Tagged: FNAL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:04 pm on May 14, 2019 Permalink | Reply
    Tags: >Model-dependent vs model-independent research, , , , , FNAL, , , , , ,   

    From Symmetry: “Casting a wide net” 

    Symmetry Mag
    From Symmetry

    05/14/19
    Jim Daley

    1
    Illustration by Sandbox Studio, Chicago

    In their quest to discover physics beyond the Standard Model, physicists weigh the pros and cons of different search strategies.

    On October 30, 1975, theorists John Ellis, Mary K. Gaillard and D.V. Nanopoulos published a paper [Science Direct] titled “A Phenomenological Profile of the Higgs Boson.” They ended their paper with a note to their fellow scientists.

    “We should perhaps finish with an apology and a caution,” it said. “We apologize to experimentalists for having no idea what is the mass of the Higgs boson… and for not being sure of its couplings to other particles, except that they are probably all very small.

    “For these reasons, we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.”

    What the theorists were cautioning against was a model-dependent search, a search for a particle predicted by a certain model—in this case, the Standard Model of particle physics.

    Standard Model of Particle Physics

    It shouldn’t have been too much of a worry. Around then, most particle physicists’ experiments were general searches, not based on predictions from a particular model, says Jonathan Feng, a theoretical particle physicist at the University of California, Irvine.

    Using early particle colliders, physicists smashed electrons and protons together at high energies and looked to see what came out. Samuel Ting and Burton Richter, who shared the 1976 Nobel Prize in physics for the discovery of the charm quark, for example, were not looking for the particle with any theoretical prejudice, Feng says.

    That began to change in the 1980s and ’90s. That’s when physicists began exploring elegant new theories such as supersymmetry, which could tie up many of the Standard Model’s theoretical loose ends—and which predict the existence of a whole slew of new particles for scientists to try to find.

    Of course, there was also the Higgs boson. Even though scientists didn’t have a good prediction of its mass, they had good motivations for thinking it was out there waiting to be discovered.

    And it was. Almost 40 years after the theorists’ tongue-in-cheek warning about searching for the Higgs, Ellis found himself sitting in the main auditorium at CERN next to experimentalist Fabiola Gianotti, the spokesperson of the ATLAS experiment at the Large Hadron Collider who, along with CMS spokesperson Joseph Incandela, had just co-announced the discovery of the particle he had once so pessimistically described.

    CERN CMS Higgs Event


    CERN ATLAS Higgs Event

    Model-dependent vs model-independent

    Scientists’ searches for particles predicted by certain models continue, but in recent years, searches for new physics independent of those models have begun to enjoy a resurgence as well.

    “A model-independent search is supposed to distill the essence from a whole bunch of specific models and look for something that’s independent of the details,” Feng says. The goal is to find an interesting common feature of those models, he explains. “And then I’m going to just look for that phenomenon, irrespective of the details.”

    Particle physicist Sara Alderweireldt uses model-independent searches in her work on the ATLAS experiment at the Large Hadron Collider.

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS

    Alderweireldt says that while many high-energy particle physics experiments are designed to make very precise measurements of a specific aspect of the Standard Model, a model-independent search allows physicists to take a wider view and search more generally for new particles or interactions. “Instead of zooming in, we try to look in as many places as possible in a consistent way.”

    Such a search makes room for the unexpected, she says. “You’re not dependent on the prior interpretation of something you would be looking for.”

    Theorist Patrick Fox and experimentalist Anadi Canepa, both at Fermilab, collaborate on searches for new physics.


    In Canepa’s work on the CMS experiment, the other general-purpose particle detector at the LHC, many of the searches are model-independent.

    While the nature of these searches allows them to “cast a wider net,” Fox says, “they are in some sense shallower, because they don’t manage to strongly constrain any one particular model.”

    At the same time, “by combining the results from many independent searches, we are getting closer to one dedicated search,” Canepa says. “Developing both model-dependent and model-independent searches is the approach adopted by the CMS and ATLAS experiments to fully exploit the unprecedented potential of the LHC.”

    Driven by data and powered by machine learning

    Model-dependent searches focus on a single assumption or look for evidence of a specific final state following an experimental particle collision. Model-independent searches are far broader—and how broad is largely driven by the speed at which data can be processed.

    “We have better particle detectors, and more advanced algorithms and statistical tools that are enabling us to understand searches in broader terms,” Canepa says.

    One reason model-independent searches are gaining prominence is because now there is enough data to support them. Particle detectors are recording vast quantities of information, and modern computers can run simulations faster than ever before, she says. “We are able to do model-independent searches because we are able to better understand much larger amounts of data and extreme regions of parameter and phase space.”

    Machine-learning is a key part of this processing power, Canepa says. “That’s really a change of paradigm, because it really made us make a major leap forward in terms of sensitivity [to new signals]. It really allows us to benefit from understanding the correlations that we didn’t capture in a more classical approach.”

    These broader searches are an important part of modern particle physics research, Fox says.

    “At a very basic level, our job is to bequeath to our descendants a better understanding of nature than we got from our ancestors,” he says. “One way to do that is to produce lots of information that will stand the test of time, and one way of doing that is with model-independent searches.”

    Models go in and out of fashion, he adds. “But model-independent searches don’t feel like they will.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:37 pm on May 11, 2019 Permalink | Reply
    Tags: "How an episode of ‘Chopped’ led to a fix for future particle accelerators", Fermilab scientist designs innovative spun-sugar electrospinning technique, FNAL, ,   

    From University of Chicago: “How an episode of ‘Chopped’ led to a fix for future particle accelerators” 

    U Chicago bloc

    From University of Chicago

    May 10, 2019
    Caitlyn Buongiorno

    Fermilab scientist designs innovative spun-sugar electrospinning technique.


    1
    In electrospinning, a positive charge is applied to liquidized material to create thin strands that eventually harden into a solid, fibrous material. Photo by Reidar Hahn

    Bob Zwaska, a scientist at the UChicago-affiliated Fermi National Accelerator Laboratory, was watching a contestant on the cooking show Chopped spin sugar for their dessert when he realized the same principle might be applicable to accelerator targets.

    The technique he spun out of the idea could hugely boost the power at which future particle accelerators could operate—helping us unlock the secrets of how our universe is built.

    One of the ways particle accelerators produce particles is by firing particle beams at targets. These targets are stationary, solid blocks of material, such as graphite or beryllium. When the beam collides with the target, it produces a spray of particles that can inform scientists about the fundamental building blocks of the universe.

    For example, the pioneering international Deep Underground Neutrino Experiment, or DUNE, an experiment hosted by Fermilab and developed in collaboration with more than 170 institutions worldwide, seeks to understand why matter exists in the universe by unlocking the mysteries of ghostly particles called neutrinos.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    But the experiment is limited by how much the targets can handle; to solve these mysteries, the accelerator beam used by DUNE needs to reach a power of at least 1.2 megawatts—twice the amount current targets can handle.

    The point of collision between the beam and the target—an area significantly smaller than the target itself, varying between the size of an ant and the graphite in a mechanical pencil—as rapidly and repeatedly heated to above 500 degrees Celsius. This heat causes that tiny area to try to expand, but because the currently used targets are solid, there’s no room for expansion. Instead, the hot spot pushes against the surrounding area over and over again, like a jackhammer. This has the potential to damage the target.

    When you dive into a pool, your collision with the water causes waves to ripple across the surface. When the waves reach the edge of the pool, they will rebound and cross over other waves, either destroying each other or combining to make a larger wave. In a pool, if a wave gets too large, the water can simply splash over the edge. In a solid target, however, if a wave gets too big, the material will crack.

    At the Fermilab particle accelerator’s current beam intensities, this isn’t a problem, because targets can withstand the resulting waves for a long time. As Fermilab upgrades its accelerator complex and the intensity increases, that endurance time drops drastically.

    “Worldwide, there is a push for higher-intensity machines to create rare particles. These targets have sometimes been the sole limiting factor in the performance of such facilities,” Zwaska said. “So, to research areas of new physics, we have to be pushing for new technologies to confront this problem.”

    A new spin

    Tasked with coming up with an alternative target to use in high-powered accelerators, like the ones that will send beam to DUNE, Zwaska envisioned a target that consists of many twists and turns to prevent any wave buildup. This sinuous target would also be strong and solid at the microscale.

    He first tested graphite ropes, 3-D-printed fibers, and mostly hollow, reticulated solids before he stumbled upon the spun-sugar concept, which led him to electrospinning.

    First proposed in the early 1900s to produce thinner artificial silk, electrospinning has been used for air filtration in cars, wound dressing and pharmaceutical drugs. Like spinning sugar, electrospinning involves using a liquidized material to create thin strands that eventually harden into the desired structure. Instead of heating the liquid, electrospinning applies a positive charge to it. The charge on the liquid creates an attraction between it and a neutral plate, placed some distance away. This attraction stretches the material towards the plate, creating a solid, fibrous material.

    For accelerator targets, specialists turn metal or ceramic into a solid but porous material that consists of thousands of fiber strands less than a micrometer in diameter. That’s less than a hundredth the thickness of an average human hair, and about a third of a spider’s webbing.

    When the particle beam collides with an electrospun target, the fibers won’t propagate any waves. The lack of potentially material-damaging waves means that these targets can withstand much higher beam intensity.

    Instead of a pool, imagine you jump into a ball pit. Your collision will disrupt the arrangement of the balls immediately around you but leave the surrounding ones alone. The electrospun target acts the same way. The process leaves space between each fiber, allowing the fibers to expand uniformly, avoiding the jackhammer effect.

    Targeting better systems

    While this new technology potentially solves many of the issues with current targets, it has its own obstacles to overcome. Typically, the process to make an electrospun target takes days, with experts frequently having to stop to correct complications in the way the material accumulates.

    Sujit Bidhar, a postdoctoral researcher at Fermilab, is trying to address these issues. Bidhar is developing and testing methods that increase the number of fiber spin-off points that form at a single time, produce a thicker nanofiber target, and decrease the amount of electricity needed to create the positive charge. These advancements would both speed up and simplify the process.

    While he’s still trying different electrospinning techniques, Bidhar has already developed a new patent-pending electrospinning system, including a novel power supply.

    Bidhar’s electrospinning unit is more compact, more lightweight, simpler and cheaper than most conventional units.

    It’s also much safer to use due to its limited output power. Present commercial power supplies put out an amount of electric power that far exceeds what is needed to make electrospun targets. Bidhar’s power supply unit reduces the electric power output and overall unit size by half, which also makes it safer to use.

    “Medical personnel would be able to use this power supply to create biodegradable wound dressings in remote and mobile locations, without a bulky and high-voltage unit,” Bidhar said.

    Electrospun targets, like Bidhar’s power supply, could innovate the future of particle physics accelerators, allowing experiments such as DUNE to reach higher levels of beam intensity. These higher intensity beams will aid scientists in solving the enduring mysteries of astrophysics, nuclear physics and particle physics.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 2:08 pm on May 3, 2019 Permalink | Reply
    Tags: "A quantum leap in particle simulation", , FNAL, , , , Particles called fermions which are the building blocks of matter; and particles called bosons which are field particles and tug on the matter particles.,   

    From Fermi National Accelerator Lab: “A quantum leap in particle simulation” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    May 2, 2019
    Leah Hesla

    A group of scientists at the Department of Energy’s Fermilab has figured out how to use quantum computing to simulate the fundamental interactions that hold together our universe.

    In a paper published in Physical Review Letters, Fermilab researchers fill a conspicuous gap in modeling the subatomic world using quantum computers, addressing a family of particles that, until recently, has been relatively neglected in quantum simulations.

    The fundamental particles that make up our universe can be divided into two groups: particles called fermions, which are the building blocks of matter, and particles called bosons, which are field particles and tug on the matter particles.

    In recent years, scientists have successfully developed quantum algorithms to compute systems made of fermions. But they’ve had a much tougher time doing the same for boson systems.

    For the first time, Fermilab scientist Alexandru Macridin has found a way to model systems containing both fermions and bosons on general-purpose quantum computers, opening a door to realistic simulations of the subatomic realm. His work is part of the Fermilab quantum science program.

    “The representation of bosons in quantum computing was never addressed very well in the literature before,” Macridin said. “Our method worked, and better than we expected.”

    The relative obscurity of bosons in quantum-computation literature has partly to do with bosons themselves and partly with the way quantum-computing research has evolved.

    Over the last decade, the development of quantum algorithms focused strongly on simulating purely fermionic systems, such as molecules in quantum chemistry.

    “But in high-energy physics, we also have bosons, and high-energy physicists are particularly interested in the interactions between bosons and fermions,” said Fermilab scientist Jim Amundson, a co-author on the Physical Review Letters paper. “So we took existing fermion models and extended them to include bosons, and we did that in a novel way.”

    The biggest barrier to modeling bosons related to the properties of a qubit — a quantum bit.

    Mapping the states

    A qubit has two states: 1 and 0.

    Similarly, a fermion state has two distinct modes: occupied and unoccupied.

    The qubit’s two-state property means it can represent a fermion state pretty straightforwardly: One qubit state is assigned to “occupied,” and the other, “unoccupied.”

    (You might remember something about the occupation of states from high school chemistry: An atom’s electron orbitals can each be occupied by a maximum of one electron. So they’re either occupied or not. Those orbitals, in turn, combine to form the electron shells that surround the nucleus.)

    The one-to-one mapping between qubit state and fermion state makes it easy to determine the number of qubits you’ll need to simulate a fermionic process. If you’re dealing with a system of 40 fermion states, like a molecule with 40 orbitals, you’ll need 40 qubits to represent it.

    In a quantum simulation, a researcher sets up qubits to represent the initial state of, say, a molecular process. Then the qubits are manipulated according to an algorithm that reflects how that process evolves.

    More complex processes need a greater number of qubits. As the number grows, so does the computing power needed to carry it out. But even with only a handful of qubits at one’s disposal, researchers are able to tackle some interesting problems related to fermion processes.

    “There’s a well-developed theory for how to map fermions onto qubits,” said Fermilab theorist Roni Harnik, a co-author of the paper.

    Bosons, nature’s force particles, are a different story. The business of mapping them gets complicated quickly. That’s partly because, unlike the restricted, two-choice fermion state, boson states are highly accommodating.

    2
    A system of bosons can be modeled as a system of harmonic oscillators, a phenomenon that occurs everywhere in nature. The motion of a spring bobbing up and down and the vibration of a plucked string are both examples of harmonic oscillators. In quantum mechanics, the harmonic oscillator motion is described by typical wave functions. Several (typical) wave functions are shown here. A Fermilab team recently found a way to represent wave functions for bosonic systems on a quantum computer. Image: Allen McC

    Accommodating bosons

    Since only one fermion can occupy a particular fermion quantum state, that state is either occupied or not — 1 or 0.

    In contrast, a boson state can be variably occupied, accommodating one boson, a zillion bosons, or anything in between. That makes it tough to map bosons to qubits. With only two possible states, a single qubit cannot, by itself, represent a boson state.

    With bosons, the question is not whether the qubit represents an occupied or unoccupied state, but rather, how many qubits are needed to represent the boson state.

    “Scientists have come up with ways to encode bosons into qubits that would require a large number of qubits to give you accurate results,” Amundson said.

    A prohibitively large number, in many cases. By some methods, a useful simulation would need millions of qubits to faithfully model a boson process, like the transformation of a particle that ultimately produces a particle of light, which is a type of boson.

    And that’s just in representing the process’s initial setup, let alone letting it evolve.

    Macridin’s solution was to recast the boson system as something else, something very familiar to physicists — a harmonic oscillator.

    Harmonic oscillators are everywhere in nature, from the subatomic to the astronomical scales. The vibration of molecules, the pulse of current through a circuit, the up-and-down bob of a loaded spring, the motion of a planet around a star — all are harmonic oscillators. Even bosonic particles, like those Macridin looked to simulate, can be treated like tiny harmonic oscillators. Thanks to their ubiquity, harmonic oscillators are well-understood and can be modeled precisely.

    With a background in condensed-matter physics — the study of nature a couple of notches up from its particle foundation — Macridin was familiar with modeling harmonic oscillators in crystals. He found a way to represent a harmonic oscillator on a quantum computer, mapping such systems to qubits with exceptional precision and enabling the precise simulation of bosons on quantum computers.

    And at a low qubit cost: Representing a discrete harmonic oscillator on a quantum computer requires only a few qubits, even if the oscillator represents a large number of bosons.

    “Our method requires a relatively small number of qubits for boson states — exponentially smaller than what was proposed by other groups before,” Macridin said. “For other methods to do the same thing, they would probably need orders of magnitude larger number of qubits.”

    Macridin estimates that six qubits per boson state is enough to explore interesting physics problems.

    Simulation success

    As a trial of Macridin’s mapping method, the Fermilab group first tapped into quantum field theory, a branch of physics that focuses on modeling subatomic structures. They successfully modeled the interaction of electrons in a crystal with the vibrations of the atoms that form the crystal. The ‘unit’ of that vibration is a boson called a phonon.

    Using a quantum simulator at nearby Argonne National Laboratory, they modeled the electron-phonon system and — voila! — they showed they could calculate, with high accuracy, the system’s properties using only about 20 qubits. The simulator is a classical computer that simulates how a quantum computer, up to 35 qubits, works. Argonne researchers leverage the simulator and their expertise in scalable algorithms to explore the potential impact of quantum computing in key areas such as quantum chemistry and quantum materials.

    “We showed that the technique worked,” Harnik said.

    They further showed that, by representing bosons as harmonic oscillators, one could efficiently and accurately describe systems involving fermion-boson interactions.

    “It turned out to be a good fit,” Amundson said.

    “I’d started with one idea, and it didn’t work, so then I changed the representation of the bosons,” Macridin said. “And it worked well. It makes the simulation of fermion-boson systems feasible for near-term quantum computers.”

    Universal application

    The Fermilab group’s simulation is not the first time scientists have modeled bosons in quantum computers. But in the other cases, scientists used hardware specifically designed to simulate bosons, so the simulated evolution of a boson system would happen naturally, so to speak, on those special computers.

    The Fermilab group’s approach is the first that can be applied efficiently in a general-purpose, digital quantum computer, also called a universal quantum computer.

    The next step for Macridin, Amundson and other particle physicists at Fermilab is to use their method on problems in high-energy physics.

    “In nature, fermion-boson interactions are fundamental. They appear everywhere,” Macridin said. “Now we can extend our algorithm to various theories in our field.”

    Their achievement extends beyond particle physics. Amundson says their group has heard from materials scientists who think the work could be useful in solving real-world problems in the foreseeable future.

    “We introduced bosons in a new way that requires fewer resources,” Amundson said. “It really opens up a whole new class of quantum simulations.”

    This work was funded by the DOE Office of Science. Learn more about this result in Physical Review Letters [above]. Visit the Fermilab quantum science website [above] to learn about other quantum initiatives.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:18 pm on April 16, 2019 Permalink | Reply
    Tags: , FNAL, , , , MINOS, ,   

    From Fermi National Accelerator Lab: “Search for sterile neutrinos in MINOS and MINOS+” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 16, 2019

    1
    MINOS far detector as seen in 2012. Photo: Reidar Hahn

    The MINOS+ collaboration at the Department of Energy’s Fermilab has published a paper in Physical Review Letters about their latest results: new constraints on the existence of sterile neutrinos. The collaboration has exploited new high-statistics data and a new analysis regime to set more stringent boundaries on the possibility of sterile neutrinos mixing with muon neutrinos. They have significantly improved on their previous results published in 2016. With close to 40 publications that have garnered more than 6,000 citations, MINOS has been at the forefront of studying neutrino oscillations physics since its first data-taking days in 2005.

    The experiment uses two iron-scintillator sampling-and-tracking calorimetric particle detectors: The near detector is placed 1.04 kilometers from the neutrino source at Fermilab, and the far detector is placed 735 kilometers away in Minnesota.

    FNAL MINOS near detector

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    The MINOS experiment collected data using a low-energy neutrino beam from May 1, 2005, to April 29, 2012, and MINOS+ collected data with a medium-energy neutrino beam from Sept. 4, 2013 to June 29, 2016.

    The detectors have accumulated high-statistics samples of muon neutrino interactions. Using a Fermilab neutrino beam composed of almost 100 percent muon neutrinos, they measured the disappearance of muon neutrinos as the particles arrived at the far detector. The collaboration used these data to obtain some of the most precise to-date measurements of standard three-neutrino mixings. These data also restrict phenomena beyond the Standard Model, including the hypothetical light sterile neutrinos.

    The analysis has simultaneously employed the energy spectra of charged-current (W boson exchange) and neutral-current (Z boson exchange) interactions between the neutrinos and the atoms inside the detector.

    Using a neutrino oscillation model that assumed the existence of the three known kinds of neutrinos plus a fourth type of neutrino referred to as a single sterile neutrino, the MINOS+ collaboration found no evidence of sterile neutrinos. Instead, the collaboration was able to set rigorous limits on the mixing parameter sin2θ24 for the mass splitting Δm241 > 10−4 eV2.

    The results significantly increase the tension with results obtained by experiments conducted with single detectors studying electron neutrino appearance in a muon neutrino beam. The LSND and MiniBooNE techniques and limited statistics present challenges that are now being tackled by the MicroBooNE experiment at Fermilab, designed specifically for this task.

    LSND experiment at Los Alamos National Laboratory and Virginia Tech

    FNAL/MiniBooNE

    FNAL/MicrobooNE

    Scientists from 33 institutions in five countries — the United States, UK, Brazil, Poland and Greece — are members of the MINOS+ collaboration. More information can be found on the MINOS+ website.

    This work is supported by the U.S. Department of Energy Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:24 pm on April 15, 2019 Permalink | Reply
    Tags: , , Deep Underground Neutrino Experiment, Electrospinning, FNAL,   

    From Fermi National Accelerator Lab: “Spinning new targets for accelerators” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 15, 2019
    Caitlyn Buongiorno

    Bob Zwaska, a scientist at the U.S. Department of Energy’s Fermilab, was watching a contestant on the cooking show Chopped spin sugar for their dessert when he realized the same principle might be applicable to accelerator targets.

    One of the ways particle accelerators produce particles is by firing particle beams at targets. These targets are stationary, solid blocks of material, such as graphite or beryllium. When the beam collides with the target, it produces secondary particles, such as pions, which decay into tertiary particles, such as neutrinos and muons.

    Future particle physics experiments are limited by the targets currently used in particle accelerators. One is the international Deep Underground Neutrino Experiment, a cutting-edge experiment hosted by Fermilab and developed in collaboration with more than 170 institutions worldwide. DUNE seeks to understand why matter exists in the universe by unlocking the mysteries of ghostly particles called neutrinos.


    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    SURF DUNE LBNF Caverns at Sanford Lab

    To solve these mysteries, the accelerator beam used by DUNE needs to reach a power of at least 1.2 megawatts, twice the amount current targets can handle.

    The point of collision between the beam and the target — an area significantly smaller than the target itself, varying between the size of an ant and the graphite in a mechanical pencil — is rapidly and repeatedly heated to above 500 degrees Celsius. This heat causes that tiny area to try to expand, but, because the currently used targets are solid, there’s no room for expansion. Instead, the hot spot pushes against the surrounding area over and over again, like a jack hammer. This has the potential to damage the target.

    2
    In electrospinning, a positive charge is applied to liquidized material to create thin strands that eventually harden into a solid, fibrous material. Photo: Reidar Hahn

    When you dive into a pool, your collision with the water causes waves to ripple across the surface. When the waves reach the edge of the pool, they will rebound and cross over other waves, either destroying each other or combining to make a larger wave. In a pool, if a wave gets too large, the water can simply splash over the edge. In a solid target, however, if a wave gets too big, the material will crack.

    At the Fermilab particle accelerator’s current beam intensities, this isn’t a problem, because targets can withstand the resulting waves for a long time. As Fermilab upgrades its accelerator complex and the intensity increases, that endurance time drops drastically.

    “Worldwide, there is a push for higher-intensity machines to create rare particles. These targets have sometimes been the sole limiting factor in the performance of such facilities,” Zwaska said. “So, to research areas of new physics, we have to be pushing for new technologies to confront this problem.”

    Tasked with coming up with an alternative target to use in high-powered accelerators, like the ones that will send beam to DUNE, Zwaska envisioned a target that consists of many twists and turns to prevent any wave buildup. This sinuous target would also be strong and solid at the microscale. He first tested graphite ropes, 3-D-printed fibers, and mostly hollow, reticulated solids before he stumbled upon the spun-sugar concept, which led him to electrospinning.

    First proposed in the early 1900s to produce thinner artificial silk, electrospinning has been used for air filtration in cars, wound dressing and pharmaceutical drugs. Like spinning sugar, electrospinning involves using a liquidized material to create thin strands that eventually harden into the desired structure. Instead of heating the liquid, electrospinning applies a positive charge to it. The charge on the liquid creates an attraction between it and a neutral plate, placed some distance away. This attraction stretches the material towards the plate, creating a solid, fibrous material.

    For accelerator targets, specialists turn metal or ceramic into a solid but porous material that consists of thousands of fiber strands less than a micrometer in diameter. That’s less than a hundredth the thickness of an average human hair, and about a third of a spider’s webbing.

    When the particle beam collides with an electrospun target, the fibers won’t propagate any waves. The lack of potentially material-damaging waves means that these targets can withstand much higher beam intensity.

    Instead of a pool, imagine you jump into a ball pit. Your collision will disrupt the arrangement of the balls immediately around you but leave the surrounding ones alone. The electrospun target acts the same way. The process leaves space between each fiber, allowing the fibers to expand uniformly, avoiding the jack hammer effect.

    While this new technology potentially solves many of the issues with current targets, it has its own obstacles to overcome. Typically, the process to make an electrospun target takes days, with experts frequently having to stop to correct complications in the way the material accumulates.

    Sujit Bidhar, a postdoctoral researcher at Fermilab, is trying to address these issues.

    Bidhar is developing and testing methods that increase the number of fiber spin-off points that form at a single time, produce a thicker nanofiber target, and decrease the amount of electricity needed to create the positive charge. These advancements would both speed up and simplify the process.

    While he’s still trying different electrospinning techniques, Bidhar has already developed a new patent-pending electrospinning system, including a novel power supply.

    Bidhar’s electrospinning unit is more compact, more lightweight, simpler and cheaper than most conventional units.

    Its also much safer to use due to its limited output power. Present commercial power supplies put out an amount of electric power that far exceeds what is needed to make electrospun targets. Bidhar’s power supply unit reduces the electric power output and overall unit size by half, which also makes it safer to use.

    In May 2018, Bidhar’s power supply won the TechConnect Innovation Award. Bidhar is encouraged by what this technology means for particle physics and also for other industries.

    “Medical personnel would be able to use this power supply to create biodegradable wound dressings in remote and mobile locations, without a bulky and high-voltage unit,” Bidhar said.

    Electrospun targets, like Bidhar’s power supply, could innovate the future of particle physics accelerators, allowing experiments such as DUNE to reach higher levels of beam intensity. These higher intensity beams will aid scientists in solving the enduring mysteries of astrophysics, nuclear physics and particle physics.

    Learn more about electrospinning. This work is supported by the U.S. Department of Energy Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 11:26 am on April 12, 2019 Permalink | Reply
    Tags: , , FNAL, , , , ,   

    From Fermi National Accelerator Lab: “Quarks, squarks, stops and charm at this year’s Moriond conference” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 11, 2019
    Don Lincoln

    1
    Fermilab RAs Kevin Pedro and Nadja Strobbe presented a variety of CMS and ATLAS research results at the 53rd annual Recontres de Moriond conference.

    This March, scientists from around the world gathered in LaThuile, Italy, for the 53rd annual Recontres de Moriond conference, one of the longest running and most prestigious conferences in particle physics. This conference is broken into two distinct weeks, with the first week usually covering electroweak physics and the second covering processes involving quantum chromodynamics. Fermilab and the LHC Physics Center were well represented at the conference.

    Fermilab research associates Kevin Pedro and Nadja Strobbe from the CMS group both presented talks on LHC physics result. Pedro spoke on searches for new physics with unconventional signatures at both the ATLAS and CMS experiments. The interest in unusual signatures is driven by the fact that many researchers have already searched for more commonly accepted physical processes. Looking for the unconventional opens up the possibility of unanticipated discoveries. Pedro covered long-lived particles emerging from a complex dark matter sector. The signature for this possible physics result is a jet that originates far from the interaction vertex. He also covered long-lived particles that disappear in the detector. This is a signature for a form of supersymmetry.

    Strobbe presented a thorough overview of searches for strong-force-produced signatures of supersymmetry. She covered both ATLAS and CMS results, covering a broad range of signatures, including the associated production of b quarks and Higgs bosons, diphotons, several stop squark analyses, and the associated production of three bottom quarks and missing transverse momentum. In total, she presented 12 distinct analyses. The phenomenology of strong-force-produced supersymmetry is diverse, and it provides a rich source for the possible discovery of new physics. This is Strobbe’s last Moriond presentation as a Fermilab research associate, as she has recently accepted a faculty position at the University of Minnesota, where she will be starting in the fall.

    Strobbe and Pedro were not the only people associated with the LHC Physics Center presenting or involved at Moriond. Fermilab Senior Scientist Boaz Klima has long been a member of the organizing committee. Meng Xiao (Johns Hopkins) and Greg Landsberg (Brown) also presented.

    More broadly, many interesting physics topics were covered at the conference. The LHCb experiment announced the discovery of new pentaquarks containing charm quarks. They also reported that a peak in the data that was previously thought to be a single pentaquark was actually two distinct particles. Studies of mesons containing both bottom and charm quarks were very well-represented, with ATLAS, CMS and LHCb all making presentations. In the first week of the Moriond conference, both ATLAS and LHCb announced studies in the matter-antimatter asymmetry in decays of mesons containing both bottom and strange quarks. And in an example of very quick inter-collaboration cooperation, the experiments presented a combined result in the second week.

    While the LHC is best known for colliding two beams of protons (studies of which were well represented at Moriond), the LHC also collides lead ions to study the behavior of superhot quark matter – what is called quark-gluon plasma. ALICE presented studies of charmed mesons called J/psi, which showed that charm quarks are affected in quark-gluon plasmas, just like lighter quarks. The ALICE experiment presented data gathered in a special run of proton-proton collisions at an energy unusual for the LHC an observation of charmed baryons in LHC collisions. These particles occur more often in proton-proton collisions than in electron-positron ones.

    The Moriond conference is a fascinating one. It is small and cozy and allows for conversations and collaboration between researchers, with a storied history of over half a century. In its 53rd year, researchers are showing that its second half century will be just as exciting.

    Don Lincoln is a Fermilab scientist on the CMS experiment.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:30 pm on April 2, 2019 Permalink | Reply
    Tags: , , , Fermilab Integrable Optics Test Accelerator (IOTA), FNAL, Synchrotrons   

    From Fermi National Accelerator Lab: “Work at the Fermilab Integrable Optics Test Accelerator” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 2, 2019
    Giulio Stancari

    1
    1/2) After the first electron beam was circulated in August 2018, the experimental program at the Fermilab Integrable Optics Test Accelerator (IOTA) continues with commissioning of machine and diagnostics and with the first beam-physics experiments. This view of IOTA was taken in November 2018. Photo: Giulio Stancari

    2
    (2/2) Jamie Santucci works on one of the synchrotron-light diagnostic stations in the Fermilab Integrable Optics Test Accelerator, or IOTA. Photo: Giulio Stancari

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 8:11 am on March 27, 2019 Permalink | Reply
    Tags: FNAL, , ,   

    From Fermi National Accelerator Lab via GIZMODO: “Fermilab Breaks Ground on a New Particle Accelerator to Solve the Mysteries of Neutrinos” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    via

    GIZMODO bloc

    GIZMODO

    3/20/19
    Ryan F. Mandelbaum

    FNAL A superconducting radiofrequency cavity responsible for accelerating particles at the new PIP-II accelerator

    Construction began last week on a new particle accelerator at Fermi National Accelerator Laboratory in Illinois. The new project will power Fermilab’s flagship neutrino-studying accelerator experiment.

    The Proton Improvement Plan II, formally approved by the Department of Energy last summer, includes plans for the highest-energy linear particle accelerator to accelerate a continuous stream of protons using superconducting radio-frequency cavities. That’s a mouthful—so it’s best to think of it as a central component to the American particle physics laboratory.

    PIP-II will “enable other particle physics experiments for many decades,” Lia Merminga, the director of the project from Fermilab, told Gizmodo.

    At present, Fermilab has a 500-foot-long superconducting radio-frequency linear accelerator that can send protons to 400 mega-electronvolts (MeV), or around 70 percent the speed of light. The PIP-II upgrade will include a 700-foot-long accelerator that doubles the energy to 800 MeV, 84 percent the speed of light. This is still a small fraction of the energies of particles produced at the Large Hadron Collider, but rather than producing bunches of particles the PIP-II upgrade will produce a continuous beam.

    Similar to how humming into a cup at just the right pitch makes your voice sound louder, linear accelerators amplify electric fields using resonance. There’s an electric field inside a cavity made from a superconductor and cooled by liquid helium, excited by a radio-frequency source with the same resonant frequency as the cavity. This increases the amplitudes of the electric fields, accelerating the charged particles that pass through.

    Though the accelerator has plenty of potential uses, it’s not the protons you should be most interested right now—instead, these protons will hit a graphite target, producing the incredibly low-mass, mysterious particles called neutrinos. Trillions of these neutrinos will travel 800 miles underground to a detector in South Dakota as part of the Deep Underground Neutrino Experiment, or DUNE.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    Surf-Dune/LBNF Caverns at Sanford


    DUNE’s scientists hope to understand the nature of these particles, like why they oscillate between their three possible types, seemingly by magic.

    PIP-II is also notable as the first Department of Energy-funded accelerator project to be built with significant international contribution. About a quarter of the project’s funding will come from other countries, explained Merminga, including France, India, Italy, and the United Kingdom.

    The project is just one part of the new neutrino experiment, but together with the DUNE detectors and the Long-Baseline Neutrino Facilities that will house the detectors, it will be an important American particle physics experiment to keep your eye on.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 1:10 pm on March 15, 2019 Permalink | Reply
    Tags: , , FNAL, , , , ,   

    From Fermi National Accelerator Lab: “Fermilab, international partners break ground on new state-of-the-art particle accelerator” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    March 15, 2019
    Andre Salles, Fermilab Office of Communication
    asalles@fnal.gov
    630-840-6733

    With a ceremony held today, the U.S. Department of Energy’s Fermi National Accelerator Laboratory officially broke ground on a major new particle accelerator project that will power cutting-edge physics experiments for many decades to come.

    The new 700-foot-long linear accelerator, part of the laboratory’s Proton Improvement Plan II (PIP-II), will be the first accelerator project built in the United States with significant contributions from international partners. When complete, the new machine will become the heart of the laboratory’s accelerator complex, vastly improving what is already the world’s most powerful particle beam for neutrino experiments and providing for the long-term future of Fermilab’s diverse research program.

    The new PIP-II accelerator will make use of the latest superconducting technology, a key research area for Fermilab. Its flexible design will enable it to work as a new first stage for Fermilab’s chain of accelerators, powering both the laboratory’s flagship project — the international Deep Underground Neutrino Experiment (DUNE), hosted by Fermilab — and its extensive suite of on-site particle physics experiments, including searches for new particles and new forces in our universe.

    1
    On Friday, March 15, Fermilab broke ground on the PIP-II accelerator project, joined by dignitaries from the United States and international partners on the project. From left: Senator Tammy Duckworth (IL), Senator Dick Durbin (IL), Rep. Sean Casten (IL-6), Rep. Robin Kelly (IL-2), Rep. Bill Foster (IL-11), Fermilab Director Nigel Lockyer, Rep. Lauren Underwood (IL-14), Illinois Governor JB Pritzker, DOE Under Secretary for Science Paul Dabbar, PIP-II Project Director Lia Merminga, DOE Associate Director for High Energy Physics Jim Siegrist, University of Chicago President Robert Zimmer, Consul General of India Neeta Bhushan, British Consul General John Saville, Consul General of Italy Giuseppe Finocchiaro, Consul General of France Guillaume Lacroix, DOE Fermi Site Office Manager Mike Weis, DOE PIP-II Federal Project Director Adam Bihary and Consul General of Poland Piotr Janicki. Photo: Reidar Hahn

    DUNE is under construction now and will be the most advanced experiment in the world studying ghostly, invisible particles called neutrinos. These particles may hold the key to cosmic mysteries that have baffled scientists for decades. The DUNE collaboration brings together more than 1,000 scientists from over 180 institutions in more than 30 countries, all with a single goal: to better understand these elusive particles and what they can tell us about the universe.

    The PIP-II accelerator will enable the beam that will send trillions of neutrino particles 800 miles (1,300 kilometers) through the earth to the four-story-high DUNE detector, to be built a mile beneath the surface at the Sanford Underground Research Facility [SURF] in Lead, South Dakota. With the improved particle beam enabled by PIP-II, scientists will use the DUNE detector to capture the most vivid 3-D images of neutrino interactions ever seen.

    3
    Shortly after breaking ground on the PIP-II accelerator project on Friday, March 15, Fermilab employees were joined by the governor of Illinois, six members of Congress and partners from around the world in this group photo. Photo: Reidar Hahn

    PIP-II is itself a groundbreaking scientific instrument, and its construction is pioneering a new paradigm for accelerator projects supported by DOE. The accelerator would not be possible without the contributions and world-leading expertise of partners in France, India, Italy and the UK. Scientists in each country are building components of the accelerator, to be assembled at Fermilab. This will be the first accelerator project in the United States completed using this approach.

    With PIP-II at the center of the laboratory’s accelerator complex, Fermilab will remain at the forefront of particle physics research and accelerator science for the foreseeable future.

    Today’s groundbreaking ceremony for the PIP-II accelerator was attended by dignitaries from around the globe. Speakers included Sen. Dick Durbin (IL), Sen. Tammy Duckworth (IL), Rep. Lauren Underwood (IL-14), Rep. Bill Foster (IL-11), Rep. Robin Kelly (IL-2), Rep. Sean Casten (IL-6), DOE Under Secretary for Science Paul Dabbar, University of Chicago President Robert Zimmer, and national and international partners in the project.

    4
    This architectural rendering shows the buildings that will house the new PIP-II accelerators. Architectural rendering: Gensler. Image: Diana Brandonisio.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 1:29 pm on March 8, 2019 Permalink | Reply
    Tags: , And finally theywill be shipped to CERN, “The need to go beyond the already excellent performance of the LHC is at the basis of the scientific method” said Giorgio Apollinari Fermilab scientist and HL-LHC AUP project manager., , , , Each magnet will have four sets of coils making it a quadrupole., Earlier this month the AUP earned approval for both Critical Decisions 2 and 3b from DOE., Fermilab will manufacture 43 coils and Brookhaven National Laboratory in New York will manufacture another 41, FNAL, , In its current configuration on average an astonishing 1 billion collisions occur every second at the LHC., It’s also the reason behind the collider’s new name the High-Luminosity LHC., LHC AUP began just over two years ago and on Feb. 11 it received key approvals allowing the project to transition into its next steps., , , , Superconducting niobium-tin magnets have never been used in a high-energy particle accelerator like the LHC., The AUP calls for 84 coils fabricated into 21 magnets., The first upgrade is to the magnets that focus the particles., The magnets will be sent to Brookhaven to be tested before being shipped back to Fermilab., The new technologies developed for the LHC will boost that number by a factor of 10., The second upgrade is a special type of accelerator cavity., The U.S. Large Hadron Collider Accelerator Upgrade Project is the Fermilab-led collaboration of U.S. laboratories in partnership with CERN and a dozen other countries., These new magnets will generate a maximum magnetic field of 12 tesla roughly 50 percent more than the niobium-titanium magnets currently in the LHC., This means that significantly more data will be available to experiments at the LHC., This special cavity called a crab cavity is used to increase the overlap of the two beams so that more protons have a chance of colliding., Those will then be delivered to Lawrence Berkeley National Laboratory to be formed into accelerator magnets, Twenty successful magnets will be inserted into 10 containers which are then tested by Fermilab, U.S. Department of Energy projects undergo a series of key reviews and approvals referred to as “Critical Decisions” that every project must receive., U.S. physicists and engineers helped research and develop two technologies to make this upgrade possible.   

    From Brookhaven National Lab: “Large Hadron Collider Upgrade Project Leaps Forward” 

    From Brookhaven National Lab

    March 4, 2019
    Caitlyn Buongiorno

    1
    Staff members of the Superconducting Magnet Division at Brookhaven National Laboratory next to the “top hat”— the interface between the room temperature components of the magnet test facility and the LHC high-luminosity magnet to be tested. The magnet is attached to the bottom of the top hat and tested in superfluid helium at temperatures close to absolute zero. Left to right: Joseph Muratore, Domenick Milidantri, Sebastian Dimaiuta, Raymond Ceruti, and Piyush Joshi. Credit: Brookhaven National Laboratory

    The U.S. Large Hadron Collider Accelerator Upgrade Project is the Fermilab-led collaboration of U.S. laboratories that, in partnership with CERN and a dozen other countries, is working to upgrade the Large Hadron Collider.

    LHC AUP began just over two years ago and, on Feb. 11, it received key approvals, allowing the project to transition into its next steps.

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

    U.S. Department of Energy projects undergo a series of key reviews and approvals, referred to as “Critical Decisions” that every project must receive. Earlier this month, the AUP earned approval for both Critical Decisions 2 and 3b from DOE. CD-2 approves the performance baseline — the scope, cost and schedule — for the AUP. In order to stay on that schedule, CD-3b allows the project to receive the funds and approval necessary to purchase base materials and produce final design models of two technologies by the end of 2019.

    The LHC, a 17-mile-circumference particle accelerator on the French-Swiss border, smashes together two opposing beams of protons to produce other particles. Researchers use the particle data to understand how the universe operates at the subatomic scale.

    In its current configuration, on average, an astonishing 1 billion collisions occur every second at the LHC. The new technologies developed for the LHC will boost that number by a factor of 10. This increase in luminosity — the number of proton-proton interactions per second — means that significantly more data will be available to experiments at the LHC. It’s also the reason behind the collider’s new name, the High-Luminosity LHC.

    2
    This “crab cavity” is designed to maximize the chance of collision between two opposing particle beams. Photo: Paolo Berrutti

    “The need to go beyond the already excellent performance of the LHC is at the basis of the scientific method,” said Giorgio Apollinari, Fermilab scientist and HL-LHC AUP project manager. “The endorsement and support received for this U.S. contribution to the HL-LHC will allow our scientists to remain at the forefront of research at the energy frontier.”

    U.S. physicists and engineers helped research and develop two technologies to make this upgrade possible. The first upgrade is to the magnets that focus the particles. The new magnets rely on niobium-tin conductors and can exert a stronger force on the particles than their predecessors. By increasing the force, the particles in each beam are driven closer together, enabling more proton-proton interactions at the collision points.

    The second upgrade is a special type of accelerator cavity. Cavities are structures inside colliders that impart energy to the particle beam and propel them forward. This special cavity, called a crab cavity, is used to increase the overlap of the two beams so that more protons have a chance of colliding.

    “This approval is a recognition of 15 years of research and development started by a U.S. research program and completed by this project,” said Giorgio Ambrosio, Fermilab scientist and HL-LHC AUP manager for magnets.

    3
    This completed niobium-tin magnet coil will generate a maximum magnetic field of 12 tesla, roughly 50 percent more than the niobium-titanium magnets currently in the LHC. Photo: Alfred Nobrega

    Magnets help the particles go ’round

    Superconducting niobium-tin magnets have never been used in a high-energy particle accelerator like the LHC. These new magnets will generate a maximum magnetic field of 12 tesla, roughly 50 percent more than the niobium-titanium magnets currently in the LHC. For comparison, an MRI’s magnetic field ranges from 0.5 to 3 tesla, and Earth’s magnetic field is only 50 millionths of one tesla.

    There are multiple stages to creating the niobium-tin coils for the magnets, and each brings its challenges.

    Each magnet will have four sets of coils, making it a quadrupole. Together the coils conduct the electric current that produces the magnetic field of the magnet. In order to make niobium-tin capable of producing a strong magnetic field, the coils must be baked in an oven and turned into a superconductor. The major challenge with niobium-tin is that the superconducting phase is brittle. Similar to uncooked spaghetti, a small amount of pressure can snap it in two if the coils are not well supported. Therefore, the coils must be handled delicately from this point on.

    The AUP calls for 84 coils, fabricated into 21 magnets. Fermilab will manufacture 43 coils, and Brookhaven National Laboratory in New York will manufacture another 41. Those will then be delivered to Lawrence Berkeley National Laboratory to be formed into accelerator magnets. The magnets will be sent to Brookhaven to be tested before being shipped back to Fermilab. Twenty successful magnets will be inserted into 10 containers, which are then tested by Fermilab, and finally shipped to CERN.

    With CD-2/3b approval, AUP expects to have the first magnet assembled in April and tested by July. If all goes well, this magnet will be eligible for installation at CERN.

    Crab cavities for more collisions

    Cavities accelerate particles inside a collider, boosting them to higher energies. They also form the particles into bunches: As individual protons travel through the cavity, each one is accelerated or decelerated depending on whether they are below or above an expected energy. This process essentially sorts the beam into collections of protons, or particle bunches.

    HL-LHC puts a spin on the typical cavity with its crab cavities, which get their name from how the particle bunches appear to move after they’ve passed through the cavity. When a bunch exits the cavity, it appears to move sideways, similar to how a crab walks. This sideways movement is actually a result of the crab cavity rotating the particle bunches as they pass through.

    Imagine that a football was actually a particle bunch. Typically, you want to throw a football straight ahead, with the pointed end cutting through the air. The same is true for particle bunches; they normally go through a collider like a football. Now let’s say you wanted to ensure that your football and another football would collide in mid-air. Rather than throwing it straight on, you’d want to throw the football on its side to maximize the size of the target and hence the chance of collision.

    Of course, turning the bunches is harder than turning a football, as each bunch isn’t a single, rigid object.

    To make the rotation possible, the crab cavities are placed right before and after the collision points at two of the particle detectors at the LHC, called ATLAS and CMS. An alternating electric field runs through each cavity and “tilts” the particle bunch on its side. To do this, the front section of the bunch gets a “kick” to one side on the way in and, before it leaves, the rear section gets a “kick” to the opposite side. Now, the particle bunch looks like a football on its side. When the two bunches meet at the collision point, they overlap better, which makes the occurrence of a particle collision more likely.

    After the collision point, more crab cavities straighten the remaining bunches, so they can travel through the rest of the LHC without causing unwanted interactions.

    With CD-2/3b approval, all raw materials necessary for construction of the cavities can be purchased. Two crab cavity prototypes are expected by the end of 2019. Once the prototypes have been certified, the project will seek further approval for the production of all cavities destined to the LHC tunnel.

    After further testing, the cavities will be sent out to be “dressed”: placed in a cooling vessel. Once the dressed cavities pass all acceptance criteria, Fermilab will ship all 10 dressed cavities to CERN.

    “It’s easy to forget that these technological advances don’t benefit just accelerator programs,” said Leonardo Ristori, Fermilab engineer and an HL-LHC AUP manager for crab cavities. “Accelerator technology existed in the first TV screens and is currently used in medical equipment like MRIs. We might not be able to predict how these technologies will appear in everyday life, but we know that these kinds of endeavors ripple across industries.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    BNL Campus

    BNL NSLS-II


    BNL NSLS II

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL RHIC PHENIX

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: