From AAS NOVA: “Four Perspectives on Neutron Stars and Pulsars and Magnetars” 



Kerry Hensley

Illustration of a neutron star emitting a jet. [ICRAR/University of Amsterdam]

When a massive star explodes as a supernova, its core collapses into a city-sized sphere of neutrons called a neutron star. These extraordinarily dense stars — just one teaspoon of a neutron star would weigh billions of tons in Earth’s gravity — exhibit some of the most intriguing behavior in the universe: rapid rotation, beams of radio emission, and extremely strong magnetic fields. Today, we’ll introduce four recent research articles that explore different aspects of these stars.

Bursting, Cooling, and Bursting Again

Simulated light curves during an X-ray burst, showing the effects of incorporating different physics. A model without neutrino cooling (labeled “No DU” in reference to the neutrino cooling pathway called direct Urca), peaks at a lower luminosity than models incorporating neutrino cooling. [Adapted from Dohi et al. 2022]

Sometimes, neutron stars reveal themselves by interacting with other stars. When a neutron star gathers gas from a stellar companion, the gas can ignite on the star’s scorching surface, resulting in a sudden burst of X-rays. After this sudden influx of heat, how does the neutron star cool, and how is the cooling reflected in the star’s light curve? While this may seem like a simple question, the answer hinges on our understanding of the conditions within the neutron star’s interior as well as the characteristics of the gas being accreted.

In a recent publication, a team led by Akira Dohi (Kyushu University[土肥明] (JP)) explored the issue of neutron star cooling with general relativistic stellar evolution models. Specifically, the team investigated the effects of cooling by emitting neutrinos — chargeless, nearly massless particles that scarcely interact with matter — which is expected to speed up the cooling rate.

The authors found that neutrino cooling increases the time between outbursts but makes them brighter at their peak, though additional physics to be included in future modeling might suppress this effect.

Simulated pulses showing a change in the phase of the pulse due to the shifting motion of the sparks. [Adapted from Basu et al. 2022]

Simulating Pulsar Sparks

Rahul Basu (University of Zielona Góra, Poland) and collaborators reported on simulations of conditions very close to the surface of a neutron star that emits beams of radio emission. Neutron stars that emit beamed radio waves are called pulsars for the way the beams sweep across our field of view, generating what we see as pulses of emission.

Near a pulsar’s surface, extremely high temperatures and strong magnetic and electric fields combine forces to summon a sea of charged particles that are then accelerated to relativistic speeds.

Basu and collaborators focused on a phenomenon called sparking, in which charged particles jump the gap between the pulsar’s surface at its poles and its plasma-rich magnetosphere. The team’s modeling demonstrated that a pulsar’s poles are tightly filled with constant sparks, and the arrangement of these sparks slowly shifts over time. By modeling the emission associated with the simulated sparks, the team showed that the shifting motion of the sparks appears to be responsible for the observed periodic variations in the phases and amplitudes of some pulsars’ pulses.

Pulsars Probing Gravitational Waves

Example of a pulse observed with the Giant Metrewave Radio Telescope. [Adapted from Sharma et al. 2022]

By studying large groups of pulsars, astronomers hope to learn about something seemingly unrelated: gravitational waves.

Pulsars provide a method to detect gravitational waves by way of these stars’ impeccable timekeeping abilities — because a pulsar’s radio beat is so reliable, the slight distortion of space caused by a passing gravitational wave should impact the arrival times of a pulsar’s pulses.

However, there’s a complication to this technique: spatial and temporal changes in the interstellar medium plasma can also affect when a pulsar’s radio pulses arrive at Earth. In order to compensate for the effect of the interstellar medium, we need to be able to make precise observations of pulsars across a range of radio frequencies. In a recent research article, Shyam Sharma (Tata Institute of Fundamental Research, India) and collaborators tested a pulsar-timing measurement technique using the Giant Metrewave Radio Telescope, which is highly sensitive to low-frequency radio waves. Sharma and coauthors showed that observing using a wide frequency band yields results comparable to typical narrowband observations, indicating that this technique could be used to disentangle the effects of the interstellar medium and more accurately time the pulses of arrays of pulsars, opening a new window onto gravitational waves.

Magnetic Outbursts

Temperature maps of the top of a magnetar’s crust (top) and the magnetar’s surface (bottom) after a hotspot is injected. [De Grandis et al. 2022]

As if neutron stars could get any wilder: some neutron stars, dubbed magnetars, have extremely strong magnetic fields and exhibit frequent X-ray flares. While the cause of these X-ray outbursts is still unknown, some researchers have suggested that they arise from a sudden upwelling of magnetic energy beneath the magnetar’s crust, creating a hot spot that cools gradually over days or months.

To understand how the injection of heat into a magnetar’s crust might create the spectral features seen during X-ray outbursts, Davide De Grandis (University of Padova, Italy) and coauthors employed a three-dimensional magnetothermal model of hotspot formation and cooling. This model allowed the team to study the effects of asymmetrical hot spots under a magnetar’s crust for the first time. The team was able to confirm that these hot spots can be responsible for outbursts, though we’ll have to wait for future research to fully explore the evolution of the spectral features generated during these events.


“Impacts of the Direct Urca and Superfluidity inside a Neutron Star on Type I X-Ray Bursts and X-Ray Superbursts,” A. Dohi et al 2022 ApJ 937 124.

“Two-dimensional Configuration and Temporal Evolution of Spark Discharges in Pulsars,” Rahul Basu et al 2022 ApJ 936 35.

“Wide-band Timing of GMRT-discovered Millisecond Pulsars,” Shyam S. Sharma et al 2022 ApJ 936 86.

“Three-dimensional Magnetothermal Simulations of Magnetar Outbursts,” Davide De Grandis et al 2022 ApJ 936 99.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


Please help promote STEM in your local schools.

Stem Education Coalition


The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009

The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.

The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.

In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.

The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.