Tagged: From Hubblesite and From ESA/Hubble Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:49 pm on January 27, 2023 Permalink | Reply
    Tags: "Hubble and Webb Image Galaxies’ Lost Stars", , , , From Hubblesite and From ESA/Hubble, , , ,   

    From NASA/Hubblesite and ESA/Hubble And From The NASA/ESA/CSA James Webb Space Telescope Via “Sky & Telescope” : “Hubble and Webb Image Galaxies’ Lost Stars” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU) Hubble Space Telescope.

    From NASA/Hubblesite and ESA/Hubble

    And

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    Via

    “Sky & Telescope”

    1.25.23
    Monica Young

    Deep images of galaxy clusters reveals the light of wandering stars. What set these stars free from their hosts?

    Sometimes, galaxies lose their stars. Just as a jostle on a crowded sidewalk might leave pennies dropped on the ground, gravitational interactions between crowded-together galaxies can fling a few stars out of their hosts and into the space between.

    Astronomers term this faintest of glows intracluster light, and they must use powerful observatories to look for it — including the Hubble and James Webb telescopes. For the past two decades, we’ve seen this glimmer of wandering stars in pretty much every galaxy cluster we’ve looked at. But how it gets there has remained unclear: Do gravitational interactions within the cluster slowly strip stars from their hosts? Or are a bunch of stars lost all in one go as clusters come together?

    Hubble’s View

    In the January 5th Nature [below], Hyungjin Joo and M. James Jee (Yonsei University, Republic of Korea) went a step beyond previous studies by studying a set of 10 galaxy clusters. Long-exposure Hubble images reveal intracluster light within the inner 650,000 light-years or so of each cluster. The clusters are at a range of distances from Earth, representing the universe at roughly a quarter to half its current age.

    1
    These are Hubble Space Telescope images of two massive clusters of galaxies named MOO J1014+0038 (left panel) and SPT-CL J2106-5844 (right panel). The added blue color is translated from Hubble data to show intracluster light. Science: James Jee (Yonsei University)/NASA / ESA / STScI; Image processing: Joseph DePasquale (STScI).

    Despite the range of distances, Joo and Jee find that the clusters all have about the same fraction of intracluster light. That seems to imply that that fraction doesn’t change over cosmic time. The result, the researchers argue, suggests that most of the wandering stars aren’t torn one-by-one from their galaxies as they pass through the cluster, but rather are lost wholesale as clusters merge and galaxies are torn apart.

    At first blush, this appears to contradict theoretical predictions, which would have the glow of intracluster light grow over time. But Chris Mihos (Case Western Reserve University), who has helped make some of those predictions [The Astrophysical Journal (below)], says it’s actually right in line with theory.

    Mihos notes that even though the 10 clusters Joo and Jee investigated are at a range of distances, and thus reside in the universe at different ages, the clusters themselves are all fully grown. The researchers acknowledge this, noting that each of their clusters contains between 100 trillion and 1,000 trillion Suns’ worth of mass, typical of mature galaxy clusters.

    “It’s not the universe clock that’s important, it’s the cluster clock . . . how quickly did the cluster form,” Mihos says. Current theory says that every cluster forms from many collision of smaller groups of galaxies, and it’s these mergers that tear at galaxies and release some fraction of their stars into intergalactic space.

    Theoretical predictions therefore actually agree with what Joo and Jee found: When astronomers look at a fully mature cluster, most of the light they see should indeed come from major mergers rather than from the slower stripping of stars.

    “What would be really interesting would be to look at the diffuse light in [smaller] groups of galaxies, because those are going to grow up to be the clusters today,” Mihos says. But then he laughs: “I’m asking for the impossible. Maybe with James Webb.”

    Wandering Stars with Webb

    2
    Webb’s first image to be released was of a galaxy cluster dubbed SMACS 0723. NASA / ESA / CSA / STScI.

    A recent study by Mireia Montes and Ignacio Trujillo [Astrophysical Journal Letters (below)] (both at the Astrophysical Institute of the Canaries, Spain) shows that Webb is indeed capable of probing intracluster light. The astronomers went to Webb’s early-release image of the SMACS 0723 galaxy cluster, measuring its intracluster light out to 1.5 million light-years — twice as far out as has been possible with Hubble.

    In agreement with Joo and Jee, Montes and Trujillo find that the lost stars in the innermost regions probably came from a major merger; however, they think the wanderers in the sparser outer regions are more likely to come from gravitational interactions over cosmic time. “The diffuse extended component is being built now,” they write.

    3
    Arrows point to some prominent features of the intracluster light in this composite image of the galaxy cluster SMACS 0723. Montes & Trujillo / Astrophysical Journal Letters 2022.

    This study is only the beginning. Over this year, Webb is set to observe several protoclusters, shedding light on the lost stars within these less mature structures. “Future studies of the intracluster light are set to revolutionize our understanding of cluster formation,” Montes and Trujillo write.

    Nature
    The Astrophysical Journal 2011
    Astrophysical Journal Letters 2022
    See the above two science papers for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. Webb will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS).

    Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Webb MIRI schematic.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021, ten years late, on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. SchmidtThe High-z Supernova Search Team, The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess

    The High-z Supernova Search Team,The Johns Hopkins University and The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    ______________________________________________________________________________

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing Heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 10:41 am on December 8, 2022 Permalink | Reply
    Tags: "Hubble Detects Ghostly Glow Surrounding Our Solar System", An ambitious project called "SKYSURF", Astronomers sorted through 200000 images from NASA's Hubble Space Telescope and made tens of thousands of measurements on these images to look for any residual background glow in the sky., , , , , From Hubblesite and From ESA/Hubble, One possible explanation for this residual glow is that our inner solar system contains a tenuous sphere of dust from comets that are falling into the solar system from all directions., One possible explanation is that a shell of dust envelops our solar system all the way out to Pluto and is reflecting sunlight.   

    From Hubblesite and ESA/Hubble: “Hubble Detects Ghostly Glow Surrounding Our Solar System” 

    From Hubblesite and ESA/Hubble

    12.8.22
    MEDIA CONTACT:

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Timothy Carleton
    Arizona State University, Tempe, Arizona

    Rogier Windhorst
    Arizona State University, Tempe, Arizona

    1
    This artist’s illustration shows the location and size of a hypothetical cloud of dust surrounding our solar system. Astronomers searched through 200,000 images and made tens of thousands of measurements from Hubble Space Telescope to discover a residual background glow in the sky. Because the glow is so smoothly distributed, the likely source is innumerable comets – free-flying dusty snowballs of ice. They fall in toward the Sun from all different directions, spewing out an exhaust of dust as the ices sublimate due to heat from the Sun. If real, this would be a newly discovered architectural element of the solar system. Credits: Andi James (STScI)/ NASA/ ESA.

    Summary

    Exhaust from Infalling Comets Makes Space a Dusty Place

    Imagine walking into a room at night, turning out all the lights and closing the shades. Yet an eerie glow comes from the walls, ceiling, and floor. The faint light is barely enough to see your hands before your face, but it persists.

    Sounds like a scene out of “Ghost Hunters?” No, for astronomers this is the real deal. But looking for something that’s close to nothing is not easy. Astronomers searched through 200,000 archival images from Hubble Space Telescope and made tens of thousands of measurements on these images to look for any residual background glow in the sky. Like turning out the lights in a room, they subtracted the light from stars, galaxies, planets and the zodiacal light. Surprisingly, a ghostly, feeble glow was left over. It’s equivalent to the steady light of ten fireflies spread across the entire sky.
    Where’s that coming from?

    One possible explanation is that a shell of dust envelops our solar system all the way out to Pluto and is reflecting sunlight. Seeing airborne dust caught in sunbeams is no surprise when cleaning the house. But this must have a more exotic origin. Because the glow is so smoothy distributed, the likely source is innumerable comets – free-flying dusty snowballs of ice. They fall in toward the Sun from all different directions, spewing out an exhaust of dust as the ices sublimate due to heat from the Sun. If real, this would be a newly discovered architectural element of the solar system. It has remained invisible until very imaginative and curious astronomers, and the power of Hubble, came along.
    ______________________________________________________________________
    Aside from a tapestry of glittering stars, and the glow of the waxing and waning Moon, the nighttime sky looks inky black to the casual observer. But how dark is dark?

    To find out, astronomers decided to sort through 200,000 images from NASA’s Hubble Space Telescope and made tens of thousands of measurements on these images to look for any residual background glow in the sky, in an ambitious project called “SKYSURF”. This would be any leftover light after subtracting the glow from planets, stars, galaxies, and from dust in the plane of our solar system (called zodiacal light).

    When researchers completed this inventory, they found an exceedingly tiny excess of light, equivalent to the steady glow of 10 fireflies spread across the entire sky. That’s like turning out all the lights in a shuttered room and still finding an eerie glow coming from the walls, ceiling, and floor.

    The researchers say that one possible explanation for this residual glow is that our inner solar system contains a tenuous sphere of dust from comets that are falling into the solar system from all directions, and that the glow is sunlight reflecting off this dust. If real, this dust shell could be a new addition to the known architecture of the solar system.

    This idea is bolstered by the fact that in 2021 another team of astronomers used data from NASA’s New Horizons spacecraft to also measure the sky background.

    New Horizons flew by Pluto in 2015, and a small Kuiper belt object in 2018, and is now heading into interstellar space. The New Horizons measurements were done at a distance of 4 billion to 5 billion miles from the Sun. This is well outside the realm of the planets and asteroids where there is no contamination from interplanetary dust.

    New Horizons detected something a bit fainter that is apparently from a more distant source than Hubble detected. The source of the background light seen by New Horizons also remains unexplained. There are numerous theories ranging from the decay of dark matter to a huge unseen population of remote galaxies.

    “If our analysis is correct there’s another dust component between us and the distance where New Horizons made measurements. That means this is some kind of extra light coming from inside our solar system,” said Tim Carleton, of Arizona State University.

    “Because our measurement of residual light is higher than New Horizons we think it is a local phenomenon that is not from far outside the solar system. It may be a new element to the contents of the solar system that has been hypothesized but not quantitatively measured until now,” said Carleton.

    Hubble veteran astronomer Rogier Windhorst, also of ASU, first got the idea to assemble Hubble data to go looking for any “ghost light.” “More than 95% of the photons in the images from Hubble’s archive
    come from distances less than 3 billion miles from Earth. Since Hubble’s very early days, most Hubble users have discarded these sky-photons, as they are interested in the faint discrete objects in Hubble’s images such as stars and galaxies,” said Windhorst. “But these sky-photons contain important information which can be extracted thanks to Hubble’s unique ability to measure faint brightness levels to high precision over its three decades of lifetime.”

    A number of graduate and undergraduate students contributed to project “SKYSURF”, including Rosalia O’Brien, Delondrae Carter and Darby Kramer at ASU, Scott Tompkins at the University of Western Australia, Sarah Caddy at Macquarie University in Australia, and many others.

    The team’s research papers are published in The Astronomical Journal and The Astrophysical Journal Letters.

    Science papers:
    The Astronomical Journal
    The Astronomical Journal
    The Astrophysical Journal Letters
    See the science papers for instructive material with images.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Space Telescope Science Institute (STScI) is the science operations center for the Hubble Space Telescope (HST) and mission operations for the James Webb Space Telescope (JWST).

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft.

    STScI is located on The Johns Hopkins University Homewood Campus in Baltimore, Maryland and was established in 1981 as a community-based science center that is operated for National Aeronautics Space Agency by The Assocation of Universities for Research in Astronomy (AURA). In addition to performing continuing science operations of HST and preparing for scientific exploration with JWST, STScI manages and operates the NASA Mikulski Archive for Space Telescopes, the Kepler Mission Data Resources in the Exoplanet Archive – NASA and a number of other activities benefiting from its expertise in and infrastructure for supporting the operations of space-based astronomical observatories. Most of the funding for STScI activities comes from contracts with NASA’s Goddard Space Flight Center but there are smaller activities funded by NASA’s Ames Research Center, NASA’s Jet Propulsion Laboratory, and The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU). The staff at STScI consists of scientists (mostly astronomers and astrophysicists), spacecraft engineers, software engineers, data management personnel, education and public outreach experts, and administrative and business support personnel. There are approximately 100 Ph.D. scientists working at STScI, 15 of which are ESA staff who are on assignment to the HST project. The total STScI staff consists of about 850 people as of 2021.

    STScI operates its missions on behalf of NASA, the worldwide astronomy community, and to the benefit of the public. The science operations activities directly serve the astronomy community, primarily in the form of HST, and eventually JWST observations and grants, but also include distributing data from other NASA missions, such as the FUSE: Far Ultraviolet Spectroscopic Explorer – NASA, Galaxy Evolution Explorer – Universe Missions – NASA JPL-Caltech and ground-based sky surveys.

    The ground system development activities create and maintain the software systems that are needed to provide these services to the astronomy community. STScI’s public outreach activities provide a wide range of information, on-line media, and programs for formal educators, planetariums and science museums, and the general public. STScI also serves as a source of guidance to NASA on a range of optical and UV space astrophysics issues.

    The STScI staff interacts and communicates with the professional astronomy community through a number of channels, including participation at the bi-annual meetings of the American Astronomical Society, publication of quarterly STScI newsletters and the STScI website, hosting user committees and science working groups, and holding several scientific and technical symposia and workshops each year. These activities enable STScI to disseminate information to the telescope user community as well as enabling the STScI staff to maximize the scientific productivity of the facilities they operate by responding to the needs of the community and of NASA.

     
  • richardmitnick 1:48 pm on November 9, 2022 Permalink | Reply
    Tags: "Hubble Captures 3 Faces of Evolving Supernova in Early Universe", A clue is that the cooling supernova fireball appears in slightly different colors among the supernova images., , , Blast from the Past Caught in Episodes Due to Gravitational Lensing, , From Hubblesite and From ESA/Hubble, Gravitational lensing bending and magnifying the light from the more distant supernova located behind the cluster Abell 370., , The images arrived at different times because length of the pathways the supernova light followed is different., The star that exploded over 11 billion years ago., The warping produced three images of the explosion over different time periods that all arrived at Hubble simultaneously., This is also the first time astronomers were able to measure the size of a dying star in the early universe.   

    From Hubblesite and ESA/Hubble: “Hubble Captures 3 Faces of Evolving Supernova in Early Universe” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    11.9.22

    MEDIA CONTACT:

    Ann Jenkins
    Space Telescope Science Institute, Baltimore, Maryland

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Wenlei Chen
    University of Minnesota, Minneapolis, Minnesota

    Patrick Kelly
    University of Minnesota, Minneapolis, Minnesota

    Multiple Light Paths of Single, Lensed Supernova
    1

    About This Image
    Through the phenomenon of gravitational lensing, NASA’s Hubble Space Telescope captured three different moments in the explosion of a very far-off supernova—all in one picture! In this case, the immense gravity of the galaxy cluster Abell 370 acted as a cosmic lens, bending and magnifying the light from the more distant supernova located behind the cluster. The warping also produced multiple images of the explosion over different time periods that all arrived at Hubble simultaneously.

    The top box shows a portion of Abell 370. The box-within-the-box marks the area where the distant supernova was multiply lensed. The bottom image is a magnified version of this area with the light paths marked for the three images of the supernova. The right side of the bottom image shows the distant galaxy in which the supernova exploded. The lines show how the light traveled through the gravitational lens, with some of the light taking longer routes across “valleys” of warped space. The warping produced three images of the explosion over different time periods that all arrived at Hubble simultaneously.

    Credits:

    ILLUSTRATION: NASA, ESA, Alyssa Pagan (STScI)

    Lensed Supernova in Abell 370 Compass Image

    2

    About This Image
    The compass graphic points to the object’s orientation on the celestial sphere. North points to the north celestial pole which currently lies near the star, Polaris, in the circumpolar constellation Ursa Minor. The object is observed at visible light wavelengths, the colors corresponding to the true emission of light from stars, galaxies and ionized gases.
    Credits

    SCIENCE: NASA, ESA, STScI, Wenlei Chen (UMN), Patrick Kelly (UMN)

    Summary
    Blast from the Past Caught in Episodes Due to Gravitational Lensing

    Light from a star that exploded over 11 billion years ago was captured by Hubble Space Telescope not just as one postcard from the remote past but three messages that chronicle the fading fireball over a period of one week.

    For starters, the feeble light from the supernova was amplified by the gravitational field of an enormous foreground galaxy cluster, Abell 370. The gravitational warp in space acts as a cosmic lens, bending and magnifying the light from the more distant supernova, which was located far behind the cluster.

    A bonus for astronomers is that not one but three images of the supernova appear in the photo, strung along the cluster. They show the explosion over different times that all arrived at Hubble simultaneously. A clue is that the cooling supernova fireball appears in slightly different colors among the supernova images. The images arrived at different times because length of the pathways the supernova light followed is different. The later images were delayed due to taking a longer route across “valleys” of warped space.
    _________________________________________________________________________
    Three different moments in a far-off supernova explosion were captured in a single snapshot by NASA’s Hubble Space Telescope. The star exploded more than 11 billion years ago, when the universe was less than a fifth of its current age of 13.8 billion years.

    This is the first detailed look at a supernova so early in the universe’s history. The research could help scientists learn more about the formation of stars and galaxies in the early universe. The supernova images are also special because they show the early stages of a stellar explosion.

    “It is quite rare that a supernova can be detected at a very early stage, because that stage is really short,” explained Wenlei Chen, first author of the paper and a postdoctoral researcher in the University of Minnesota School of Physics and Astronomy. “It only lasts for hours to a few days, and it can be easily missed even for a nearby detection. In the same exposure, we are able to see a sequence of the images—like multiple faces of a supernova.”

    This was possible through a phenomenon called gravitational lensing, which was first predicted in Albert Einstein’s Theory of General Relativity. In this case, the immense gravity of the galaxy cluster Abell 370 acted as a cosmic lens, bending and magnifying the light from the more distant supernova located behind the cluster.

    The warping also produced multiple images of the explosion over different time periods that all arrived at Earth at the same time and were caught in one Hubble image. That was possible only because the magnified images took different routes through the cluster due both to differences in the length of the pathways the supernova light followed, and to the slowing of time and curvature of space due to gravity.

    The Hubble exposure also captured the fading supernova’s rapid change of color, which indicates temperature change. The bluer the color means the hotter the supernova is. The earliest phase captured appears blue. As the supernova cooled its light turned redder.

    “You see different colors in the three different images,” said Patrick Kelly, study leader and an assistant professor in the University of Minnesota’s School of Physics and Astronomy. “You’ve got the massive star, the core collapses, it produces a shock, it heats up, and then you’re seeing it cool over a week. I think that’s probably one of the most amazing things I’ve ever seen!”

    This is also the first time astronomers were able to measure the size of a dying star in the early universe. This was based on the supernova’s brightness and rate of cooling, both of which depend on the size of the progenitor star. Hubble observations show that the red supergiant whose supernova explosion the researchers discovered was about 500 times larger than the Sun.

    Chen, Kelly, and an international team of astronomers found this supernova by sifting through the Hubble data archives, looking for transient events. Chen wrote machine-learning algorithms to find these events, but this was the only multiply imaged supernova identified.

    Chen and Kelly both have time planned for NASA’s James Webb Space Telescope to observe even more distant supernovae. They hope to contribute to a catalog of very far-off supernovae to help astronomers understand if the stars that existed many billions of years ago are different from those in the nearby universe.

    The team’s paper, entitled “Shock cooling of a red-supergiant supernova at redshift 3 in lensed images,” will be published in Nature [below] on November 10.

    Science paper:
    Nature
    See the science paper for detailed material with images. Images are near the end of the paperr.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. SchmidtThe High-z Supernova Search Team, The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess

    The High-z Supernova Search Team,The Johns Hopkins University and The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    ______________________________________________________________________________

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing Heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:02 am on September 29, 2022 Permalink | Reply
    Tags: , , From Hubblesite and From ESA/Hubble   

    From Hubblesite and ESA/Hubble And The NASA/ESA/CSA James Webb Space Telescope: “Webb and Hubble Capture Detailed Views of DART Impact” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    And

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    The NASA/ESA/CSA James Webb Space Telescope

    9.29.22
    Bethany Downer
    ESA/Hubble Chief Science Communications Officer
    Email: info@esahubble.org

    Ninja Menning
    ESA Newsroom and Media Relations Office
    Email: media@esa.int

    1
    Two of the great observatories, the NASA/ESA/CSA James Webb Space Telescope and the NASA/ESA Hubble Space Telescope, have captured views of a unique experiment to smash a spacecraft into a small asteroid. NASA’s Double Asteroid Redirection Test (DART) impact observations mark the first time that Webb and Hubble were used to simultaneously observe the same celestial target.

    4
    These images from NASA’s Hubble Space Telescope, taken (left to right) 22 minutes, 5 hours, and 8.2 hours after NASA’s Double Asteroid Redirection Test (DART) intentionally impacted Dimorphos, show expanding plumes of ejecta from the asteroid’s body. The Hubble images show ejecta from the impact that appear as rays stretching out from the body of the asteroid. The bolder, fanned-out spike of ejecta to the left of the asteroid is in the general direction from which DART approached. These observations, when combined with data from NASA’s James Webb Space Telescope, will allow scientists to gain knowledge about the nature of the surface of Dimorphos, how much material was ejected by the collision, how fast it was ejected, and the distribution of particle sizes in the expanding dust cloud.
    Credits: Science: NASA, ESA, Jian-Yang Li (PSI); image processing: Alyssa Pagan (STScI)

    [Several short videos are available at the full article.]

    On 27 September 2022 at 01:14 CEST, DART intentionally crashed into Dimorphos, the asteroid moonlet in the double-asteroid system of Didymos. It was the world’s first test of the kinetic impact technique using a spacecraft to deflect an asteroid by modifying the object’s orbit. DART is a test for defending Earth against potential asteroid or comet hazards.

    The observations are more than just an operational milestone for each telescope—there are also key science questions relating to the makeup and history of our solar system that researchers can explore when combining the capabilities of these observatories.

    Observations from Webb and Hubble together will allow scientists to gain knowledge about the nature of the surface of Dimorphos, how much material was ejected by the collision, and how fast it was ejected. Additionally, observing the impact across a wide array of wavelengths between Webb and Hubble will reveal the distribution of particle sizes in the expanding dust cloud, helping to determine whether it threw off lots of big chunks or mostly fine dust. Combining this information will help scientists to understand how effectively a kinetic impact can modify an asteroid’s orbit.

    Webb Captures Impact Site Before and After Collision

    Webb took one observation of the impact location before the collision took place, then several observations over the next few hours. Images from Webb’s Near-Infrared Camera (NIRCam) [below] show a tight, compact core, with plumes of material appearing as wisps streaming away from the centre of where the impact took place.

    Observing the impact with Webb presented the flight operations, planning, and science teams with very unique challenges. Because of the asteroid’s speed of travel across the sky, the teams worked in the weeks leading up to the impact to enable and test a method of tracking asteroids moving over 3 times faster than the original speed limit set for Webb.

    Scientists also plan to observe the asteroid in the coming months using Webb’s Mid-Infrared Instrument (MIRI) [below] and Webb’s Near-Infrared Spectrograph (NIRSpec) [below]. Spectroscopic data will provide researchers with insight into the asteroid’s chemical composition.

    Webb observed the impact over five hours total and captured 10 images. The data were collected as part of Webb’s Cycle 1 Guaranteed Time Observation Program 1245 led by Heidi Hammel of Association of Universities for Research in Astronomy (AURA).

    Hubble Images Show Movement of Ejecta After Impact

    Hubble also managed to capture observations of the moonlet ahead of the impact, then again 15 minutes after DART met the surface of Dimorphos. Images from Hubble’s Wide Field Camera 3 show the impact in visible light.

    Ejecta from the impact appear as rays stretching out from the body of the asteroid. The bolder, fanned-out spike of ejecta to the left of the asteroid is where DART impacted.

    Some of the rays appear to be curved slightly, but astronomers need to take a closer look to determine what this could mean. In the Hubble images, astronomers estimate that the brightness of Didymos increased by 3 times after impact, and are also particularly intrigued by how that brightness then held steady, even eight hours after impact.

    Hubble will monitor Dimorphos ten more times over the next three weeks. These regular, relatively long-term observations as the ejecta cloud expands and fades over time will paint a more complete picture of the cloud’s expansion from the ejection to its disappearance.

    Hubble captured 45 images in the time immediately before and following DART’s impact with Dimorphos. The Hubble data was collected as part of Cycle 29 General Observers Program 16674.

    Follow Up with ESA’s Hera Mission

    Due to launch in October 2024, ESA’s Hera mission will perform a detailed post-impact survey of the target asteroid Dimorphos. Hera will turn the grand-scale experiment into a well-understood and repeatable planetary defence technique that might one day be carried out for real.

    Just like Webb and Hubble, NASA’s DART and ESA’s Hera missions are a great example of what international collaboration can achieve: the two missions are supported by the same teams of scientists and astronomers, and take place through an international collaboration called AIDA – the Asteroid Impact and Deflection Assessment.

    NASA and ESA worked together in the early 2000s to develop asteroid monitoring systems, but recognised there was a missing link in the chain from asteroid threat identification to ways of addressing that threat. In response NASA oversaw the DART mission while ESA developed the Hera mission to gather additional data on DART’s impact. With the Hera mission, ESA is assuming even greater responsibility for protecting our planet and ensuring that Europe plays a leading role in the common effort to tackle asteroid risks. As Europe’s flagship planetary defender, Hera is supported through the Agency’s Space Safety programme, part of the Operations Directorate. Read about future plans to be proposed at ESA’s Council at Ministerial Level this November.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. SchmidtThe High-z Supernova Search Team, The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess

    The High-z Supernova Search Team,The Johns Hopkins University and The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    ______________________________________________________________________________

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing Heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:55 am on September 28, 2022 Permalink | Reply
    Tags: "Hubble Detects Protective Shield Defending a Pair of Dwarf Galaxies", , , , From Hubblesite and From ESA/Hubble, ,   

    From Hubblesite and ESA/Hubble: “Hubble Detects Protective Shield Defending a Pair of Dwarf Galaxies” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    9.28.22
    MEDIA CONTACT:

    Margaret W. Carruthers
    Space Telescope Science Institute, Baltimore, Maryland

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    SCIENCE CONTACT:

    Dhanesh Krishnarao
    Colorado College, Colorado Springs, Colorado

    Andrew Fox
    Space Telescope Science Institute, Baltimore, Maryland

    1
    About This Image

    Researchers have used spectroscopic observations of ultraviolet light from quasars to detect and map the Magellanic Corona, a diffuse halo of hot, supercharged gas surrounding the Small and Large Magellanic Clouds. Shown in purple, the corona stretches more than 100,000 light-years from the main mass of stars, gas, and dust that make up the Magellanic Clouds, intermingling with the hotter and more extensive corona that surrounds the Milky Way.

    The Magellanic Clouds, dwarf galaxies roughly 160,000 light-years from Earth, are the largest of the Milky Way’s satellites and are thought to be on their first in-falling passage around the Milky Way. This journey has begun to unravel what were once barred spirals with multiple arms into more irregular-shaped galaxies with long tails of debris. The corona is thought to act as a buffer protecting the dwarf galaxies’ vital star-forming gas from the gravitational pull of the much larger Milky Way.

    The detection of the Magellanic Corona was made by analyzing patterns in ultraviolet light from 28 distant background quasars. As the quasar light passes through the corona, certain wavelengths (colors) of ultraviolet light are absorbed. The quasar spectra become imprinted with the distinct signatures of carbon, oxygen, and silicon ions that make up the corona gas. Because each quasar probes a different part of the corona, the research team was also able to show that the amount of gas decreases with distance from the center of the Large Magellanic Cloud.

    This study used archival observations of quasars from Hubble’s Cosmic Origins Spectrograph (COS) and the Far Ultraviolet Spectroscopic Explorer (FUSE). Quasars have also been used to probe the Magellanic Stream, outflows from the Milky Way, and the halo surrounding the Andromeda Galaxy.
    Credits:

    ILLUSTRATION: NASA, ESA, Leah Hustak (STScI)
    __________________________________________________________________________
    Summary

    Scientists confirm the existence of the elusive Magellanic Corona, a protective halo of hot, ionized gas previously known only in theory.

    For billions of years, the Milky Way’s most massive companions – the Large and Small Magellanic Clouds – have been on a tumultuous journey through space, orbiting one another while being torn by the gravitational pull of our own galaxy.

    Recent theoretical predictions suggest that these dwarf satellite galaxies must be protected by a pervasive shield that prevents the Milky Way from removing their essential star-forming gas. This so-called Magellanic Corona, made of supercharged gas with temperatures of half a million degrees, would act as a sort of cosmic crash zone around the Magellanic Clouds, keeping the stars and disk relatively unscathed during collisions. Although simulations show that the Magellanic Corona should exist, observational evidence has remained elusive.

    Using a combination of the unique ultraviolet vision of the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer, along with the probing power of distant quasars, scientists have finally been able to detect and begin to map the Magellanic Corona. The discovery of this diffuse halo of hot gas, extending more than 100,000 light-years from the Large Magellanic Cloud and covering much of the southern sky, confirms the prediction and illuminates our understanding of how small galaxies can interact with larger galaxies without losing the fuel needed for future star formation.
    __________________________________________________________________________

    For billions of years, the Milky Way’s largest satellite galaxies – the Large and Small Magellanic Clouds – have followed a perilous journey. Orbiting one another as they are pulled in toward our home galaxy, they have begun to unravel, leaving behind trails of gaseous debris. And yet – to the puzzlement of astronomers – these dwarf galaxies remain intact, with ongoing vigorous star formation.

    “A lot of people were struggling to explain how these streams of material could be there,” said Dhanesh Krishnarao, assistant professor at Colorado College. “If this gas was removed from these galaxies, how are they still forming stars?”

    With the help of data from NASA’s Hubble Space Telescope and a retired satellite called the Far Ultraviolet Spectroscopic Explorer (FUSE), a team of astronomers led by Krishnarao has finally found the answer: the Magellanic system is surrounded by a corona, a protective shield of hot supercharged gas. This cocoons the two galaxies, preventing their gas supplies from being siphoned off by the Milky Way, and therefore allowing them to continue forming new stars.

    Fig. 1: The Magellanic system in an orthographic projection.
    2
    The maps are centred on the LMC and colour-coded by column-density (a) and velocity (b). Magellanic 21-cm H I emission is shown in a blue scale integrated in velocities to encompass the Magellanic system9, with coloured symbols showing HST/COS sightlines colour-coded by C IV column densities. Upper limits are shown using open symbols. The grey background shows Galactic 21-cm H I emission from HI4PI11 integrated over −75 < vLSR < +75 km s−1. Panel b shows the mean velocity of H I with our sightlines colour-coded by mean C IV absorption velocity. Dotted circles mark the LMC impact parameter and the South Galactic Pole (SGP) is marked with a white star.

    Fig. 2: Declining radial profile of high-ion absorption.
    3
    Sum total of O VI (yellow triangles), C IV (pink circles) and Si IV (orange squares) column density of Magellanic velocity absorbers that are not photoionized in each sightline as a function of LMC impact parameter, ρLMC, with open symbols marking upper limits. The best-fit line and 68% confidence intervals for all data (dotted lines) and only data at ρLMC > 7 kpc (solid lines) are also shown (see Methods). Error bars represent standard deviations.

    More instructive images are available in the science paper. Also available is “Source Data” for these images.

    This discovery, which was just published in Nature [below], addresses a novel aspect of galaxy evolution. “Galaxies envelope themselves in gaseous cocoons, which act as defensive shields against other galaxies,” said co-investigator Andrew Fox of the Space Telescope Science Institute in Baltimore, Maryland.

    Astronomers predicted the corona’s existence several years ago. “We discovered that if we included a corona in the simulations of the Magellanic Clouds falling onto the Milky Way, we could explain the mass of extracted gas for the first time,” explained Elena D’Onghia, a co-investigator at the University of Wisconsin–Madison. “We knew that the Large Magellanic Cloud should be massive enough to have a corona.”

    But although the corona stretches more than 100,000 light-years from the Magellanic clouds and covers a huge portion of the southern sky, it is effectively invisible. Mapping it required scouring through 30 years of archived data for suitable measurements.

    Researchers think that a galaxy’s corona is a remnant of the primordial cloud of gas that collapsed to form the galaxy billions of years ago. Although coronas have been seen around more distant dwarf galaxies, astronomers had never before been able to probe one in as much detail as this.

    “There’re lots of predictions from computer simulations about what they should look like, how they should interact over billions of years, but observationally we can’t really test most of them because dwarf galaxies are typically just too hard to detect,” said Krishnarao. Because they are right on our doorstep, the Magellanic Clouds provide an ideal opportunity to study how dwarf galaxies interact and evolve.

    In search of direct evidence of the Magellanic Corona, the team combed through the Hubble and FUSE archives for ultraviolet observations of quasars located billions of light-years behind it. Quasars are the extremely bright cores of galaxies harboring massive active black holes. The team reasoned that although the corona would be too dim to see on its own, it should be visible as a sort of fog obscuring and absorbing distinct patterns of bright light from quasars in the background. Hubble observations of quasars were used in the past to map the corona surrounding the Andromeda galaxy.

    By analyzing patterns in ultraviolet light from 28 quasars, the team was able to detect and characterize the material surrounding the Large Magellanic Cloud and confirm that the corona exists. As predicted, the quasar spectra are imprinted with the distinct signatures of carbon, oxygen, and silicon that make up the halo of hot plasma that surrounds the galaxy.

    The ability to detect the corona required extremely detailed ultraviolet spectra. “The resolution of Hubble and FUSE were crucial for this study,” explained Krishnarao. “The corona gas is so diffuse, it’s barely even there.” In addition, it is mixed with other gases, including the streams pulled from the Magellanic Clouds and material originating in the Milky Way.

    By mapping the results, the team also discovered that the amount of gas decreases with distance from the center of the Large Magellanic Cloud. “It’s a perfect telltale signature that this corona is really there,” said Krishnarao. “It really is cocooning the galaxy and protecting it.”

    How can such a thin shroud of gas protect a galaxy from destruction?

    “Anything that tries to pass into the galaxy has to pass through this material first, so it can absorb some of that impact,” explained Krishnarao. “In addition, the corona is the first material that can be extracted. While giving up a little bit of the corona, you’re protecting the gas that’s inside the galaxy itself and able to form new stars.”

    Science paper:
    Nature

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing Heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:49 am on July 24, 2022 Permalink | Reply
    Tags: "Incredible Hubble Image Reveals a Bizarre Galaxy 'Mirror' ", "Lens Flair", , , , , From Hubblesite and From ESA/Hubble, , , SGAS J143845+145407   

    From Hubblesite and ESA/Hubble via “Science Alert (AU)” : “Incredible Hubble Image Reveals a Bizarre Galaxy ‘Mirror’ “ 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    Via

    ScienceAlert

    “Science Alert (AU)”

    23 JULY 2022
    MICHELLE STARR

    “Lens Flair”
    1
    Gravitational lensed mirror images of SGAS J143845+145407. (J. Rigby/ NASA/ESA Hubble)

    There’s something very odd about this image from the Hubble Space Telescope. If you look closely, you can see two almost-mirror image, orange-colored galaxies, seemingly connected by a long filament.

    Fascinatingly, that’s not two galaxies at all, but one, named SGAS J143845+145407. It just appears to be two, thanks to the way the gravity of a massive object (or objects, like a cluster of galaxies) distorts the space that distant light travels through.

    Imagine putting a heavy weight on a trampoline, where the weight represents the galaxy cluster, and the trampoline mat represents space-time. Now roll some marbles from one side of the trampoline to the other. Their normally ‘straight’ paths will seem to curve along different paths, not unlike rays of light through distorted space.

    Called gravitational lensing, this quirk of gravity can be used to magnify the light of background galaxies that would be too distant to otherwise see in much detail, as illustrated in the diagram below.

    Gravitational lenses like this can therefore be an important tool for understanding the distant Universe.

    Sometimes that light can become really smeared and distorted, as seen in the recent deep field image from the James Webb Space Telescope. Those odd, wobbly, worm-like objects are lensed galaxies. When the lensing effect results in four images of a distant object arrayed around the central lensing mass, that’s called an Einstein Cross.

    SGAS J143845+145407 appears at just the right point behind a small galaxy cluster for gravitational lensing to produce two nearly perfect images of the galaxy, with the added bonus of making them both appear bigger and in greater detail.

    The light from SGAS J143845+145407 traveled around 6.9 billion years to reach us. That’s about half the current age of the Universe. The cluster’s light traveled about 2.8 billion years.

    SGAS J143845+145407 is scientifically interesting because it’s a luminous infrared galaxy, glowing relatively brightly due to high star formation activity. Studying galaxies like it can help scientists understand star formation and how it has changed throughout the Universe’s history; for this kind of work, gravitational lenses can be invaluable.

    Using the gravitational lens, scientists were recently able to reconstruct the distribution of star formation in SGAS J143845+145407, and study the details of the process. They found that the galaxy is pretty typical of its type, which information will be able to help contextualize and characterize other galaxies.

    Webb is expected to reveal even more details, but Hubble revolutionized the study of lensed galaxies. Its observations were the first to resolve details inside lensed galaxies, giving scientists an incredible new window into the early Universe.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:03 am on June 3, 2022 Permalink | Reply
    Tags: "Hubble goes galactic for bird watching", , , , , From Hubblesite and From ESA/Hubble, , , ,   

    From Hubblesite and ESA/Hubble via Manu Garcia- a friend from IAC-Institute of Astrophysics of the Canaries[Instituto de Astrofísica de Canarias](ES): “Hubble goes galactic for bird watching” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    From Hubblesite and ESA/Hubble

    via


    Manu Garcia, a friend from IAC-Institute of Astrophysics of the Canaries[Instituto de Astrofísica de Canarias](ES).

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    6.3.22

    1

    This NASA/ESA Hubble Space Telescope image shows the barred spiral galaxy NGC 7496, which lies more than 24 million light-years away in the constellation Grus. This constellation, whose Latin name means crane, is one of four constellations known collectively as the Birds of the South. The others are Pavo, Phoenix, and Tucana, which represent a peacock, a phoenix, and a toucan, respectively. The rest of the night sky is also home to a flock of ornithological constellations, including an eagle (Aquilla), a swan (Cygnus), a raven (Corvus), and a dove (Columba).

    This image comes from a collection of observations that delve deeper into the relationship between young stars and the cool, dense clouds of gas in which they form. In addition to observations with Hubble’s Wide Field Camera 3 [below] and Advanced Camera for Surveys [below], the astronomers behind this project collected data using the Atacama Large Millimeter/submillimeter Array (ALMA), one of the world’s largest radio telescopes.

    In addition to shedding light on the speed and efficiency of star formation in a variety of galactic environments, this project is also creating a trove of data incorporating Hubble and ALMA observations. This trove of data from two of the world’s most capable observatories will contribute to broader research on star formation, as well as pave the way for future science with the James Webb Space Telescope. Credit: ESA/Hubble & NASA, J. Lee and the PHANGS-HST team, Acknowledgment: J. Schmidt the astronomers behind this project collected data using the Atacama Large Millimeter/submillimeter Array (ALMA), one of the largest radio telescopes in the world.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the U.S. National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used ground-based telescopes and HST to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery.

    Saul Perlmutter [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Out