Tagged: Frontier Fields Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:06 pm on March 10, 2016 Permalink | Reply
    Tags: , , Frontier Fields,   

    From Chandra: “MACS J0416.1-2403 and MACS J0717.5+3745: Telescopes Combine to Push Frontier on Galaxy Clusters” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    MACS J0416.1-2403 and MACS J0717.5+3745
    Credit X-ray: NASA/CXC/SAO/G.Ogrean et al.; Optical: NASA/STScI; Radio: NRAO/AUI/NSF
    Release Date March 10, 2016

    These two galaxy clusters are part of the “Frontier Fields” project that obtains long observations with multiple telescopes.

    Galaxy clusters are important because they are the largest structures in the Universe held together by gravity.

    Both of these objects are sites where multiple galaxy clusters are colliding.

    X-rays from Chandra reveal the massive amounts of hot gas that pervade each galaxy cluster.

    Galaxy clusters are enormous collections of hundreds or even thousands of galaxies and vast reservoirs of hot gas embedded in massive clouds of dark matter, invisible material that does not emit or absorb light but can be detected through its gravitational effects. These cosmic giants are not merely novelties of size or girth – rather they represent pathways to understanding how our entire universe evolved in the past and where it may be heading in the future.

    To learn more about clusters, including how they grow via collisions, astronomers have used some of the world’s most powerful telescopes, looking at different types of light. They have focused long observations with these telescopes on a half dozen galaxy clusters. The name for this galaxy cluster project is the Frontier Fields.

    Two of these Frontier Fields galaxy clusters, MACS J0416.1-2403 (abbreviated MACS J0416) and MACS J0717.5+3745 (MACS J0717 for short) are featured here in a pair of multi-wavelength images.

    Located about 4.3 billion light years from Earth, MACS J0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster. MACS J0717, one of the most complex and distorted galaxy clusters known, is the site of a collision between four clusters. It is located about 5.4 billion light years away from Earth.

    These new images of MACS J0416 and MACS J0717 contain data from three different telescopes: NASA’s Chandra X-ray Observatory (diffuse emission in blue), Hubble Space Telescope (red, green, and blue), and the NSF’s [NRAO] Jansky Very Large Array (diffuse emission in pink). Where the X-ray and radio emission overlap the image appears purple. Astronomers also used data from the the Giant Metrewave Radio Telescope [GMRT] in India in studying the properties of MACS J0416.

    NASA Hubble Telescope
    NASA/ESA Hubble

    NRAO VLA
    NRAO/VLA

    Giant Metrewave Radio Telescope
    GMRT

    The Chandra data shows gas in the merging clusters with temperatures of millions of degrees. The optical data shows galaxies in the clusters and other, more distant, galaxies lying behind the clusters. Some of these background galaxies are highly distorted because of gravitational lensing, the bending of light by massive objects. This effect can also magnify the light from these objects, enabling astronomers to study background galaxies that would otherwise be too faint to detect. Finally, the structures in the radio data trace enormous shock waves and turbulence. The shocks are similar to sonic booms, generated by the mergers of the clusters.

    New results from multi-wavelength studies of MACS J0416 and MACS J0717, described in two separate papers, are included below.

    An open question for astronomers about MACS J0416 has been: are we seeing a collision in these clusters that is about to happen or one that has already taken place? Until recently, scientists have been unable to distinguish between these two explanations. Now, the combined data from these various telescopes is providing new answers.

    In MACS J0416 the dark matter (which leaves its gravitational imprint in the optical data) and the hot gas (detected by Chandra) line up well with each other. This suggests that the clusters have been caught before colliding. If the clusters were being observed after colliding the dark matter and hot gas should separate from each other, as seen in the famous colliding cluster system known as the Bullet Cluster.

    Bullet Cluster NASA Chandra NASA ESA Hubble
    Bullet Cluster. NASA/Chandra NASA/ESA Hubble

    The cluster in the upper left contains a compact core of hot gas, most easily seen in a specially processed image, and also shows evidence of a nearby cavity, or hole in the X-ray emitting gas. The presence of these structures also suggests that a major collision has not occurred recently, otherwise these features would likely have been disrupted. Finally, the lack of sharp structures in the radio image provides more evidence that a collision has not yet occurred.

    In the cluster located in the lower right, the observers have noted a sharp change in density on the southern edge of the cluster. This change in density is most likely caused by a collision between this cluster and a less massive structure located further to the lower right.

    In Jansky Very Large Array images of this cluster, seven gravitationally-lensed sources are observed, all point sources or sources that are barely larger than points. This makes MACS J0717 the cluster with the highest number of known lensed radio sources. Two of these lensed sources are also detected in the Chandra image. The authors are only aware of two other lensed X-ray sources behind a galaxy cluster.

    All of the lensed radio sources are galaxies located between 7.8 and 10.4 billion light years away from Earth. The brightness of the galaxies at radio wavelengths shows that they contain stars forming at high rates. Without the amplification by lensing, some of these radio sources would be too faint to detect with typical radio observations. The two lensed X-ray sources detected in the Chandra images are likely active galactic nuclei (AGN) at the center of galaxies. AGN are compact, luminous sources powered by gas heated to millions of degrees as it falls toward supermassive black holes. These two X-ray sources would have been detected without lensing but would have been two or three times fainter.

    The large arcs of radio emission in MACS J0717 are very different from those in MACS J0416 because of shock waves arising from the multiple collisions occurring in the former object. The X-ray emission in MACS J0717 has more clumps because there are four clusters violently colliding.

    Georgiana Ogrean, who was at Harvard-Smithsonian Center for Astrophysics while leading the work on MACS J0416 research, is currently at Stanford University. The paper describing these results was published in the October 20th, 2015 issue of the Astrophysical Journal and is available online. The research on MACS J0717 was led by Reinout van Weeren from the Harvard-Smithsonian Center for Astrophysics, and was published in the February 1st, 2016 issue of the Astrophysical Journal and is available online.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 3:59 pm on December 29, 2015 Permalink | Reply
    Tags: , , Frontier Fields,   

    From Frontier Fields: “How Hubble “Sees” Gravity” 

    Frontier Fields
    Frontier Fields

    December 29, 2015
    Dr. Frank Summers

    Gravity is the familiar force of nature responsible for the diverse motions of a baseball thrown high into the air, a planet orbiting a star, or a star orbiting within a galaxy. Astronomers have long observed such motions and deduced the amount of gravity, and therefore the amount of matter, present in the planet, star, or galaxy. When taken to the extreme, gravity can also create some intriguing visual effects that are well suited to Hubble’s high-resolution observations.

    [Albert] Einstein’s general theory of relativity expresses how very large mass concentrations distort the space around them. Light passing through that distorted space is re-directed, and can produce a variety of interesting imagery. The bending of light by gravity is similar to the bending of light by a glass lens, hence we call this effect “gravitational lensing”.

    1
    An “Einstein Cross” gravitational lens.

    The simplest type of gravitational lensing is called “point source” lensing. There is a single concentration of matter at the center, such as the dense core of a galaxy. The light of a distant galaxy is re-directed around this core, often producing multiple images of the background galaxy (see the image above for an example). When the lensing approaches perfect symmetry, a complete or almost complete circle of light is produced, called an “Einstein ring”. Hubble observations have helped to greatly increase the number of Einstein rings known to astronomers.

    2
    Gravitational lensing in galaxy cluster Abell 2218

    More complex gravitational lensing arises in observations of massive clusters of galaxies.

    5
    Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. The image is derived from the 2MASS Extended Source Catalog (XSC)—more than 1.5 million galaxies, and the Point Source Catalog (PSC)–nearly 0.5 billion Milky Way stars. The galaxies are color coded by redshift (numbers in parentheses) obtained from the UGC, CfA, Tully NBGC, LCRS, 2dF, 6dFGS, and SDSS surveys (and from various observations compiled by the NASA Extragalactic Database), or photo-metrically deduced from the K band (2.2 μm). Blue/purple are the nearest sources (z < 0.01); green are at moderate distances (0.01 < z < 0.04) and red are the most distant sources that 2MASS resolves (0.04 < z < 0.1). The map is projected with an equal area Aitoff in the Galactic system (Milky Way at center).
    IPAC/Caltech, by Thomas Jarrett

    While the distribution of matter in a galaxy cluster generally does have a center, it is never perfectly circularly symmetric and is usually significantly lumpy. Background galaxies are lensed by the cluster with their images often appearing as short thin “lensed arcs” around the outskirts of the cluster. Hubble’s images of galaxy clusters, such as Abell 2218 (above) and Abell 1689, showed the large number and detailed distribution of these lensed images throughout massive galaxy clusters.

    These lensed images also act as probes of the matter distribution in the galaxy cluster. Astronomers can measure the motions of the galaxies within a cluster to determine the total amount of matter in the cluster. The result indicates that the most of the matter in a galaxy cluster is not in the visible galaxies, does not emit light, and is thus called dark matter. The distribution of lensed images reflects the distribution of all matter, both visible and dark. Hence, Hubble’s images of gravitational lensing have been used to create maps of dark matter in galaxy clusters.

    In turn, a map of the matter in a galaxy cluster helps provide better understanding and analysis of the gravitational lensed images. A model of the matter distribution can help identify multiple images of the same galaxy or be used to predict where the most distant galaxies are likely to appear in a galaxy cluster image. Astronomers work back and forth between the gravitational lenses and the cluster matter distribution to improve our understanding of both.

    3
    Three lensed images of a distant galaxy seen through a cluster of galaxies.

    On top of it all, gravitational lenses extend Hubble’s view deeper into the universe. Very distant galaxies are very faint. Gravitational lensing not only distorts the image of a background galaxy, it can also amplify its light. Looking through a lensing galaxy cluster, Hubble can see fainter and more distant galaxies than otherwise possible. The Frontier Fields project has examined multiple galaxy clusters, measured their lensing and matter distribution, and identified a collection of these most distant galaxies.

    While the effects of normal gravity are measurable in the motions of objects, the effects of extreme gravity are visible in images of gravitational lensing. The diverse lensed images of crosses, rings, arcs, and more are both intriguing and informative. Gravitational lensing probes the distribution of matter in galaxies and clusters of galaxies, as well as enables observations of the distant universe. Hubble’s data will also provide a basis and guide for the future James Webb Space Telescope, whose infrared observations will push yet farther into the cosmos.

    4
    A “smiley face” gravitational lens in a galaxy cluster.

    The distorted imagery of gravitational lensing often is likened to the distorted reflections of funhouse mirrors, but don’t take that comparison too far. Hubble’s images of gravitational lensing provide a wide range of serious science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb

     
  • richardmitnick 9:21 am on October 22, 2015 Permalink | Reply
    Tags: , , , Frontier Fields,   

    From EPFL: “Looking at the earliest galaxies” 

    EPFL bloc

    Ecole Polytechnique Federale Lausanne

    22.10.15
    Nik Papageorgiou

    1
    HST

    An international team of astronomers led by EPFL have discovered over 250 of the universe’s earliest galaxies. This sample includes the faintest and smallest of the first-generation dwarf galaxies to be discovered, and offers important clues about the nature of the early universe.

    Before light travelled across it, the universe was a dark place. For about a billion years after the Big Bang, the cosmos was cloaked in a thick fog of hydrogen gas that kept light trapped. But as early stars began to form, hydrogen began to clear through a process called reionization, letting light escape in all directions and turning the universe transparent. This event played a central role in the formation of the universe as we know it. Now, using observations from the Hubble Space Telescope, astronomers led by EPFL have “looked back in time” by discovering over 250 of the earliest dwarf galaxies, and have also determined that these were vital to reionization. The work will be published in the Astrophysical Journal.

    Hydrogen and early stars

    Reionization is a mystery in the scientific community. We do know that 400 million years after the Big Bang, the universe was still a very dark place. Protons and neutrons had combined into electrically charged, or ionized, atoms of hydrogen and helium. The ions began to attract electrons, and turned into electrically neutral atoms, creating a thick fog that kept light contained.

    Slowly, the first stars formed, likely 30-300 times bigger than our own Sun. Being young and huge, they burned bright and brief, exploding in supernovae. The energetic electromagnetic radiation (including ultraviolet light) they released reionized the neutral atoms of hydrogen, and the fog cleared, letting light could travel to the vast corners of the universe.

    Looking back

    An international team of astronomers led by Hakim Atek at EPFL’s Laboratory of Astrophysics, have discovered over 250 of the earliest galaxies, just 600-900 million years after the Big Bang. The researchers used observations by the Hubble Space Telescope to study the largest sample of the earliest dwarf, ultra-faint galaxies known.

    But though powerful, the Hubble was not all. The scientists also exploited a cosmic phenomenon known as “gravitational lensing”. Because space has been expanding since the Bing Bang, the oldest objects are further along the “outgoing” direction. Consequently, their light will also be very faint.

    The team used closer galaxy clusters as a “magnifying lens” to observe older and more distant ones. Being super-massive, the galaxy clusters can bend spacetime. This forms a “gravitational lens” that can magnify the light from other galaxies hiding far behind the clusters.

    The scientists studied images of three galaxy clusters taken as part of the Hubble Frontier Fields program, a three-year, 840-orbit programme that explores the most distant regions of space through gravitational lensing effects around six different galaxy clusters.

    “Clusters in the Frontier Fields act as powerful natural telescopes and unveil for us these faint dwarf galaxies that would otherwise be invisible,” says Jean-Paul Kneib, co-author of the study from EPFL.

    Some of the galaxies the team discovered formed just 600 million years after the Big Bang, according to Daniel Schaerer’s distance determinations from the University of Geneva. This makes them among the faintest of any other galaxy that Hubble has observed for this cosmic epoch. But the accumulated light that these dwarf galaxies emit because of their very large number, could have played a major role in reionization.

    By observing the ultraviolet light from the galaxies found in this study the astronomers were able to calculate if these were in fact some of the galaxies involved in reionizing hydrogen. The team’s analysis determined, for the first time with a degree of confidence, that the smallest and most abundant of the galaxies in the study were in fact vital in the universe-sculpting process. “The bright and massive galaxies alone are not enough to account for reionization,” says Hakim Atek. “We need to take into account the contribution of a more abundant population of faint dwarf galaxies.”

    The study highlights the impressive possibilities of the Frontier Fields program. Scientists are currently working with Hubble images on another three galaxy clusters, and more exciting findings lie ahead. “Hubble remains unrivalled in its ability to observe the most distant galaxies and the sheer depth of the Hubble Frontier Field data guarantees very precise understanding of the cluster magnification effect, allowing us to make discoveries like these,” says Mathilde Jauzac, a co-author of the study from Durham University and the University of KwaZulu-Natal.

    This work represents a collaboration of EPFL’s Laboratory of Astrophysics with the Observatoire de Lyon, Durham University, the University of KwaZulu-Natal, CNRS-Aix Marseille Université, Yale University, Observatoire de Genève – University of Geneva, CNRS-Institut de Recherche en Astrophysique et Planétologie, the University of Hawaii, and the University of Arizona. The projects was funded by the European Research Council (grants “Light on the Dark” and CALENDS), the Leverhulme Trust, the Science and Technology Facilities Council, the National Science Foundation, the Space Telescope Science Institute, and CNRS. The Hubble Space Telescope is a project of international cooperation between the ESA and NASA.

    Reference

    Atek H, Richard J, Jauzac M, Kneib J-P, Natarajan P, Limousin M, Schaerer D, Jullo E, Ebeling H, Egami E, Clement B. Are Ultra-faint Galaxies at z=6−8 Responsible for Cosmic Reionization? Combined Constraints from the Hubble Frontier Fields Clusters And Parallels. Astrophysical Journal (Link to manuscript).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 8:53 am on January 24, 2015 Permalink | Reply
    Tags: , , Frontier Fields,   

    From Frontier Fields: “MACS J0416 Data is Complete” 

    Frontier Fields
    Frontier Fields

    January 21, 2015
    Tracy Vogel

    Observations of another Frontier Fields galaxy cluster and parallel field are complete. This time, we have new images for you of MACS J0416.1-2403. Here’s the galaxy cluster:

    1

    And here is the parallel field:

    2

    Beautiful, aren’t they? This is the second Frontier Fields cluster and parallel field to be fully imaged.

    Remember that to maximize scientific discovery, Hubble is using two of its instruments simultaneously to examine both the cluster and the parallel field, then observing the same areas again with the instruments switched.

    Hubble takes two sets of observations, called epochs, in order to thoroughly examine the two areas. During the first, Hubble spent 80 orbits with the Advanced Camera for Surveys (ACS) pointing at the main galaxy cluster, and Wide Field Camera 3 (WFC3) looking at the parallel field. ACS provides a visible-light view, and WFC3 adds near-infrared light.

    NASA Hubble ACS
    ACS

    NASA Hubble WFC3
    WFC3

    During the second epoch, Hubble spent 70 orbits targeting WFC3 on the main cluster and ACS on the parallel field.

    Scientists are poring over the new data, and one result is already in. Expect to hear more about these observations in the near future.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb

     
  • richardmitnick 4:59 pm on December 9, 2014 Permalink | Reply
    Tags: , , , , Frontier Fields   

    From Frontier Fields: “Mapping Mass in a Frontier Fields Cluster” 

    Frontier Fields
    Frontier Fields

    December 9, 2014
    Tracy Vogel

    The Frontier Fields project’s examination of galaxy cluster MACS J0416.1-2403 has led to a precise map that shows both the amount and distribution of matter in the cluster. MACS J0416.1-2403 has 160 trillion times the mass of the Sun in an area over 650,000 light-years across.

    The mass maps have a two-fold purpose: they identify the location of mass in the galaxy clusters, and by doing so make it easier to characterize lensed background galaxies.

    m
    Mass map of galaxy cluster MCS J0416.1–2403
    The galaxy clusters under observation in Frontier Fields are so dense in mass that their gravity distorts and bends the light from the more-distant galaxies behind them, creating the magnifying effect known as gravitational lensing. Astronomers use the lensing effect to determine the location of concentrations of mass in the cluster, depicted here as a blue haze. Credit: ESA/Hubble, NASA, HST Frontier Fields

    Astronomers use the distortions of light caused by mass concentrations to pinpoint the distribution of mass within the cluster, including invisible dark matter. Weakly lensed background galaxies, visible in the outskirts of the cluster where less mass accumulates, may be stretched into slightly more elliptical shapes or transformed into smears of light. Strongly lensed galaxies, visible in the inner core of the cluster where greater concentrations of mass occur, can appear as sweeping arcs or rings, or even appear multiple times throughout the image. And as a dual benefit, as the clusters’ mass maps improve, it becomes easier to identify which galaxies are strongly lensed, and which galaxies are farther away.
    Stronger lensing produces greater distortions. Astronomers can work backwards from the distortions to pinpoint the greater concentrations of mass responsible for producing such altered images.

    s
    Stronger lensing produces greater distortions. Astronomers can work backwards from the distortions to pinpoint the greater concentrations of mass responsible for producing such altered images. Credit: A. Feild (STScI)

    The depth of the Frontier Fields images allows astronomers to see extremely faint objects, including many more strongly lensed galaxies than seen in previous observations of the cluster. Hubble identified 51 new multiply imaged galaxies around this cluster, for instance, quadrupling the number found in previous surveys. Because the galaxies are multiples, that means almost 200 strongly lensed images appear in the new observations, allowing astronomers to produce a highly constrained map of the cluster’s mass, inclusive of both visible and dark matter.

    The dark matter aspect is particularly intriguing. Because these types of Frontier Fields analyses create extremely precise maps of the locations of dark matter, they provide the potential for testing the nature of dark matter. Learning where dark matter concentrates in massive galaxy clusters can give clues to how it behaves and changes. And as the mass maps become more precise, astronomers are better able to determine the distance of the lensed galaxies.

    In order to obtain a complete picture of MACS J0416.1-2403’s mass, astronomers will also need to include weak lensing measurements. Follow up observations will include further Frontier Fields imaging, as well as X-ray measurements of hot gas and spectroscopic redshifts to break down the total mass distribution into dark matter, gas, and stars.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb

     
  • richardmitnick 6:03 pm on November 16, 2014 Permalink | Reply
    Tags: , , , , Frontier Fields   

    From Frontier Fields: “Gravitational Forensics: Astronomers Discover a Distant Galaxy in the Frontier Fields” 

    Frontier Fields
    Frontier Fields

    November 12, 2014
    Dr. Brandon Lawton

    The first Hubble Frontier Fields observations of a galaxy cluster and adjacent parallel field are complete, and interesting results are starting to arrive from astronomers. In this post, we explore how astronomers used the tools available to them to piece together the discovery of a very distant galaxy.

    The Discovery

    A team of international astronomers, led by Adi Zitrin of the California Institute of Technology in Pasadena, Calif., have discovered a very distant galaxy observed to be multiply lensed by the foreground Abell 2744 galaxy cluster. The light from this distant galaxy was distorted into three images and magnified via gravitational lensing of Abell 2744. This magnification provided the astronomers with a means to detect the incredibly faint galaxy with Hubble.

    a2744
    Abell 2744, nicknamed Pandora’s Cluster. The galaxies in the cluster make up less than five percent of its mass. The gas (around 20 percent) is so hot that it shines only in X-rays (coloured red in this image). The distribution of invisible dark matter (making up around 75 percent of the cluster’s mass) is coloured here in blue.
    Date 22 June 2011
    Source HubbleSite
    Author NASA, ESA, J. Merten (Institute for Theoretical Astrophysics, Heidelberg/Astronomical Observatory of Bologna), and D. Coe (STScI)

    Astronomers are interested in finding these very distant galaxies because they represent an early stage of galaxy formation that occurred just after the Big Bang. Light from this galaxy has been traveling for quite some time. We are seeing this galaxy as it existed when the universe was only about 500 million years old. For context, the current age of the universe is around 13.8 billion years old.

    Like visitors to a nursery, astronomers can see this baby galaxy is much smaller than present-day adult galaxies. In fact, they measure it to be about 500 times smaller than our own Milky Way galaxy. This baby galaxy is estimated to be forming new stars at a rate of one star every three years. That is about 1/3 the current rate of star formation of our own Milky Way, but keep in mind that this infant galaxy is much smaller than the present-day Milky Way. This baby galaxy is not just small but also a lightweight. It has the mass, in stars, of only about 40 million suns. Compare that to the Milky Way, which has a mass of several hundred billion suns. It is also one of the intrinsically faintest distant galaxies ever discovered.

    The three lensed images of the baby galaxy are highlighted in the composite image below.

    im
    Credit: NASA, ESA, A. Zitrin (California Institute of Technology, Pasadena), and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (Space Telescope Science Institute, Baltimore, Md.) Shown is the discovery of a high redshift galaxy candidate, triply lensed by Abell 2744. The high redshift galaxy candidate’s lensed images are labeled as a, b, and c.

    This is now one of only a small handful — about 10 — of galaxies we have discovered at such great distances. The way the team discovered this distant galaxy is, perhaps, as interesting as the galaxy itself. The team of astronomers used a traditional color-based method for determining that the galaxy is a candidate for being a distant, baby galaxy. They then followed up with a pioneering new technique to confirm the distance via the geometry of gravitational lensing.

    Using Colors to Find Candidate Distant Galaxies

    Why do we think that the galaxy is very far away? Astronomers used Hubble’s filters to capture the light from this baby galaxy in several different colors. The intensity of light coming from the galaxy at different colors can give an estimate of the galaxy’s cosmological redshift. Cosmological redshift, commonly denoted by the letter “z,” is a number that signifies how reddened a galaxy is due to the expansion of space. A distance can be estimated once a cosmological redshift is measured. Larger cosmological redshifts correspond to larger distances.

    Adi Zitrin and his collaborators initially found the distant galaxy (labeled “a” in the figure above) by noticing that it remained when they were looking for only the reddest galaxies. Remember, a galaxy may appear red if its light is redshifted due to the expansion of the universe. The farther the galaxy, the longer its light has to traverse the expanding universe, getting more and more stretched (redshifted) along the way. Astronomers are particularly interested in finding a population of galaxies with large cosmological redshifts — values of z around 10 or greater — because they represent some of the earliest galaxies to form after the Big Bang.

    From the colors of the galaxy found in box ‘a,’ the team estimated that the galaxy has a redshift greater than 4, with 95% confidence. In fact, the colors of the galaxy in box ‘a’ highly favored a galaxy around z=10, but they could not discount that what they were measuring was an intrinsically red galaxy at a lower redshift, around a z=2. How do we sort this out?

    Deciphering the Geometry of Abell 2744′s Gravitational Lens

    Astronomers can do better, and these astronomers have shown that with knowledge of how mass is distributed in the foreground galaxy cluster, it is possible to distinguish between higher redshift and lower redshift background galaxies. Thus, with updated maps of the mass distribution of the Abell 2744 galaxy cluster, astronomers created more precise mathematical models of how light from a more distant galaxy behaves as it passes around the galaxy cluster’s warped space.

    The geometry of a gravitational lens is such that the more distant a background galaxy behind the galaxy cluster, the farther from the center of the galaxy cluster we observe the distorted and magnified, lensed versions of the galaxy. This is portrayed in the graphic below, where two lensed versions of the more distant, highly redshifted, red galaxy appears on the sky at larger apparent distances from the central, foreground, lensing galaxy cluster.

    2
    Credit: Courtesy of Dr. Dan Coe (STScI). Shown here is an illustration of how the multiple lensing of a background galaxy will show its maximum magnification depending on its distance to the foreground galaxy cluster. More distant galaxies will be lensed such that we observe them further from the center of the galaxy cluster.

    Astronomers can use the computed geometry of gravitational lensing to ascertain the cosmological redshift of the lensed galaxy based on its observed positions relative to the foreground galaxy cluster. If multiple images of the lensed galaxy appear nearby the cluster, it is at a lower redshift. If the multiple images of the lensed galaxy appear more separated from the cluster, it is at a larger redshift.

    Finding the Multiple Images of a Distant Lensed Galaxy

    With the updated mathematical models of the gravitational lensing by Abell 2744, Adi Zitrin and his team could follow up and look for multiply lensed images of the one potentially distant galaxy they had found, labeled “a” in the image at top. The mathematical models give them positions on the sky to look for the lensed siblings of galaxy ‘a’ for various redshifts. If the distant galaxy is at a relatively low redshift, multiply lensed images will appear nearer the cluster. If the distant galaxy is at a high redshift, multiply lensed images will appear farther from the cluster.

    With the computational tools and mathematical knowledge available to them, the team discovered the lensed versions of galaxy “a” at positions that match a high-redshift solution. In the figure below, they marked the locations of the lensed images, labeled “B” and “C”, along with their best mathematical estimates of redshift for each of them (labeled along the blue- and green-colored redshift lines). What is labeled as the initially discovered candidate galaxy “a” in the image at top is now labeled as “A” in the image below.
    Credit: Adi Zitrin et al. 2014. Shown here are the expected positions of the three lensed versions of the newly discovered high redshift galaxy candidate, based on mathematical models of the gravitational lensing from Abell 2744. Galaxy lens A, B, and C are all in positions that match high redshift solutions in the models, i.e. redshifts of around 8 or greater.

    3
    Credit: Modified from Adi Zitrin et al., ApJ, 793 (2014). Shown here are the expected positions of the three lensed versions of the newly discovered high-redshift galaxy candidate, based on mathematical models of the gravitational lensing from Abell 2744. The multiply-lensed positions of the galaxy, labeled “A”, “B”, and “C,” match the high-redshift solution in the models, i.e., redshifts of around 8 or greater.

    This is but a taste of how astronomers will use the Frontier Fields to combine exquisite imaging with updated mathematical models to detect and study some of the first galaxies to form after the Big Bang. We are just at the beginning of collecting the baby pictures of galaxies in our universe. Stay tuned as we detect more baby galaxies from the dawn of time!

    Looking to the Future

    The galaxy presented here is one of the least luminous high-redshift galaxies ever detected. This bodes very well for finding future baby galaxies in the Frontier Fields. We also expect that studies of the galaxy clusters themselves, via the new data in the Frontier Fields, will lead to more accurate mass distribution maps and more accurate mathematical models of how light from distant galaxies are gravitationally lensed and magnified.

    This really is a new age in using humankind’s most sophisticated telescopes with nature’s lenses to probe deeper into our cosmic past than ever before. Stay tuned for more results from the Frontier Fields.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:52 pm on October 29, 2014 Permalink | Reply
    Tags: , , , , Frontier Fields,   

    From Frontier Fields: “Light Detectives: Using Color to Estimate Distance” 

    Frontier Fields
    Frontier Fields

    October 28, 2014
    Dr. Brandon Lawton

    Distances are notoriously difficult to measure in astronomy. Astronomers use many methods for estimating distances, but the farther away an object is, the more uncertain the results. Cosmological distances, distances on the largest scales of our universe, are the most difficult to estimate. To measure the distances to the farthest galaxies, those gravitationally lensed by massive foreground galaxy clusters, astronomers really have their work cut out for them.

    If a massive stellar explosion, known as a supernova, happens to go off in a galaxy and we catch it, then we can use the “standard candle” method of computing the distance to the galaxy. Supernovae are expected to be discovered in the Frontier Fields, but not at the numbers that will help us find distances to most of the galaxies in the images. Without these standard candles, astronomers must use other means to estimate distances.

    A Spectrum is Worth a Thousand Pictures

    One of the more accurate methods for measuring the distance to a distant galaxy involves obtaining a spectrum of the galaxy. Getting a galaxy’s spectrum basically means taking the light from that galaxy and breaking it up into its component colors, much like a prism breaks up white light into the rainbow of visible colors. By comparing the brightness of light at each component color, a spectrum can give us a wealth of information. This can include detailed information about a galaxy’s composition, temperature, and how fast it is moving relative to us. Because the universe is expanding, we observe most galaxies, and all distant galaxies, to be moving away from us.

    When looking at a distant galaxy’s spectrum, the expansion of the universe causes the component colors in the spectrum to be stretched to longer wavelengths. For visible light, red has the longest wavelengths, which leads to the term ‘redshift’. This cosmological redshift can be accurately measured from a spectrum. Astronomers then use mathematical models of the expansion rate of our universe to convert the measured redshift into an estimate of distance. Larger values of redshift correspond to larger distances.

    This video, developed by the Office of Public Outreach at the Space Telescope Science Institute, gives a demonstration of how light is redshifted as it travels through the expanding universe. Here, the lightbulb stands in place of a galaxy. As the universe expands, it stretches the light traveling through the universe, increasing the light’s wavelength. As the wavelength increases, it becomes more red. Light traveling longer distances through the universe will be stretched/reddened more than light traveling short distances. This is why astronomers use instruments sensitive to redder light, including infrared light, when they attempt to observe the light from very distant galaxies. Watch this video on Youtube.

    Larger redshifts not only correspond to larger distances, but they also correspond to earlier times in our universe’s history. This is because light takes time to travel to us from these distant galaxies. The more distant the galaxy, the longer the light has been traveling before we intercept it with sensitive telescopes, like Hubble.

    Assuming typical contemporary mathematical models, the universe is about 13.8 billion years old. Galaxies at a redshift of 1 are seen as they existed when the universe was about 6 billion years old. Galaxies at a redshift of 3 are seen as they existed when the universe was about 2 billion years old. Galaxies at a redshift of 6 are seen as they existed when the universe was about 1 billion years old. Galaxies at a redshift of 10 are seen as they existed when the universe was only about 500 million years old.

    It is notoriously difficult to obtain a spectrum of a very distant galaxy. They are very faint, and an accurate spectrum relies on obtaining a lot of light. One is, after all, taking what little light you get and breaking it up further into the component colors, meaning that you start with little light and get out even less light at each component color. Getting enough light to take an accurate spectrum of a distant galaxy requires very lengthy observations with sensitive telescopes. This is not always feasible.

    Redshifts measured via spectra are called spectroscopic redshifts. Many of the nearer galaxies in Abell 2744 have measured spectroscopic redshifts. There will likely be many follow-up observations from ground- and space-based observatories to obtain spectra of many of the fainter and more distant galaxies in the Frontier Fields. So stay tuned!
    I Can’t Obtain a Spectrum! What to do?

    If you do not have a spectrum, are there other ways to estimate the redshift and distance to a galaxy? Yes! Just take a look at the galaxy’s colors.

    All Hubble images are taken with filters. Blue filters allow Hubble’s instruments to capture only blue light, red filters allow Hubble’s instruments to capture only red light, and so on. By comparing a galaxy’s brightnesses in these different colors, astronomers can estimate the distance to the galaxy. The redder the color, the more likely the galaxy is to be redshifted, and thus, farther away.

    This technique of using color to estimate redshift is called photometric redshift. The following two primary methods are used for estimating a photometric redshift:

    compare the colors of your high-redshift galaxy candidate to a set of typical galaxy color templates at various redshifts, or
    compare the colors of your high-redshift galaxy candidate to a set of galaxies with measured spectroscopic redshifts and, utilizing specialized software, compute the most likely redshift for your galaxy.

    In the first case, the photometric redshift comes from the best match between the observed high-redshift candidate colors and the colors of the template galaxies. The template galaxy colors stem from observations of galaxies that tend to be relatively close but are then mathematically reddened over a range of redshift values.

    In the second case, astronomers use a set of observed galaxies whose redshifts have been measured spectroscopically, as explained in the prior section. This set contains galaxies at various redshifts. They then use machine-learning algorithms to compare the colors of this set of galaxies with the colors of the target high-redshift galaxy candidate. The software selects the most likely redshift.

    Whichever method is used, astronomers are careful to give confidence levels in their calculations. For the computation of photometric redshift, there is typically an uncertainty of around a few percent for high-quality data. In addition, there is the lingering issue of whether the high-redshift galaxy candidate is truly redshifted, or if it is a nearer galaxy that is intrinsically redder. It is not uncommon to read results where astronomers find a galaxy with a probable high photometric redshift and a less probable low photometric redshift, or vice versa.

    shif
    Credit: Adapted from Adi Zitrin, et al., 2014. Shown is a high-redshift galaxy candidate in Hubble’s observations of Abel 2744, discovered using filters. Dark regions represent light in these images. Notice how the galaxy drops out of the image in the bluest filters. This is a hint that the galaxy may be significantly redshifted.

    Many of the first results for the Frontier Fields utilize photometric redshifts. In the absence of spectra, photometric redshifts are the next best thing to obtaining estimates of distances for large samples of galaxies. They are readily computed from the current Frontier Fields data.

    See the full article, with video, here.

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 7:37 am on October 25, 2014 Permalink | Reply
    Tags: , , , , Frontier Fields,   

    From Frontier Fields: “First Galaxy Field Complete: Abell 2744” 

    Frontier Fields
    Frontier Fields

    October 23, 2014
    Tony Darnell

    This past summer, the Hubble Frontier Fields team completed observations of the first cluster on its list: Abell 2744! The second set of observations — astronomers call them epochs — consisted of 70 orbits and marks the completion of the first Frontier Fields galaxy cluster. During this set, Hubble’s Advanced Camera for Surveys (ACS) was pointed at the main galaxy cluster and studied the visible-light portions of the spectrum, while the Wide Field Camera 3 (WFC3) looked at the parallel field in the infrared.

    NASA Hubble ACS
    ACS

    NASA Hubble WFC3
    WFC3

    Remember that Hubble will visit each field multiple times, with Hubble oriented such that one set of observations will point WFC3 at the cluster and ACS at a parallel field adjacent to the cluster (that’s one epoch). The telescope will then come back and do another set of observations with the cameras switched: ACS pointing at the cluster and WFC3 pointing to the parallel field (that’s the second one).

    The Frontier Fields team does this to allow for complete wavelength coverage in both infrared and visible light for the galaxy cluster and the parallel field.

    The first epoch, completed in November 2013, consisted of 87 orbits. This brings the total amount of time Hubble looked at this cluster to 157 orbits.

    a2744
    Final mosaic of the Frontier Fields galaxy cluster Abell 2744. This image is the culmination of both epochs totaling 157 Hubble orbits. The numbers prefixed with “F” are the Hubble filters used by the ACS and WFC3 cameras to take the image. The scale bar of 30″ is approximately 2% the angular size of the full moon as seen from Earth – very small! Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

    Final mosaic of the Frontier Fields galaxy cluster Abell 2744. This image is the culmination of both epochs totaling 157 Hubble orbits. The numbers prefixed with “F” are the Hubble filters used by the ACS and WFC3 cameras to take the image. The scale bar of 30″ is approximately 2% the angular size of the full moon as seen from Earth – very small!
    Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

    par
    Parallel field of Frontier Field Abell 2744

    This is the completed composite mosaic of the Parallel Fields observed with galaxy cluster Abell 2744.
    Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

    See? Epic! Er, I mean epoch.

    Once the second epoch was completed, some of the faintest galaxies ever seen were measured for the first time. Astronomers have been working on these images since their release, and we are anxiously awaiting to hear what they find.

    See the full article here.

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 10:58 am on July 24, 2014 Permalink | Reply
    Tags: , , , , Frontier Fields,   

    From NASA/ESA Hubble: “New mass map of a distant galaxy cluster is the most precise yet” 

    NASA Hubble Telescope

    Hubble

    24 July 2014
    Mathilde Jauzac
    Durham University, Institute for Computational Cosmology
    Durham, United Kingdom
    Tel: +33 6 52 67 15 39 (France)
    Cell: +44 7445 218614 (UK)
    Email: mathilde.jauzac@dur.ac.uk

    Jean-Paul Kneib
    École Polytechnique Fédérale de Lausanne, Observatoire de Sauverny
    Versoix, Switzerland
    Tel: +41 22 3792473
    Cell: +33 695 795 392
    Email: jean-paul.kneib@epfl.ch

    Stunning new observations from Frontier Fields

    Astronomers using the NASA/ESA Hubble Space Telescope have mapped the mass within a galaxy cluster more precisely than ever before. Created using observations from Hubble’s Frontier Fields observing programme, the map shows the amount and distribution of mass within MCS J0416.1–2403, a massive galaxy cluster found to be 160 trillion times the mass of the Sun. The detail in this mass map was made possible thanks to the unprecedented depth of data provided by new Hubble observations, and the cosmic phenomenon known as strong gravitational lensing.

    imasge

    Measuring the amount and distribution of mass within distant objects in the Universe can be very difficult. A trick often used by astronomers is to explore the contents of large clusters of galaxies by studying the gravitational effects they have on the light from very distant objects beyond them. This is one of the main goals of Hubble’s Frontier Fields, an ambitious observing programme scanning six different galaxy clusters — including MCS J0416.1–2403, the cluster shown in this stunning new image.

    Large clumps of mass in the Universe warp and distort the space-time around them. Acting like lenses, they appear to magnify and bend light that travels through them from more distant objects.

    Despite their large masses, the effect of galaxy clusters on their surroundings is usually quite minimal. For the most part they cause what is known as weak lensing, making even more distant sources appear as only slightly more elliptical or smeared across the sky. However, when the cluster is large and dense enough and the alignment of cluster and distant object is just right, the effects can be more dramatic. The images of normal galaxies can be transformed into rings and sweeping arcs of light, even appearing several times within the same image. This effect is known as strong lensing, and it is this phenomenon, seen around the six galaxy clusters targeted by the Frontier Fields programme, that has been used to map the mass distribution of MCS J0416.1–2403, using the new Hubble data.

    “The depth of the data lets us see very faint objects and has allowed us to identify more strongly lensed galaxies than ever before,” explains Mathilde Jauzac of Durham University, UK, and Astrophysics & Cosmology Research Unit, South Africa, lead author of the new Frontier Fields paper. “Even though strong lensing magnifies the background galaxies they are still very far away and very faint. The depth of these data means that we can identify incredibly distant background galaxies. We now know of more than four times as many strongly lensed galaxies in the cluster than we did before.”

    Using Hubble’s Advanced Camera for Surveys, the astronomers identified 51 new multiply imaged galaxies around the cluster, quadrupling the number found in previous surveys and bringing the grand total of lensed galaxies to 68. Because these galaxies are seen several times this equates to almost 200 individual strongly lensed images which can be seen across the frame. This effect has allowed Jauzac and her colleagues to calculate the distribution of visible and dark matter in the cluster and produce a highly constrained map of its mass.

    NASA Hubble ACS
    Hubble ACS

    “Although we’ve known how to map the mass of a cluster using strong lensing for more than twenty years, it’s taken a long time to get telescopes that can make sufficiently deep and sharp observations, and for our models to become sophisticated enough for us to map, in such unprecedented detail, a system as complicated as MCS J0416.1–2403,” says team member Jean-Paul Kneib.

    By studying 57 of the most reliably and clearly lensed galaxies, the astronomers modelled the mass of both normal and dark matter within MCS J0416.1-2403. “Our map is twice as good as any previous models of this cluster!” adds Jauzac.

    The total mass within MCS J0416.1-2403 — modelled to be over 650 000 light-years across — was found to be 160 trillion times the mass of the Sun. This measurement is several times more precise than any other cluster map, and is the most precise ever produced. By precisely pinpointing where the mass resides within clusters like this one, the astronomers are also measuring the warping of space-time with high precision.

    “Frontier Fields’ observations and gravitational lensing techniques have opened up a way to very precisely characterise distant objects — in this case a cluster so far away that its light has taken four and a half billion years to reach us,” adds Jean-Paul Kneib. “But, we will not stop here. To get a full picture of the mass we need to include weak lensing measurements too. Whilst it can only give a rough estimate of the inner core mass of a cluster, weak lensing provides valuable information about the mass surrounding the cluster core.”

    The team will continue to study the cluster using ultra-deep Hubble imaging and detailed strong and weak lensing information to map the outer regions of the cluster as well as its inner core, and will thus be able to detect substructures in the cluster’s surroundings. They will also take advantage of X-ray measurements of hot gas and spectroscopic redshifts to map the contents of the cluster, evaluating the respective contribution of dark matter, gas and stars [5].

    Combining these sources of data will further enhance the detail of this mass distribution map, showing it in 3D and including the relative velocities of the galaxies within it. This paves the way to understanding the history and evolution of this galaxy cluster.

    The results of the study will be published online in Monthly Notices of the Royal Astronomical Society on 24 July 2014.

    NASA’s Chandra X-ray Observatory was used to obtain X-ray measurements of hot gas in the cluster and ground based observatories provide the data needed to measure spectroscopic redshifts.

    NASA Chandra Telescope
    NASA/Chandra

    Frontier Fields Mast

    The international team of astronomers in this study consists of M. Jauzac (Durham University, UK and Astrophysics & Cosmology Research Unit, South Africa); B. Clement (University of Arizona, USA); M. Limousin (Laboratoire d’Astrophysique de Marseille, France and University of Copenhagen, Denmark); J. Richard (Université Lyon, France); E. Jullo (Laboratoire d’Astrophysique de Marseille, France); H. Ebeling (University of Hawaii, USA); H. Atek (Ecole Polytechnique Fédérale de Lausanne, Switzerland); J.-P. Kneib (Ecole Polytechnique Fédérale de Lausanne, Switzerland and Laboratoire d’Astrophysique de Marseille, France); K. Knowles (University of KwaZulu-Natal, South Africa); P. Natarajan (Yale University, USA); D. Eckert (University of Geneva, Switzerland); E. Egami (University of Arizona, USA); R. Massey (Durham University, UK); and M. Rexroth (Ecole Polytechnique Fédérale de Lausanne, Switzerland)

    See the full article, with notes, here.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon


    ScienceSprings is powered by MAINGEAR computers

     
    • viswamjyoti 7:13 am on August 30, 2014 Permalink | Reply

      Sub;MCS J0416.1–2403
      Data is useful but in-adequate perception of Galaxy Cluster formations -ignore the cosmic function of the Universe.

      Like

  • richardmitnick 5:09 am on May 24, 2014 Permalink | Reply
    Tags: , , , , Frontier Fields   

    From Frontier Fields: “Einstein’s Crazy Idea” 

    Frontier Fields
    Frontier Fields

    May 23, 2014
    Dr. Frank Summers

    General relativity is just plain weird.

    The basic idea of gravity we are taught in school comes from Isaac Newton’sPrincipia” in 1687. Gravity is a force exerted by objects with mass. The greater the mass, the greater the gravitational force. The larger the distance between objects, the lesser the force ( it decreases with the square of the distance). The gravity of the Sun pulls on Earth and holds it, along with the other planets, asteroids, comets, etc., in orbit.

    Not so, according to Albert Einstein in 1916. He came up with a completely new, and quite radical, alternative explanation.

    Einstein’s crazy idea is that the presence of mass warps the fabric of space around it. Then, that warped space controls the motion of other masses nearby. Newton’s idea of a gravitational force is thus replaced with four-dimensional space-time geometry. Planets orbiting around stars, and stars traveling through galaxies — these are space-time distortions moving within other space-time distortions. As one famous description puts it: mass tells space how to warp, while warped space tells mass how to move. Yeah, weird.

    On the face of it, Isaac and Albert are just describing the same phenomenon from two different points of view: the former sees a force, while the latter sees geometric distortions. And, since the algebraic equations of the gravitational force are so, so, so, so, so very much simpler than the tensor calculus of general relativity, why go to all the relativistic trouble?

    The answer is that there are certain situations, generally involving very large masses, where Newton’s gravity is demonstrably wrong. The most famous of these is the precession of the perihelion of Mercury.

    The orbit of Mercury is not fixed in space. Each time Mercury orbits the Sun, its orbit rotates by a minuscule amount. The position when Mercury is closest to the Sun, called perihelion, is used to measure this orbit rotation, called precession. While Newton’s gravity predicts a precession of the perihelion of Mercury, the measured value is significantly higher. This mismatch between prediction and observation is resolved by Einstein’s general relativity in that the warping of space at such a close distance to the Sun produces a slightly stronger precession than gravitational force.

    eclipse
    One of the original plates from the 1919 solar eclipse used to measure the effects of general relativity.

    The other famous demonstration of general relativity is the bending of light as it passes a massive object. Light rays also have their paths changed by passing through warped space. A total solar eclipse on May 29, 1919, served to test this effect. During the eclipse, astronomers could see stars whose light had passed close to the Sun. Their apparent position on the sky would be shifted from their normal position due to passage through the warped space around the Sun. By observing the precise positions of such stars both before and during the eclipse, astronomers measured the effects of general relativity. (See the image accompanying this post.)

    Those 1919 observations did much to confirm that this crazy idea of general relativity reflected the reality of the universe. We now have many tests of general relativity. Most are subtle and require significant explanation. However, there is one that is visually striking, and which is critical to the scientific underpinnings of the Frontier Fields project. I’ll address that in my next blog post.

    See the full article here.

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope
    Hubble
    NASA James Webb Telescope
    Webb

    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 553 other followers

%d bloggers like this: