $94 million National Spherical Torus-Upgrade (NSTX-U) will usher in a decade of research that will lead to vital results for the international and national fusion programs and could lead the way to a next-step fusion facility, Princeton Plasma Physics Laboratory Director Stewart Prager told staff members in his annual “State of the Laboratory” address on Oct. 5.


    When research on the facility begins later this year, it will herald the start of a 10-year research program on the apple-shaped device called a tokamak,Prager said. Some 300 researchers, two-thirds of them from outside the Laboratory, will conduct research on the device that will advance the effort to create clean, safe, and affordable fusion energy as a source of generating electricity.

    PPPL Tokamak
    PPPL’s current tokamak

    “A new era”

    NSTX-U is currently “the most capable spherical tokamak in the world, soon to be joined by our sister facility in England, the MAST,” Prager said. “It will be a research anchor for the Laboratory and guarantee the future of the Laboratory for at least a decade. It is truly a national facility. This is where we are. We’re starting a new era.”


    Research on the experiment will lead to new discoveries in plasma physics that can be applied to ITER, the international fusion experiment in Cadarache, France, Prager said. NSTX-U research could advance the spherical tokamak as a candidate for a next-step fusion facility. It will also help researchers identify the best materials to serve as a boundary between the super-hot plasma in experiments and the tokamak walls.

    “I just want to say congratulations and thank you to the entire NSTX U project team for a momentous accomplishment,” Prager said, as the crowd applauded loudly. “It’s of overwhelming importance to the Laboratory and the future of fusion energy.

    Broadening PPPL’s research focus

    A next challenge for the Laboratory, Prager said, is to broaden its research focus to include diverse topics, while at the same time contributing to and preparing for a world fusion program through ITER.

    ITER Tokamak
    ITER’s current tokamak

    The Laboratory’s leadership needs to think “with a sense of urgency” about the U.S. fusion program 10 years into the future and about PPPL’s next research program, Prager said. At the same time, PPPL will implement a campus infrastructure program to renew and improve its infrastructure. A $25 million plan of refurbishment is scheduled to begin next summer.

    Looking at PPPL’s funding, Prager said he did not know how much PPPL would receive in fiscal year 2016, which began Oct. 1 as we await Congress passing the fiscal year 2016 budget. However, he said the last two years have been fairly stable with $100 million in fiscal year 2015 and $101 million in funding in fiscal year 2014, up from $86 million in 2013.

    PPPL’s strategy is aligned with the DOE’s Fusion Energy Sciences Program’s emphasis on burning plasma science, (science aimed at a self-sustaining plasma such as the one that will be produced on the ITER experiment), and discovery science (research that may or may not be directly related to fusion research).

    A possible breakthrough solution

    One promising direction for the Laboratory in burning plasma science is research into utilizing liquid metals as a kind of protective wall between the plasma, which is heated to temperatures hotter than the sun, and the tokamak wall. “Liquid metal is a possible breakthrough solution,” Prager said. “If you surround the plasma by a liquid, it doesn’t break, it is self-healing, and it can carry heat out if it’s flowing.”

    The topic would be “a perfect research topic” for both the United States and the Laboratory, Prager said. PPPL’s Lithium Tokamak Experiment (LTX) and the surface science laboratory have both done important research in this area, he said. A lithium boundary could be tested in NSTX-U. One possible future research project is a full torus with flowing lithium, he said.

    A torus. No image credit

    PPPL researchers working on the LTX have recently shown that the lithium boundary improves the plasma energy confinement, Prager said. PPPL plans to expand the capabilities of the LTX in the future by adding a neutral beam for core fueling and heating.

    Prager noted that lithium is a hazardous material but a recent DOE review gave high marks to the Laboratory for its safe handling of the material.

    Computational research increasingly important

    Another strategic research area, computational research, has become increasingly important in fusion energy research, Prager said. Researchers use sophisticated computer models along with NSTX-U measurements to shed light on disruptions that can interrupt fusion experiments. They also focus on turbulence in the complex edge region, an important research area in fusion energy research. “We’re learning more and more that to some extent the edge is the dog that wags the tail of the whole tokamak,” Prager said.

    Prager noted that the TRANSP code, which was developed at PPPL several years ago, is being used as a research tool in fusion facilities worldwide. In fact, scientists at a recent user-group meeting called for PPPL researchers to enhance the capabilities of the TRANSP code.

    Temp 1
    Wendelstein 7-X in Greifswald, Germany. Coils are prepared for the experimental stellarator.

    PPPL researchers are also focusing on stellarators that could sustain a plasma in steady-state, in keeping with the FES long-pulse research goal.

    PPPL is leading a team of researchers from U.S. laboratories who collaborate on the Wendelstein 7-X stellarator being constructed in Germany, Prager said. PPPL engineers oversaw the construction of magnetic trim coils and physicists installed an X-ray spectrometer on the device.

    PPPL has also made significant contributions to ITER, which will be the focus of international fusion research. “I think in 2080 when we look back at the century, ITER will be viewed as a landmark experiment of the century,” Prager said. PPPL is responsible for the U.S. contribution to diagnostics, and delivered a $42 million steady-state electric network, which powers all of ITER, Prager said. “It was delivered with great technical success and also on time and on schedule,” he said.

    Stellarators could play important role

    Looking ahead to PPPL’s long-term future, Prager said stellarators could play an important role. “Stellarators are crucial for fusion, an innovative research opportunity for the United States and a possible major component of the Laboratory’s future,” he said.

    He noted that a PPPL study group is identifying possible future stellarator paths and developing new ideas on how to optimize the design and simplify magnet shapes. A next step would be to enlarge the study to a national effort, Prager said.

    Another concept for a future project at PPPL would be a tokamak that would be surrounded by a liquid-metal wall. “A challenge now is to develop the most compelling future for the major U.S. effort on plasma material interface,” Prager said.

    And while a pilot plant or nuclear science facility “is not currently on the table,” Prager said it’s important that researchers explore the scope of such projects. “We continue to advance our understanding to possible aggressive next steps, in concert with other U.S. fusion groups,” he said.

    Next generation of MRX

    One example of “discovery science” at PPPL is research on the Magnetic Reconnection Experiment (MRX) into magnetic reconnection, the mysterious process responsible for solar flares, geomagnetic storms, star formation and other phenomena throughout the Universe.

    PPPL MRX  Experiment

    The next generation reconnection at experiment the Facility for Laboratory Reconnection Experiments (FLARE) is under construction and will be completed by late 2016.


    PPPL has begun research into plasma synthesis of nanomaterials. That project is funded by the DOE’s Basic Energy Sciences (BES), establishing a BES/FES partnership, Prager said. A new expanded lab for plasma nanotechnology is being refurbished.

    “To conclude, the start of NSTX-U signifies a new research opportunity,” Prager said, “and looking forward to the future, through the creativity of all of you we’re developing new fusion opportunities for the near-term and long-term, small-scale and large-scale.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

  • richardmitnick 3:51 pm on October 8, 2015 Permalink | Reply
    Tags: , CNN, Fusion technology   

    From CNN: “Is nuclear fusion about to change our world?” 


    October 7, 2015
    Thom Patterson

    Hey 21st century, where’s that nuclear fusion power reactor you promised?

    Tens of billions of dollars have been spent in the past 60 years, entire careers have been invested, but the ability to produce a commercially viable nuclear fusion reactor remains undemonstrated.

    After beating our heads against the wall for so long, you might ask: Why keep trying?

    Because on paper, fusion has the potential to save the planet.

    Imagine a world powered by a cheap, safe, clean, virtually limitless, sustainable fuel source such as water. If fuel and energy are cheap and available to all nations, that reduces global political tensions. If our energy comes from a clean-burning fuel source, that reduces air pollution. All that would be good, right?

    Billionaires such as Amazon founder Jeff Bezos, PayPal co-founder Peter Thiel and Microsoft co-founder Paul Allen apparently think so.

    They’ve each thrown their money into a different fusion development company, each with its own idea how to solve the fusion puzzle, according to Forbes.

    “What we’re really doing here is trying to build a star on Earth,” said Laban Coblentz at the International Thermonuclear Experimental Reactor (ITER), a massive fusion reactor being built by 35 countries in southern France.

    When Coblentz said “star,” he meant that quite literally. Fusion is what keeps stars, including our own sun, burning bright.

    Oversimplified, of course, here’s how fusion is supposed to work:

    You take two gases called deuterium and tritium and you heat them under pressure to at least 100 million degrees Celsius. That’s 180 million degrees Fahrenheit. These substances will get so hot that they change from gas to plasma. Then they fuse together — releasing a burst of additional heat. That burst is called a fusion reaction.

    The heat boils water into steam, which drives a turbine and generates electricity that powers your neighborhood.

    Here’s the really important thing: To be commercially viable, you have to create more energy than the original energy you used to heat the fuel.

    And there’s the rub: We haven’t been able to figure that part out.

    The ITER project in Cadarache, France, aims to do just that.

    Five years after construction began, activity is ramping up to a higher level. Several 33-foot-tall, 86-ton drain tanks have recently arrived from the United States. Workers have been busy gathering components to build giant electromagnets that Coblentz called the “largest superconductor procurement in the history of the planet.”

    The mood at Caderache is hopeful, Coblentz said. “There’s a very palpable sense that at last we’re entering this phase where we’re seeing physical change,” he said. “We’re seeing the progress of the project.”

    But design changes and construction delays have resulted in rising costs. One estimate says the project will cost $21 billion by the time it’s expected to be finished around 2020. U.S. contribution: $3.9 billion.

    “The real question is can the organization work in an internationally harmonized way and be reliable and stick to the schedule. .. I’m confident that it really is going to happen. We’re going to be surprising a lot of the skeptics.”

    ITER recently cut the ribbon on a nearly 200-foot-tall Assembly Building, one of the first massive structures at the site. Inside, workers will piece together large reactor components before they’re inserted into the main facility that houses something called a tokamak.

    The ITER Tokamak will be nearly 30 metres tall, and weigh 23,000 tons.

    What’s so hard about fusion?

    Handling plasma is one of the big challenges that make fusion so hard. To achieve fusion, you have to bottle up that super-hot plasma so it’s really dense. Then you have to keep it dense, hot and contained long enough to get it to fuse.

    The billionaires such as Allen, Thiel and Bezos have put their money into private companies that are running projects on a much smaller scale than ITER.

    Allen is reportedly an investor in a firm called Tri-Alpha Energy, in Orange County, California. Thiel is said to be backing Helion Energy in Redmond, Washington, and Bezos has his hopes riding on an outfit called General Fusion in the Canadian town of Burnaby, British Columbia.

    All these companies are using electromagnets in their attempts to unlock the promise of fusion.

    General Fusion uses precision controlled pistons to hammer giant shock waves into a magnetized sphere.

    But others are trying methods that don’t rely on electromagnets.

    In Livermore, California, the National Ignition Facility [NIF] has been focusing on a process called inertial confinement fusion.


    Here’s how it works: You take a pellet filled with deuterium and tritium gas and place it inside a gold plated cylinder. Then you shoot it with intense laser light. The light heats the inner walls of the cylinder, creating a superhot plasma that showers the pellet with soft X-rays. The X-rays heat the outer surface of the pellet, causing it to implode. The implosion compresses and ignites the plasma and burns the fuel, causing a fusion reaction.

    Experts say science has made a lot of progress recently and for some, confidence is high.

    “For $20 billion in cash, I could build you a working reactor,” Professor Steven Cowley, CEO of the UK Atomic Energy Authority, told Popular Mechanics. “It would be big, and maybe not very reliable, but 25 years ago we didn’t even know if we’d be able to make fusion work. Now, the only question is whether we’ll be able to make it affordable.”

    Nonetheless, it’s unlikely the big push for fusion will disappear altogether, as long as it promises to solve the world’s energy needs for the next millennium.

    “Sure. It would solve that. There’s no question,” Coblentz said. “We just have to demonstrate it, and then replicate it on a scale that will actually be practical.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 1:02 pm on October 6, 2015 Permalink | Reply
    Tags: , Fusion technology, Lawrenceville Plasma Physics   

    From LPP: “Titanium Lining for Vacuum Chamber” 

    LPP Icon

    Lawrenceville Plasma Physics

    LPP Focus Fusion Report
    October 6, 2015


    Titanium Lining Planned for Vacuum Chamber to Suppress Oxidation
    LPPFusion Wants Consultants on Plasma Spectroscopy, Vacuum Coatings

    Based on the results of test shots fired in September, LPPFusion’s research team has decided to line the vacuum chamber of the device with titanium or a titanium compound. While we cleaned oxides off the tungsten, these compounds have reappeared due to oxygen in the stainless steel chamber. After some research, we concluded that the oxygen was coming from the break-up of chromium oxide in the stainless steel when it is exposed to the hot plasma. The basic solution to this is to cover up the steel with a material that tightly binds oxygen and that won’t give it up even with high heat. Titanium and its compounds are the accepted best material for this purpose.

    LPPFusion’s team first fired the newly cleaned tungsten electrodes on Sept. 9. This initial shot provides the coating of the insulator that produces a thin current sheath. Such a thin sheath is needed for the pinch that in turn produces fusion reactions. Since this first shot does not have the insulator coating, it never produces fusion. What was not expected was the large amount of oxygen released, as evidenced by an increase in the chamber pressure. In addition, the characteristic yellow-gold color of tungsten bronze (a compound of tungsten, oxygen and hydrogen) also reappeared. It was spread widely on the steel chamber walls and more lightly back on the tungsten electrodes.

    A second cleaning with abrasives of both electrodes and the chamber was not successful. Two more shots fired on Sept. 22 also showed clear evidence of the presence of large amounts of oxygen. We estimated from the extent of the colored oxides that at least 30 mg of oxides were generated for each shot. This is far more than the 30 micrograms we see as an acceptable level of impurities in the plasma.

    On Research Physicist Syed Hassan’s suggestion, we tried to reduce the oxides by heating the vacuum chamber. However, since the chamber is in contact with the Mylar plastic insulator, it can’t be heated to temperatures above 150° C. The lower temperature that we used was not effective.

    The problem, we concluded, was that during each shot the inner layer of the steel, facing the plasma, was heated by the plasma to about 1000° C, enough to break up the chromium oxide in the stainless steel. Chromium oxide protects steel from further oxidation (rusting) at room temperature, but can’t withstand high temperatures, even for the few ms until the heat dissipated through the bulk of the steel.

    The solution is to replace the vacuum chambers inner surface with titanium or its compounds. Titanium is well known as an oxygen ”getter”, a material that grabs and hangs onto oxygen molecules. Since making an entire vacuum chamber from titanium would be costly and time consuming, we plan to line the present steel chamber with titanium. There are two ways of doing this: either brazing titanium sheets to fit inside the chamber, or coating the chamber with a thin titanium or titanium nitride layer. After consultation with suppliers, we decided on the coating, which will be done in the coming weeks. Then we can resume firing with the expectation of greatly reduced oxidation and resulting impurities in plasma.

    Oxide deposits (colored material) were still heavy after first shot on Sept. 9

    Oxide deposits were much lighter, but still present after cleaning and two more shots on Sept. 22

    Deposits on the steel chamber were still heavy, providing a reservoir for oxidation. Darker markings are from surface changes due to adhesives in tape applied during an earlier cleaning.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    LPP’S mission is the development of a new environmentally safe, clean, cheap and unlimited energy source based on hydrogen-boron fusion and the dense plasma focus device, a combination we call Focus Fusion.

    This work was initially funded by NASA’s Jet Propulsion Laboratory and is now backed by over sixty private investors including the Abell Foundation of Baltimore. LPP’s patented technology and peer-reviewed science are guiding the design of this technology for this virutally unlimited source of clean energy that can be significantly cheaper than any other energy sources currently in use.

  • richardmitnick 8:54 pm on September 28, 2015 Permalink | Reply
    Tags: , Fusion technology, NSTX-U,   

    From PPPL: “Construction completed, PPPL is set to resume world-class fusion research later this fall” 


    September 25, 2015
    John Greenwald

    Staffers who worked on the National Spherical Torus Experiment-Upgrade. (Photo by Elle Starkman/Office of Communications)

    Technicians inspect the new center stack that forms the heart of the NSTX-U.

    The new neutral beam box arrives in the NSTX-U test cell.

    The NSTX-U under construction with neutral beam boxes at left and tokamak, with American flag, at right.

    Plan for the NSTX-U upgrade.

    At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), world-leading fusion research resumes later this fall. After more than six years of planning and construction — including three years of building and 574,000 hours of labor — the National Spherical Torus Experiment-Upgrade (NSTX-U) is ready to play a critical role in the quest to develop fusion energy as a clean, safe and virtually limitless fuel for generating electricity.

    The $94 million overhaul has made the machine the most powerful spherical tokamak in the world. The upgrade has doubled its heating power and magnetic field strength, lengthened its operation from one second to five seconds and increased its plasma performance by a factor of 10. The improvements create a flexible research platform that will enable some of fusion’s most outstanding puzzles to be directly addressed for the first time, thus supporting continued U.S. leadership in the quest for fusion systems that can form the basis of commercial fusion power. .

    “This achievement signifies the completion of an extremely successful challenge, which opens the door to a decade or more of exciting research,” said PPPL Director Stewart Prager. “The world will now be watching to see if this experiment can serve to further improve our vision for future reactors.”

    Passing stringent tests

    The new machine passed stringent tests to reach construction completion. On May 11, operators produced 40,000 electron-volts from a second neutral beam — a device used to heat the plasma — to demonstrate the first step in doubling the heating power. Then, on Aug. 10, engineers produced a 100,000-amp plasma — the fuel for fusion reactions. The twin achievements easily met the Key Performance Parameters (KPP) that the project had to satisfy to be completed. “This is not a little spherical torus anymore,” said Al von Halle, the head of NSTX-U engineering and operations. “This machine has 10 times the capability of the original NSTX.”

    Reaching this point required some 250 staff members, or more than half the Laboratory, to bring the project in on time within the DOE’s budget. “It took the work of physicists, engineers, technicians and many others to solve all the problems that cropped up along the way,” said Mike Williams, associate director of engineering and infrastructure, who is retiring this month after 39 years at the Laboratory. “This was a joint effort in every sense of the word.”

    The many challenges reminded project head Ron Strykowsky of remodeling a house that’s already been built. “It’s easier to build a brand new house than to modify one that’s already standing,” Strykowsky said. “This forced us to adapt to what was there instead of building from the ground up.”

    Strengthening every nut, bolt and support

    Among the major hurdles was the need to strengthen every nut, bolt and support system throughout the machine to accommodate the higher magnetic fields. Doubling the fields created torque — or twisting forces — that could have destroyed the machine when it ramped up to full strength during operation. Analysts led by Pete Titus spent 28,000 hours supporting the Laboratory’s design and cognizant engineers by analyzing the components they designed to tolerate the higher currents and loads required for the upgrade. “This was quite a task,” said Titus, whose team began working three years before construction started and used a software program called ANSYS to analyze and reconfigure the support components.

    There were many more challenges to face. The increased power of the machine will require constant monitoring to protect the magnets, and the overall vessel, from forces and stresses that could cause them to fail. To keep constant watch, engineers designed and built a Digital Coil Protection System that makes 1,200 computations every 200 microseconds to ensure that all is running smoothly.

    Aligning the second neutral beam that pumps heat into the machine created another big challenge. Engineers headed by Timothy Stevenson had to cut a port into the tokamak vacuum vessel and aim the beam to within 80 thousands of an inch of the target inside. The spot the beam hit required reinforced armor to keep it from melting right through the vessel.

    Pushing the envelope

    “We had to push the envelope of everything we did,” Stevenson said of the overall upgrade, “and the review was highly complimentary.” Indeed, the DOE committee that conducted the closeout report recognized “the entire project team for their very high-quality work delivered over the course of the project, and resilience in overcoming expected and unexpected obstacles.”

    PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov (link is external).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

  • richardmitnick 3:29 pm on September 22, 2015 Permalink | Reply
    Tags: , , Fusion technology,   

    From EPFL: “Swiss Plasma Center to harness the sun’s energy” 

    EPFL bloc

    Ecole Polytechnique Federale Lausanne

    The heart of EPFL’s tokamak

    Emmanuel Barraud

    At EPFL, the Center for Research in Plasma Physics (CRPP) has become the Swiss Plasma Center (SPC), and for good reason: the Center is upgrading its facilities and expanding its scope of activities. These improvements strengthen the role the Lausanne-based tokamak will play as one of three research facilities selected by the EUROfusion consortium to develop nuclear fusion as part of the international project known as ITER.

    ITER icon

    Once mastered, nuclear fusion will be able to produce enough energy – clean, reliable energy – to meet the needs of mankind for centuries to come. Unlike fission, fusion does not create radioactive waste with a long lifespan, and it is based on abundant materials that are easier to extract than uranium.

    Numerous international research projects are under way, and one of the most crucial challenges they face is plasma confinement. This refers to confining a gas that is heated to more than a hundred million degrees – considerably hotter than the core of the sun – so that the component hydrogen atoms will fuse and release huge amounts of energy. But these extreme temperatures must not damage the reactor, which means the plasma must be kept away from the walls. This is done using a magnetic field that is contained inside a ring-shaped chamber called a tokamak.


    One-of-a-kind research facility

    The Variable Configuration Tokamak, which was built in 1992 at the Swiss Federal Institute of Technology in Lausanne (EPFL, Switzerland), has always been on the leading edge among research facilities in this field. The TCV tokamak, as it is known, is operated by the Center for Research in Plasma Physics (CRPP) and is unique because – as its name indicates – it can produce plasma in various shapes. This feature allows scientists to determine the most appropriate configuration for use in an energy-producing reactor. And it was thanks to this feature that in late 2013 the TCV tokamak was selected by the EUROfusion consortium as one of three national facilities on the European continent to be used to help design the international power plant ITER, currently being built in the south of France, and develop its successor, DEMO, a prototype commercial reactor.

    The Lausanne-based lab recently received 10 million francs from the Swiss government to upgrade certain aspects of its facility. Thanks to these funds, the Center will soon be equipped to carry out new experiments on the TCV tokamak, particularly in relation to extracting energy and particles from the plasma. New mechanisms for heating the plasma with microwaves and with the injection of neutral particles may also be installed. At the same time, the Center is expanding its sector for lower density and lower temperature plasmas in order to explore new applications for plasma, such as in the medical field, the food industry and astrophysics. These improvements will encourage many Swiss and European researchers to visit Lausanne and conduct new experiments.

    The “Swiss Plasma Center”, a new international reference

    Alongside these developments, the Lausanne-based lab is changing its name. It is now the Swiss Plasma Center that will impress its credentials on Switzerland, Europe and the rest of the world as a leading institution in this field. The renamed Center was officially inaugurated today in Lausanne. Attendees included Bernard Bigot, Director-General of ITER, along with officials from the EUROfusion consortium, who emphasized the importance of the research being carried out in Switzerland in support of the objective of the reactor being built in Cadarache. The reactor, using nuclear fusion, aims to generate ten times more power than was injected into it.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc

Get every new post delivered to your Inbox.

Join 495 other followers