Tagged: FNAL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:40 pm on January 10, 2019 Permalink | Reply
    Tags: , ArgoNeuT, FNAL, Liquid-argon detectors, ,   

    From Fermi National Accelerator Lab: “Identifying lower-energy neutrinos with a liquid-argon particle detector” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    An experiment at the Department of Energy’s Fermilab has made a significant advance in the detection of neutrinos that hide themselves at lower energies.

    The ArgoNeuT experiment recently demonstrated for the first time that a particular class of particle detector — those that use liquid argon ­— can identify signals in an energy range that particle physicists call the “MeV range.”

    Fermilab ArgoNeuT

    It’s the first substantive step in confirming that researchers will be able to detect a wide energy range of neutrinos — even those at the harder-to-catch, lower energies — with the international Deep Underground Neutrino Experiment, or DUNE, hosted by Fermilab. DUNE is scheduled to start up in the mid-2020s.

    Neutrinos are lightweight, elusive and subtle particles that travel close to the speed of light and hold clues about the universe’s evolution. They are produced in radioactive decays and other nuclear reactions, and the lower their energy, the harder they are to detect.

    In general, when a neutrino strikes an argon nucleus, the interaction generates other particles that then leave detectable trails in the argon sea. These particles vary in energy.

    2
    This is a visual display of an ArgoNeuT event showing a long trail left behind by a high energy particle traveling through the liquid argon accompanied by small blips, indicated by the arrows, caused by low energy particles.

    Scientists are fairly adept at teasing out higher-energy particles — those with more than 100 MeV (or megaelectronvolts) — from their liquid-argon detector data. These particles zip through the argon, leaving behind what look like long trails in visual displays of the data.

    Sifting out particles in the lower, single-digit-MeV range is tougher, like trying to extract the better hidden needles in the proverbial haystack. That’s because lower-energy particles don’t leave as much of a trace in the liquid argon. They don’t so much zip as blip.

    Indeed, after simulating neutrino interactions with liquid argon, ArgoNeuT scientists predicted that MeV-energy particles would be produced and would be visible as tiny blips in the visual data. Where higher-energy particles show as streaks in the argon, the MeV particles’ telltale signature would be small dots.

    And this was the challenge ArgoNeuT researchers faced: How do you locate the tiny blips and dots in the data? And how do you check that they signify actual particle interactions and are not merely noise? The typical techniques, the methods for identifying long tracks in liquid argon, wouldn’t apply here. Researchers would have to come up with something different.

    And so they did: ArgoNeuT developed a method to identify and reveal blip-like signals from MeV particles. They started by comparing two different categories: blips accompanied by known neutrino events and blips unaccompanied by neutrino events. Finally, they developed a new low-energy-specific reconstruction technique to analyze ArgoNeuT’s actual experimental data to look for them.

    And they found them. They observed the blip signals, which matched the simulated results. Not only that, but the signals came through loud and clear: ArgoNeuT identified MeV signals as a 15 sigma excess, far higher than the standard for claiming an observation in particle physics, which is 5 sigma (which means that there’s a 1 in 3.5 million chance that the signal is a fluke.)

    ArgoNeuT’s result demonstrates a capacity of crucial importance for measuring MeV neutrino events in liquid argon.

    Intriguingly, neutrinos born inside a supernova also fall into MeV range. ArgoNeuT’s result gives DUNE scientists a leg up in one of its research goals: to improve our understanding of supernovae by studying the torrent of neutrinos that escape from inside the exploding star as it collapses.

    The enormous DUNE particle detector, to be located underground at Sanford Lab in South Dakota, will be filled with 70,000 tons of liquid argon. When neutrinos from a supernova traverse the massive volume of argon below Earth’s surface, some will bump into the argon atoms, producing signals collected by the DUNE detector. Scientists will use the data amassed by DUNE to measure supernova neutrino properties and fill in the picture of the star that produced them, and even potentially witness the birth of a black hole.

    Particle detectors picked up a handful of neutrino signals from a supernova in 1987, but none of them were liquid-argon detectors. (Other neutrino experiments use, for example, water, oil, carbon or plastic as their detection material of choice.) DUNE scientists need to understand what the lower-energy signals from a supernova would look like in argon.

    The ArgoNeuT collaboration is the first experiment to help answer that question, providing a kind of first chapter in the guidebook on what to look for when a supernova neutrino meets argon. Its achievement could bring us a little closer to learning what these messengers from outer space will have to tell us.

    Learn more.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

    Advertisements
     
  • richardmitnick 1:53 pm on January 8, 2019 Permalink | Reply
    Tags: , , , , , DES remains one of the most sensitive and comprehensive surveys of distant galaxies ever performed, DES scientists also spotted the first visible counterpart of gravitational waves ever detected, FNAL, , Now the job of analyzing that data takes center stage, Recently DES issued its first cosmology results based on supernovae, Scientists on DES took data on 758 nights over six years, They recorded data from more than 300 million distant galaxies   

    From Fermi National Accelerator Lab: “Dark Energy Survey completes six-year mission” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    January 8, 2019

    Scientists’ effort to map a portion of the sky in unprecedented detail is coming to an end, but their work to learn more about the expansion of the universe has just begun.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    After scanning in depth about a quarter of the southern skies for six years and cataloguing hundreds of millions of distant galaxies, the Dark Energy Survey (DES) will finish taking data tomorrow, on Jan. 9.

    The survey is an international collaboration that began mapping a 5,000-square-degree area of the sky on Aug. 31, 2013, in a quest to understand the nature of dark energy, the mysterious force that is accelerating the expansion of the universe. Using the Dark Energy Camera, a 520-megapixel digital camera funded by the U.S. Department of Energy Office of Science and mounted on the Blanco 4-meter telescope at the National Science Foundation’s Cerro Tololo Inter-American Observatory in Chile, scientists on DES took data on 758 nights over six years.

    Over those nights, they recorded data from more than 300 million distant galaxies. More than 400 scientists from over 25 institutions around the world have been involved in the project, which is hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory. The collaboration has already produced about 200 academic papers, with more to come.

    According to DES Director Rich Kron, a Fermilab and University of Chicago scientist, those results and the scientists who made them possible are where much of the real accomplishment of DES lies.

    “First generations of students and postdoctoral researchers on DES are now becoming faculty at research institutions and are involved in upcoming sky surveys,” Kron said. “The number of publications and people involved are a true testament to this experiment. Helping to launch so many careers has always been part of the plan, and it’s been very successful.”

    2

    DES remains one of the most sensitive and comprehensive surveys of distant galaxies ever performed. The Dark Energy Camera is capable of seeing light from galaxies billions of light-years away and capturing it in unprecedented quality.

    According to Alistair Walker of the National Optical Astronomy Observatory, a DES team member and the DECam instrument scientist, equipping the telescope with the Dark Energy Camera transformed it into a state-of-the-art survey machine.

    “DECam was needed to carry out DES, but it also created a new tool for discovery, from the solar system to the distant universe,” Walker said. “For example, 12 new moons of Jupiter were recently discovered with DECam, and the detection of distant star-forming galaxies in the early universe, when the universe was only a few percent of its present age, has yielded new insights into the end of the cosmic dark ages.”

    The survey generated 50 terabytes (that’s 50 million megabytes) of data over its six observation seasons. That data is stored and analyzed at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign.

    “Even after observations are ended, NCSA will continue to support the scientific productivity of the collaboration by making refined data releases and serving the data well into the 2020s,” said Don Petravick, senior project manager for the Dark Energy Survey at NCSA.

    Now the job of analyzing that data takes center stage. DES has already released a full range of papers based on its first year of data, and scientists are now diving into the rich seam of catalogued images from the first several years of data, looking for clues to the nature of dark energy.

    The first step in that process, according to Fermilab and University of Chicago scientist Josh Frieman, former director of DES, is to find the signal in all the noise.

    “We’re trying to tease out the signal of dark energy against a background of all sorts of noncosmological stuff that gets imprinted on the data,” Frieman said. “It’s a massive ongoing effort from many different people around the world.”

    The DES collaboration continues to release scientific results from their storehouse of data, and scientists will discuss recent results at a special session at the American Astronomical Society winter meeting in Seattle today, Jan. 8. Highlights from the previous years include:

    the most precise measurement of dark matter structure in the universe, which, when compared with cosmic microwave background results, allows scientists to trace the evolution of the cosmos.
    the discovery of many more dwarf satellite galaxies orbiting our Milky Way, which provide tests of theories of dark matter.
    the creation of the most accurate dark matter map of the universe.
    the spotting of the most distant supernova ever detected.
    the public release of the survey’s first three years of data, enabling astronomers around the world to make additional discoveries.

    DES scientists also spotted the first visible counterpart of gravitational waves ever detected, a collision of two neutron stars that occurred 130 million years ago. DES was one of several sky surveys that detected this gravitational wave source, opening the door to a new kind of astronomy.

    Recently DES issued its first cosmology results based on supernovae (207 of them taken from the first three years of DES data) using a method that provided the first evidence for cosmic acceleration 20 years ago. More comprehensive results on dark energy are expected within the next few years.

    The task of amassing such a comprehensive survey was no small feat. Over the course of the survey, hundreds of scientists were called on to work the camera in nightly shifts supported by the staff of the observatory. To organize that effort, DES adopted some of the principles of high-energy physics experiments, in which everyone working on the experiment is involved in its operation in some way.

    “This mode of operation also afforded DES an educational opportunity,” said Fermilab scientist Tom Diehl, who managed the DES operations. “Senior DES scientists were paired with inexperienced ones for training and, in time, would pass that knowledge on to more junior observers.”

    The organizational structure of DES was also designed to give early-career scientists valuable opportunities for advancement, from workshops on writing research proposals to mentors who helped review and edit grant and job applications.

    Antonella Palmese, a postdoctoral researcher associate at Fermilab, arrived at Cerro Tololo as a graduate student from University College London in 2015. She quickly came up to speed and returned in 2017 and 2018 as an experienced observer. She also served as a representative for early-career scientists, helping to assist those first making their mark with DES.

    “Working with DES has put me in contact with many remarkable scientists from all over the world,” Palmese said. “It’s a special collaboration because you always feel like you are a necessary part of the experiment. There is always something useful you can do for the collaboration and for your own research.”

    The Dark Energy Camera will remain mounted on the Blanco telescope at Cerro Tololo for another five to 10 years and will continue to be a useful instrument for scientific collaborations around the world. Cerro Tololo Inter-American Observatory Director Steve Heathcote foresees a bright future for DECam.

    “Although the data-taking for DES is coming to an end, DECam will continue its exploration of the universe from the Blanco telescope and is expected remain a front-line ‘engine of discovery’ for many years,” Heathcote said.

    The DES collaboration will now focus on generating new results from its six years of data, including new insights into dark energy. With one era at an end, the next era of the Dark Energy Survey is just beginning.

    Follow the Dark Energy Survey online at http://www.darkenergysurvey.org and connect with the survey on Facebook at http://www.facebook.com/darkenergysurvey, on Twitter at http://www.twitter.com/theDESurvey and on Instagram at http://www.instagram.com/darkenergysurvey.

    The Dark Energy Survey is a collaboration of more than 400 scientists from 26 institutions in seven countries. Funding for the DES Projects has been provided by the U.S. Department of Energy Office of Science, U.S. National Science Foundation, Ministry of Science, Innovation and Universities of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, and the collaborating institutions in the Dark Energy Survey, the list of which can be found at http://www.darkenergysurvey.org/collaboration.

    Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

    NCSA at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers and students together to solve grand challenges at rapid speed and scale. For more information, please visit http://www.ncsa.illinois.edu.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 5:48 pm on December 17, 2018 Permalink | Reply
    Tags: A Repository for Large Sets of Valuable Scientific Data, , FNAL, HEPCloud, Pushing the Envelope on High-Throughput Computing,   

    From Fermi National Accelerator Lab via HostingAdvice.com: “The World-Class Computing Resources Behind the DOE’s Fermilab” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    via

    2

    HostingAdvice.com

    December 14, 2018
    Christine Preusler

    Fermilab, a DOE-sponsored particle physics and accelerator laboratory, is raising the bar on innovative and cost-effective computing solutions that help researchers explore high-energy physics. As a repository for massive sets of scientific data, the national laboratory is at the forefront of new computing approaches, including HEPCloud, a paradigm for provisioning computing resources.

    It’s common knowledge that Tim Berners-Lee invented the World Wide Web in 1989. But if you’re not a quantum physicist, you may be surprised to learn that he accomplished the feat while working at the European Organization for Nuclear Research (CERN), a prominent scientific organization that operates the largest particle physics lab on the globe.

    “It was the field of high-energy physics for which the web was started to provide a way for physicists to exchange documents,” said Marc Paterno, Assistant Head for R&D and Architecture at Fermilab, a premier national laboratory for particle physics and accelerator research that serves as the American counterpart to CERN.

    Marc told us the particle physics field as a whole has been testing the limits of large-scale data analyzation since it first gained access to high-throughput computational resources. Furthermore, the high-energy physics community is responsible for developing some of the first software and computing tools suitable to meet the demands of the field.

    “Of course, Google has now surpassed us in that its data is bigger than any particular set of experimental data; but even a small experiment at Fermilab produces tens of terabytes of data, and the big ones we are involved with produce hundreds of thousands of petabytes of data over the course of the experiment,” Marc said. “Then there are a few thousand physicists wanting to do analysis on that data.”

    The lab is named after Nobel Prize winner Enrico Fermi, who made significant contributions to quantum theory and created the world’s first nuclear reactor. Located near Chicago, Fermilab is one of 17 U.S. Department of Energy Office of Science laboratories across the country. Though many DOE-funded labs serve multiple purposes, Marc said Fermilab works toward a single mission: “To bring the world together to solve the mysteries of matter, energy, space, and time.”

    And that mission, he said, is made possible through high-powered computing. “For scientists to understand the huge amounts of raw information coming from particle physics experiments, they must process, analyze, and compare the information to simulations,” Marc said. “To accomplish these feats, Fermilab hosts high-performance computing, high-throughput (grid) computing, and storage and networking systems.”

    In addition to leveraging high-performance computing systems to analyze complex datasets, Fermilab is a repository for massive sets of priceless scientific data. With plans to change the way computing resources are used to produce experimental results through HEPCloud, Fermilab is continuing to deploy innovative computing solutions to support its overarching scientific mission.

    Pushing the Envelope on High-Throughput Computing

    While Fermilab wasn’t built to develop computational resources, Marc told us “nothing moves forward in particle physics without computing.” That wasn’t always the case: When the lab was first founded, bubble chambers were used to detect electrically charged particles.

    “They were analyzed by looking at pictures of the bubble chamber, taking a ruler, and measuring curvatures of trails to figure out what the particles were doing inside of a detector,” he said. “Now, detectors are enormous, complicated contraptions that cost tens of millions to billions of dollars to make.”

    3
    Experiments at Fermilab typically involve massive datasets.

    Marc said Fermilab is in possession of a large amount of computing resources and is heavily involved with CERN’s Compact Muon Solenoid (CMS), a general-purpose detector at the world’s largest and most powerful particle accelerator, the Large Hadron Collider (LHC).

    CERN/CMS Detector

    LHC

    CERN map


    CERN LHC Tunnel

    CERN LHC particles

    The CMS has an extensive physics agenda ranging from researching the Standard Model of particle physics to searching for extra dimensions and particles that possibly make up dark matter.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.


    Standard Model of Particle Physics from Symmetry Magazine

    “Fermilab provides one of the largest pools of resources for the CMS experiment and their worldwide collection,” Marc said.

    Almost every experiment at Fermilab includes significant international involvement from universities and laboratories in other countries. “Fermilab’s upcoming Deep Underground Neutrino Experiment (DUNE) for neutrino science and proton decay studies, for example, will feature contributions from scientists in dozens of countries,” Marc said.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    These international particle physics collaborations require Fermilab to transport large amounts of data around the globe quickly through high-throughput computing. To that end, Fermilab features 100Gbit connectivity with local, national, and international networks. The technology empowers researchers to quickly process these data to facilitate scientific discoveries.

    A Repository for Large Sets of Valuable Scientific Data

    Marc told us Fermilab also has mind-boggling storage capacity. “We’re the primary repository for all the data for all of the experiments here at the laboratory,” he said.

    Fermilab’s tape libraries, fully automated and manned by robotic arms, provide more than 100 petabytes of storage capacity for data from particle physics and astrophysics experiments. “This includes a copy of the entire CMS experiment dataset and a copy of the dataset for every Fermilab experiment,” Marc said.

    Fermilab also houses the entire dataset of The Sloan Digital Sky Survey (SDSS), a collaborative international effort to build the most detailed 3D map of the universe in existence.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    The data-rich project has measured compositions and distances of more than 3 million stars and galaxies and captured multicolor images of one-third of the sky.

    4
    The lab’s data management capabilities protect precious scientific data.

    “SDSS was the first time there was an astronomical survey in which all data were digitized, much bigger than any survey done before,” Marc said. “In fact, even though the data collection has stopped, people are still actively using that dataset for current analysis.”

    Marc said much of the particle physics research is done in concert with the academic community and can involve a significantly lengthy process.

    “For example, the DUNE experiment is a worldwide collaboration that researchers have been developing for more than 10 years,” he said. “We are starting on the facility where the detector will go. The lifetime of a big experiment these days is measured in tens of years; even a small experiment with 100 collaborators easily takes 10 years to move forward.”

    HEPCloud: A New Paradigm for Provisioning Computing Resources
    5
    HEPCloud will enable scientists to put computing resources to better use.

    Particle physics has historically required extensive computing resources from sources such as local batch farms, grid sites, private clouds, commercial clouds, and supercomputing centers — plus the knowledge required to access and use the resources efficiently. Marc told us all that changes with HEPCloud, a new paradigm Fermilab is pursuing in particle physics computing. The HEPCloud facility will allow Fermilab to provision computing resources through a single managed portal efficiently and cost-effectively.

    “HEPCloud is a significant initiative to both simplify how we use these systems and make the process more cost-effective,” Marc said. “Here at Fermilab, trying to provision enough resources to meet demand peaks is just too expensive, and when we’re not on peak, there’d be lots of unused resources.”

    The technology will change the way physics experiments use computing resources by elastically expanding resource pools on short notice — for example, by renting temporary resources on commercial clouds. This will allow the facility to respond to peaks without over-provisioning local resources.

    “HEPCloud is not a cloud provider,” Marc said. “It’s an intelligent brokerage system that can take a request for a certain amount of resources with a certain amount of data; a portal to use cloud resources, the open science grid, and even supercomputing centers such as the National Energy Research Scientific Computing Center (NERSC).”

    Marc said the DOE funds a number of supercomputing sites across the country, and Fermilab’s goal is to make better use of those resources. “It’s not feasible for us to keep on growing larger with traditional computing resources,” Marc said. “So a good deal of our applied computing research is looking at how to do the kind of analysis we need to do on those machines.”

    At the end of the day, Marc recognizes the importance of letting the public know how scientists, engineers, and programmers at Fermilab are tackling today’s most challenging computational problems. “This is taxpayer money, and we ought to be able to provide evidence that what we are doing is valuable and should be supported,” he said.

    Ultimately, its solutions will help America stay at the forefront of innovation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 12:35 pm on December 4, 2018 Permalink | Reply
    Tags: 176-meter-long 800-million-electronvolt superconducting linear accelerator at FNAL, FNAL, , , INFN-Istituto Nazionale di Fisica Nucleare Laboratory for Accelerators and Applied Superconductivity   

    From Fermi National Accelerator Lab: “U.S. Department of Energy and Italy’s Ministry of Education, Universities and Research to collaborate on particle accelerator construction at Fermilab” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    December 4, 2018

    1
    Jim Siegrist, associate director of the DOE Office of High-Energy Physics, and Maurizio Greganti, deputy chief of mission for the Embassy of Italy to the United States, sign an agreement to collaborate on Fermilab’s PIP-II project.

    Today the U.S. Department of Energy (DOE) and Italy’s Ministry of Education, Universities and Research (MIUR) signed an agreement to collaborate on the development and production of technical components for PIP-II, a major U.S. particle accelerator project to be located at DOE’s Fermi National Accelerator Laboratory in Batavia, Illinois. The signing took place at the Embassy of Italy in Washington.

    Italy and its National Institute of Nuclear Physics (INFN) will provide major contributions to the construction of the 176-meter-long superconducting particle accelerator that is the centerpiece of the PIP-II (Proton Improvement Plan-II) project. The new accelerator will become the heart of the Fermilab accelerator complex and provide the proton beam to power a broad program of accelerator-based particle physics research for many decades to come. In particular, PIP-II will enable the world’s most powerful high-energy neutrino beam to power the international Fermilab-hosted Deep Underground Neutrino Experiment (DUNE).

    FNAL Particle Accelerator

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    “It is with great appreciation that the Department of Energy enters into this agreement with our partners at MIUR and INFN,” said DOE Undersecretary for Science Paul Dabbar. “We’re proud that Fermilab’s PIP-II accelerator project, designed to create one of the most advanced machines for enabling discovery in the United States, is attracting major contributions from international partners for its construction.”

    The INFN Laboratory for Accelerators and Applied Superconductivity is expected to build components for the PIP-II accelerator. Based in Segrate, Italy, the laboratory is a center of excellence on an international scale for the development of advanced particle accelerators technologies.

    “The Agreement signed today by the Italian Ministry of Education, Universities and Research and DOE is the latest example of the scope and breadth of the scientific and technological cooperation between our two countries and of the importance of international cooperation,” said Armando Varricchio, ambassador of Italy to the United States. “This new step in our cooperation comes at a very significant time as we celebrate the 30th anniversary of the U.S.-Italy Agreement on Scientific and Technological Cooperation and renew our bilateral projects portfolio for the next three years.”

    At the signing, representatives from both countries recognized the long tradition of collaboration between Italian scientists and Fermilab, named after Italy’s own Enrico Fermi.

    “Following a long tradition of collaboration, the engagement of INFN on the construction of the PIP-II accelerator constitutes an important step in the context of unraveling neutrino properties through the ambitious DUNE project,” said INFN President Fernando Ferroni.

    The centerpiece of the PIP-II project will be an 800-million-electronvolt superconducting linear accelerator, which will modernize the front end of the existing Fermilab accelerator chain and provide a platform for future enhancements. The new accelerator will feature acceleration cavities made of niobium and double the beam energy of its predecessor. Such a boost will enable the Fermilab accelerator complex to achieve megawatt-scale proton beam power.

    “Our Italian partners are critical to the successful completion of Fermilab’s PIP-II superconducting accelerator,” said PIP-II Project Director Lia Merminga of Fermilab. “It takes a global community to build advanced, state-of-the-art accelerators like the one we’re developing for PIP-II.”

    In addition to Italy, other international partners are making significant contributions to PIP-II. They include India, the United Kingdom, and France. DOE’s Argonne and Lawrence Berkeley National Laboratories are also contributing key components to the project.

    “At the INFN Laboratory for Accelerators and Applied Superconductivity, we have a great experience of fruitful collaboration with Fermilab on advanced technologies for superconducting particle accelerators,” said Carlo Pagani of the University of Milan, Italian PIP-II project manager. “We are colleagues and friends, and I am excited for the opportunity that PIP-II is giving both for further growing together.”

    The partnership is one example of the increasingly global character of particle physics-related projects. The PIP-II accelerator complex will be made available to the international particle physics community and will extend the scientific discovery potential beyond that which currently can be reached.

    “It’s exciting to think that, in just a few years, the new PIP-II accelerator will produce some of the world’s most intense neutrino beams, which could give us a clearer picture of our universe’s evolution,” said Fermilab Director Nigel Lockyer. “This bright future is thanks in large part to our Italian partners. And since these partnerships strengthen over time, we could very well build on the relationship for future exciting projects in fundamental science.”


    This 40-second animation provides an overview of the PIP-II project. To learn more, visit pip2.fnal.gov.

    The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    INFN, Istituto Nazionale di Fisica Nucleare, is the public Italian research institute dedicated to the study of the fundamental constituents of matter and their interactions. INFN conducts theoretical and experimental research in the fields of subnuclear, nuclear and astroparticle physics. Fundamental research in these areas requires the use of cutting-edge technology and instruments, developed by the INFN at its own laboratories and in collaboration with industries. All of the INFN’s research activities are conducted in close collaboration with Italian universities and undertaken within an international framework.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 12:36 pm on November 28, 2018 Permalink | Reply
    Tags: , , FNAL, , Hints of a ‘sterile’ neutrino, ,   

    From FNAL via COSMOS Magazine: “Hints of a ‘sterile’ neutrino” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.
    via

    Cosmos Magazine bloc

    COSMOS Magazine

    Curious result could point to flaws in the Standard Model of particle physics.

    Standard Model of Elementary Particles


    Something missing? The Standard Model admits three types of neutrino. New evidences suggest a fourth might also exist. generalfmv/Getty Images

    Scientists may have caught a glimpse of a new breed of particle from an unseen side of the universe.

    Researchers conducting an exercise known as the Mini Booster Neutrino Experiment (MiniBooNE) at Fermilab near Chicago in the US have painstakingly compiled measurements of neutrinos over the last 15 years.

    FNAL/MiniBooNE

    The experiment has yielded only the three types of neutrinos described in the Standard model: electron neutrinos, muon neutrinos and tau neutrinos. But now the scientists have published a paper in the journal Physical Review Letters, reporting a possible trace of a fourth.

    Neutrinos are subatomic particles less than a million times lighter than electrons. They are one of the three components of matter, along with electrons and quarks, which make up the nuclei in atoms. Each component has two heavier counterparts, which decay after fractions of seconds: this array of particles in threes is known as the Standard Model.

    A fourth particle that bucks the threefold pattern could be big news says MiniBooNE spokesman Rex Tayloe, from Indiana University in the United States.

    “If that is the correct explanation of the signal, it is an important and far-reaching result as it opens up the field of particle physics to a new set of particles – beyond the current Standard Model,” he says.

    Neutrinos are already the most mysterious particle in the Standard Model. They are preposterously numerous – 100 million neutrinos pass through the human body every second, barely interacting.

    And because they interact so weakly, only a tiny number are ever detected. Their mass is still uncertain. It is so small that for a long time it was thought to be zero.

    Unlike quarks and electrons, which decay from unstable, heavy forms into lighter, stable ones, neutrinos continually change form, slipping between the three forms as they as they torpedo through space at close to the speed of light.

    It is this shape-changing that MiniBooNE has been studying, using a 541-metre beam of neutrinos. The scientists create them by smashing high-energy protons into a target of the metal beryllium, which creates unstable particles called pions that quickly decay, creating neutrinos.

    The process creates a type called muon neutrinos, which are directed to MiniBooNE’s detector, a 12.2-metre sphere filled with 818 tonnes of pure mineral oil, lined with 1520 photomultipliers that catch tiny flashes of light caused by the occasional neutrino interaction.

    The Standard Model predicts a small percentage of muon neutrinos will change into electron neutrinos in the half-kilometre flight. But MiniBooNE found more of these than expected.

    One possible explanation for this rapid oscillation is a fourth neutrino form – but because it has never been detected it must not even interact in the incredibly weak way that the other three forms do. The scientists term it a sterile neutrino.

    The hint of a new, invisible particle raises scientists’ hopes for a whole new family that could help solve puzzles of dark matter, dark energy and the imbalance of matter and antimatter in the universe.

    But the isuue is far from resolved. While MiniBooNE’s result is line with an experiment in the nineties at Los Alamos in New Mexico in the US, other experiments have failed to confirm the same effect, which has physicists scratching their heads.

    Solutions could be found by new larger experiments that are coming online, such as DUNE, which tracks neutrinos over a 1300-kilometre path under the US.

    SURF DUNE LBNF Caverns at Sanford Lab


    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    There is also the huge Japanese detector Hyper-Kamiokande, and a larger scale version of MiniBooNE.

    Hyper-Kamiokande, a neutrino physics laboratory located underground in the Mozumi Mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan.

    It’s possible the new data will overturn the sterile neutrino theory as a systematic error of some sort. But even if so, given their history, the mysterious particles are still likely to have some surprises in store.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 3:23 pm on November 20, 2018 Permalink | Reply
    Tags: , , , FNAL, , ,   

    From Fermi National Accelerator Lab: “How to build a towering millikelvin thermometer” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    November 15, 2018
    Jim Daley

    Cary Kendziora had expected the long, slender temperature profile monitor to droop a bit, but not as much as this. As part of a joint project with the University of Hawaii at Manoa, Kendziora, a mechanical engineer at the U.S. Department of Energy’s Fermilab, had designed the device to measure the variation in temperature inside a massive neutrino detector located at the European laboratory CERN. The detector, the size of a small house, is filled with liquid argon. The temperature profile monitor is a solid piece of metal about 8 meters tall — about two stories tall — and as thin as a curtain rod. It bowed considerably when it was horizontal.

    Kendziora said he’d never worked with such a long, solid piece of metal that was also so narrow.

    “It turned out to be a lot more flexible than I imagined because of its length,” Kendziora said. “That was a surprise.”

    As a workaround, he helped build an exoskeleton support to keep the device rigid while it was being installed.

    The detector, one of two known as the ProtoDUNE detectors, contains 770 tons of liquid argon maintained at temperatures around 90 Kelvin.

    CERN Proto Dune

    Cern ProtoDune

    That’s a chilling minus 300 degrees Fahrenheit. As particles pass through the detector, they occasionally smash into the nuclei of argon atoms. The particles emerging from these collisions release electrons from argon atoms as they pass by. These electrons drift toward sensors that record their tracks. The tracks, in turn, give scientists information about the particle that started the reaction.

    2
    The temperature profiler from one of the ProtoDUNE detectors stands 8 meters tall. Photo: Cary Kendziora

    The ProtoDUNE detectors are prototypes for the international, Fermilab-hosted Deep Underground Neutrino Experiment. The DUNE detector, expected to be complete in the mid-2020s, will be mammoth, comprising four modules that are each nearly as long as a football field.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    SURF DUNE LBNF Caverns at Sanford Lab

    FNAL DUNE Argon tank at SURF

    In liquid-argon detectors like DUNE and the ProtoDUNE detector, monitoring the variation in internal temperature is important because it’s correlated to the argon’s purity. ProtoDUNE contains 770 tons of liquid argon. DUNE will hold 70,000 tons. At this scale, the purification efficiency has to be checked regularly. If the argon doesn’t mix properly, it begins to stratify into layers of different temperatures, which can affect how far electrons can drift.

    “If the argon is pure, the electrons can drift the distance to the ProtoDUNE sensors, no problem,” said Jelena Maricic, an associate professor of physics at the University of Hawaii at Manoa who leads the group that worked on the design, construction and installation of the ProtoDUNE dynamic temperature profile monitor, along with Kendziora.

    But impurities have a great affinity for electrons and can trap them on their way to the sensors. And if they’re trapped, they won’t be detected, or at least not as easily.

    The temperature profile monitor hangs vertically from the detector’s ceiling near one corner of the detector, taking readings of the circulating liquid argon. By monitoring the argon’s temperature, scientists will be able to tell right away whether any problems are developing in the detector.

    Calibration by cross-reference

    Designing and building a temperature profile monitor that is accurate to within tens of millikelvin inside a massive liquid-argon detector is no small feat. While the degree of bowing was an unexpected problem, it was hardly the most difficult challenge to overcome. Kendziora ticked off a laundry list of them.

    “It had to be electrically and thermally isolated, and leak-tight,” he said. “And it’s a high-purity application, so all the materials had to be selected based on their not contributing any contaminants to the liquid. All the little threaded holes that the components are screwed into had to be vented so they wouldn’t trap any gas that would give off oxygen over a long period of time. All the parts had to be cleaned.”

    The entire design of the profile monitor also needed to address a unique question: How do you calibrate a probe that is sealed inside a giant box full of liquid argon? Erik Voirin, an engineer at Fermilab, and Yujing Sun, a postdoc in Maricic’s lab, independently hit upon the same, elegant idea.

    The team designed the profile monitor with an array of 23 motor-driven, remotely moveable sensors along its 8-meter height. Each takes a reading of the argon immediately surrounding it. And since they’re moveable, not only can a sensor take the temperature in multiple locations, but a single location’s temperature can be read out by more than one sensor.

    4
    The profile monitor is outfitted with an array of 23 motor-driven, remotely moveable sensors along its 8-meter height. Each takes a reading of the argon immediately surrounding it. Photo: Cary Kendziora

    Voirin, a thermal-fluids engineer, performed the computational fluid dynamics simulations for ProtoDUNE. Sun tested and demonstrated the idea to work with the prototype using just four sensors in 2017, deploying the rod in the 35-ton liquid-argon detector.

    “Our system allows you to move the sensors along the vertical axis and perform cross-calibration,” Maricic said.

    One could use sensor A to take the temperature at, say, the 3-meter mark, and then check its reading against sensor B’s at the same location. That way, scientists can determine if any sensor is out of whack.

    Maricic said that the University of Hawaii group team, will be performing the cross-calibration in the late November or early December.

    The DUNE far detector will require a similar temperature profile monitor that adheres to the same set of strict requirements that the ProtoDUNE detector needed – but with one difference. DUNE is much larger than ProtoDUNE, so its profile monitor needs to be scaled up accordingly. It will be 15 meters long — nearly double the length of the prototype profile monitor.

    “I don’t have a solution for the long length,” Kendziora says, other than to construct another extensive support infrastructure.

    Another engineering effort for DUNE— and he’s on top of it.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 12:05 pm on October 3, 2018 Permalink | Reply
    Tags: , , FNAL, , Leon Lederman Nobel laureate former laboratory director and passionate advocate of science education dies at age 96, Nobel laureate, , ,   

    From Fermi National Accelerator Lab: “Leon Lederman, Nobel laureate, former laboratory director and passionate advocate of science education, dies at age 96” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    October 3, 2018

    Leon Lederman from Kane County Connects

    Leon Lederman, a trail-blazing researcher with a passion for science education who served as Fermilab’s director from 1978 to 1989 and won the Nobel Prize for discovery of the muon neutrino, died peacefully on Oct. 3 at a nursing home in Rexburg, Idaho. He was 96.

    He is survived by his wife of 37 years, Ellen, and three children, Rena, Jesse and Rachel, from his first wife, Florence Gordon.

    With a career that spanned more than 60 years, Lederman became one of the most important figures in the history of particle physics. He was responsible for several breakthrough discoveries, uncovering new particles that elevated our understanding of the fundamental universe. But perhaps his most critical achievements were his influence on the field and his efforts to improve science education.

    “Leon Lederman provided the scientific vision that allowed Fermilab to remain on the cutting edge of technology for more than 40 years,” said Nigel Lockyer, the laboratory’s current director. “Leon’s leadership helped to shape the field of particle physics, designing, building and operating the Tevatron and positioning the laboratory to become a world leader in accelerator and neutrino science. Today, we continue to develop and build the next generation of particle accelerators and detectors and help to advance physics globally. Leon had an immeasurable impact on the evolution of our laboratory and our commitment to future generations of scientists, and his legacy will live on in our daily work and our outreach efforts.”

    Through Lederman’s early award-winning work, he rose to prominence as a researcher and began to influence science policy. In the early 1960s, he proposed the idea for the National Accelerator Laboratory, which eventually became Fermi National Accelerator Laboratory (Fermilab). He worked with laboratory founder Robert R. Wilson to establish a community of users, credentialed individuals from around the world who could use the facilities and join experimental collaborations.

    According to Fermilab scientist Alvin Tollestrup, who worked with Lederman for more than 40 years, Lederman’s success was in part due to his ability to bring people together and get them to work cohesively.

    “One of his greatest skills was getting good people to work with him,” Tollestrup said. “He wasn’t selfish about his ideas. What he accomplished came about from his ability to put together a great team.”

    Lederman began his tenure as Fermilab director in 1978, at a time when both the laboratory staff and the greater particle physics community were deeply divided. As a charismatic leader and a respected researcher, Lederman unified the Fermilab staff and rallied the U.S. particle physics community around the idea of building a proton-antiproton collider. Originally called the energy doubler, the particle accelerator eventually became the Tevatron, the world’s highest-energy particle collider from 1983 until 2010.

    “Leon gave U.S. and world physicists a step up, a unique facility, a very high-energy collider, and his successors keep working for these things,” said Director Emeritus John Peoples, who worked with Lederman for more than 40 years and served as Lederman’s deputy director from 1988 to 1989. “Leon made that happen. He set things in motion.”

    In order to begin plans for a high-energy proton-antiproton collider, Lederman convinced the greater physics community, the Department of Energy, president Reagan’s science advisor and Congress.

    “Leon had the ability to lead. He was unifying and convincing,” Peoples said. “He had the ability to listen to people carefully and could synthesize things well. He was very persuasive. In some sense, I was manipulated at every level.”

    Lederman’s ability to convince others stemmed in part from his charm and his sense of humor, Peoples said.

    “He seemed to have an enormous storehouse of jokes,” Peoples said. “He had a lighthearted personality, he could have been a stand-up comic at times.”

    4
    Leon Lederman celebrates his birthday with children from the Fermilab daycare center.

    Lederman was born on July 15, 1922, to Russian-Jewish immigrant parents in New York City. His father, who operated a hand laundry, revered learning. Lederman graduated from the City College of New York with a degree in chemistry in 1943, although by that point, he had become friends with a group of physicists and became interested in the topic. He served three years with the United States Army in World War II and then returned to Columbia University in New York to pursue his Ph.D. in particle physics, which he received in 1951. During graduate school, Lederman joined the Columbia physics department in constructing a 385-MeV synchrotron at Nevis Lab at Irvington-on-the Hudson, New York. He remained as part of that collaboration for 28 years and eventually serving as director of Nevis labs from 1961 to 1978.

    In 1956, while working as part of a Columbia team at Brookhaven National Laboratory, Lederman discovered the long-lived neutral K meson. In 1962, Lederman, along with colleagues Jack Steinberger and Melvin Schwartz, produced a beam of neutrinos using a high-energy accelerator. They discovered that sometimes, instead of producing an electron, a muon is produced, showing the existence of a new type of neutrino, the muon neutrino. That discovery eventually earned them the 1988 Nobel Prize in physics.

    5
    Leon M. Lederman Nobel laureate, Director of FNAL after R.R. Wilson stands outside Wilson Hall at Fermilab on the day he learned he was awarded the 1988 Nobel Prize.

    The advancement of particle accelerators continued to spur discoveries. At Brookhaven in 1965, Lederman and his team found the first antinucleus in the form of antideuteron — an antiproton and an antineutron. In 1977, at Fermilab, Lederman led the team that discovered the bottom quark, at the time the first of a suspected new family of heavy particles.

    “All of those experiments were important because they set the stage for learning that we have at least two generations of leptons and something else,” Tollestrup said.”

    Lederman served as director of Fermilab from 1978 to 1989. During his tenure as laboratory director, Lederman had a significant impact on laboratory culture. He was responsible for establishing new amenities that set Fermilab apart from other labs, such as the first daycare facility at a Department of Energy national laboratory and an art gallery that continues to host rotating exhibits.

    He also had significant impact on the next generation of scientists. It was during his years at Columbia, an institution that required students to teach, that Lederman developed a passion for science education and outreach, which became a theme throughout his career. Between 1951 and 1978 he mentored 50 Ph.D. students. He liked to joke about their success, saying that not a single one was in jail.

    As director of Fermilab, Lederman established the ongoing Saturday Morning Physics program, which has attracted students from around the Chicago areas for decades to learn more about particle physics from experts, originally from Lederman, and then a long list of leading scientists. The program has inspired generations of high school students.

    6
    Leon Lederman in 1982

    Recognizing the need for more focused education in science and math, Lederman focused on creating learning spaces and opportunities for students. In the early 1980s, Lederman worked with members of the Illinois state government to start the Illinois Math and Science Academy, which was founded in 1985, and worked with officials to try to adjust the science curriculum in Chicago’s public schools so that students learned physics first, forming the foundation for their future scientific education. He founded and was chairman of the Teachers Academy for Mathematics and Science and was active in the professional development of primary school teachers in Chicago. He also helped to found the nonprofit Fermilab Friends for Science Education, a national leading organization in precollege science education.

    In later years, Lederman continued his outreach efforts, often in memorable ways. In 2008, he set up shop on the corner of 34th Street and 8th Avenue in New York City and answered science questions from passersby.

    During his career, Lederman received some of the highest national and international awards and honors given to scientists. These include the 1965 National Medal of Science, the 1972 Elliot Creeson Medal from the Franklin Institute, the Wolf Prize in 1982 and the Nobel Prize in 1988. He received the Enrico Fermi Award in 1992 for his career contributions to science, technology and medicine related to nuclear energy and the science and technology of energy, and was given the Vannevar Bush Award in 2012 for exceptional lifelong leaders in science and technology.

    In addition to his appointments at Columbia, Nevis and Fermilab, Lederman also served as the Pritzker professor of science at Illinois Institute of Technology and chairman of the State of Illinois Governor’s Science Advisory Committee. He also served on the Board of the Chicago Museum of Science and Industry, the Secretary of Energy Advisory Board and others.

    When Lederman stepped down as Fermilab’s director in 1989 and Peoples took the role, Lederman shared some sage advice. A desk nameplate, which sits on Peoples’s desk more than 25 years later, reads “I’m listening.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 11:29 am on October 3, 2018 Permalink | Reply
    Tags: , “What makes a national laboratory so valuable to the nation isn’t just the scientists. It’s the combination of scientists engineers technicians and facilities. This center will be a testament to, , FNAL, Integrated Engineering Research Center,   

    From Fermi National Accelerator Lab: “Work begins on design for new Integrated Engineering Research Center at Fermilab” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    October 3, 2018
    Ali Sundermier

    1
    The new engineering center will be built to the east of Wilson Hall. Conceptual design by Holabird & Root

    Plans to build a focal point for Fermilab engineering called the Integrated Engineering Research Center, at the Department of Energy’s Fermi National Accelerator Laboratory have been evolving for the past six years. This spring the project received the remainder of Congressional funding for design and initial construction funding. Fermilab subcontracted with an architectural firm at the beginning of July to begin transforming the building from a concept into a final design.

    The new center, which many hope will be a beacon to attract some of the world’s best and brightest engineers, will be a major addition to the Fermilab site and will expand the complex of buildings surrounding Wilson Hall — a 16-story high-rise and Fermilab’s main office building that was built nearly five decades ago.

    “What makes a national laboratory so valuable to the nation isn’t just the scientists,” said Tim Meyer, Fermilab chief operating officer. “It’s the combination of scientists, engineers, technicians, and facilities. This center will be a testament to that synergy. It will create a space for all to join forces and work on the future of particle physics.”

    To begin the architectural design process, the project team has been communicating with engineers and scientists who will be setting up shop in the new building to determine what sort of space and facilities they will need. The goal is to design the building with an eye on adaptability. Rather than creating many custom spaces, the team is developing five or six different types of spaces that will support a variety of scientific requirements. Once space types are established, the designers and architects will turn their attention to fitting these spaces together and creating the shape and look of the building. A main requirement of the design of IERC is to respect and honor the heritage and vision of Wilson Hall and the Fermilab campus.

    The new building will be located to the northeast of Wilson Hall and will connect to Wilson Hall to allow for fluid collaboration. A new parking lot will accommodate existing and future parking requirements. Construction is set to start next summer and will likely be completed by the end of 2021. A detailed schedule will be established once the project receives the final go-ahead by the Department of Energy next year.

    The center will host existing and international teams of engineers, technicians, and scientists who will further develop Fermilab’s neutrino program and support Fermilab’s upgrade projects for the Large Hadron Collider at CERN. It will also provide better research and collaborative spaces for research initiatives such as liquid-argon engineering, the design of electronics and ASIC development, and quantum science programs.

    “The building will consolidate and centralize people who are currently scattered across the Fermilab site to the central campus area,” said Kate Sienkiewicz, project manager for the IERC. “The idea is to connect the engineers in the IERC and the scientists and projects teams in Wilson Hall to enable collaboration in solving technical challenges. It will provide additional multifunctional space for new initiatives.”

    The project, Meyer said, “indicates a level of support, confidence and enthusiasm between the Department of Energy, Congress and Fermilab, symbolizing the injection of energy and resources into the lab’s future.”

    After celebrating 50 years of science and discovery last year, the Fermilab and broader particle physics communities are ready to tackle another half-century of innovation.

    “Wilson Hall is iconic, it’s been here for decades and signifies all the great work that we’ve done up to this point,” Sienkiewicz said. “This new building is in some ways a physical representation of the next 50 years of Fermilab. We look forward to a bright future.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 12:57 pm on September 27, 2018 Permalink | Reply
    Tags: , , , FNAL, , , ,   

    From Symmetry: “Life as an accelerator operator” 

    Symmetry Mag
    From Symmetry

    09/27/18
    Shannon Brescher Shea

    1
    Photo by Fermilab – Note this photo is sorely lacking proper identification as to who took the photograph and what is the device.

    Behind some of the world’s biggest scientific instruments are teams with a set of skills you can’t find anywhere else.

    One Friday night in March, accelerator operator Alyssa Miller was chatting with fellow staff members in the rec center at the US Department of Energy’s Fermi National Accelerator Laboratory right after she finished her shift. As they talked, several of her colleagues’ cell phones started buzzing. Scrambling to check their messages, they realized the local utility company had abruptly stopped providing the accelerator complex with electricity. The lights were still on, thanks to back-up power, but the complex requires too much energy to keep running by generator alone.

    The Fermilab Accelerator Complex, a DOE Office of Science user facility, comprises seven particle accelerators and storage rings and hosts more than 2000 scientists a year. Fermilab’s Booster provides a low-energy beam of neutrinos for the MicroBooNE experiment. The Main Injector provides the world’s highest intensity neutrino beams for the MINOS, MINERvA and NOvA experiments. In the future it will send neutrinos to the Deep Underground Neutrino Experiment detectors in South Dakota. It provides beams of muons to the Muon g-2 experiment and will send them to the Mu2e experiment as well. It also sends particles to the SeaQuest fixed-target experiment, as well as a facility for testing detector technologies.

    “It’s an enormously complicated chain,” says Mike Lindgren, head of Fermilab’s accelerator division.

    On that Friday, the chain was broken. The facility’s accelerator operators and technical specialists ran to their stations.

    “Accelerators like to be turned off nicely,” says Miller, a former operator who is now an engineering physicist at Fermilab. “When they’re shut off all at once, that leaves things in kind of a bad state.”

    As power returned, the operators and technical specialists combined forces to retune the giant machine. It was an all-hands-on-deck effort. Shift leaders called workers in early from their days off. The entire team pushed hard for nearly 24 hours to get the entire complex running again.

    While this was a memorable incident, it was all part of the job. For accelerator operators at the DOE’s national laboratories, there’s no such thing as an average day.

    A day in the life

    More than 3000 people work on or with accelerators at DOE’s 17 national labs. About 300 of them are operators.

    Because the accelerators generally run 24 hours a day, seven days a week, operators work a shift schedule, changing between the day, night, and overnight (or “owl”) shifts.

    An operator’s shift starts with a briefing from the crew chief about what happened since the team was last at work. After the meeting, operators settle down in the main control room. The walls there are covered with screens showing multi-color lines, graphs, and maps.

    The amount of incoming information can be overwhelming. During Miller’s first few months at Fermilab, she says, “I kept thinking to myself, ‘Oh my goodness, how am I going to learn all of this?’ Now I sit down and I feel comfortable at my console.”

    Operators use the data to judge how well the accelerator is delivering beams to the scientists’ experiments. They constantly check the many console displays to ensure everything is running smoothly. If the beam is getting “loose” and shedding too many particles, they tweak the magnets to tighten it. Depending on the lab and researchers’ needs, they may also adjust the magnets to change the beam’s parameters such as its energy, size and shape.

    The first line of defense

    Operators are also accelerators’ first responders, identifying and fixing problems as they arise. From electrical ground faults that bring down power supplies to imperfections in the vacuum around the particle beam, operators must recognize and deal with a whole host of issues.

    “Operators are the first line of defense for any problems at the accelerator,” says Fermilab operator KelliAnn Rubrecht.

    Operators have to be familiar with a multitude of topics, from charged particle dynamics to cryogenic systems maintenance. “We have to know a little bit of everything,” Rubrecht says. “That’s one of the things I really like about this job.”

    Each facility has unique needs. They often require one-of-a-kind equipment and devices that can’t be purchased. “We take a lot of pride in building things ourselves,” Miller says. “It requires ingenuity for sure.”

    Sometimes, operators can solve an issue at their computers with a twist of a knob. Other times, they face physical problems that require hands-on inspection. If they don’t have the expertise to repair the problem themselves, they call in people who specialize in particular sections of the accelerator. “Once you know what the problem is, you find the right people to fix it,” says Mary Convery, Deputy Division Head of Accelerator Systems at Fermilab.

    Descending into the accelerator tunnel (always in groups of at least two for safety), operators move into a strange, underground world. The walls are thick concrete; the ceilings are low; water that runs through the cooling pipes humidifies the air.

    For operators, it can be a welcome change of pace from gazing at computer screens.

    “There’s so much going on behind the scenes that you can’t get a true appreciation for until you go down there,” Miller says.

    The learning curve

    Because most operators have no prior experience running accelerators, there’s extensive on-the-job training. It takes up to two years for a rookie operator to cover it all.

    To help get new and aspiring operators up to speed, eight DOE labs partner with two universities to run the US Particle Accelerator School. Twice a year, the school offers intensive sessions for lab staff, university students, and those in industry who want to learn more about accelerators.

    “We have instructors that are leaders in their field, and they bring a lot of state-of-the-art material,” says Steve Lund, a professor at Michigan State University and the head of the Particle Accelerator School. “Students are learning from people who are established pillars of the community.”

    The school offers classes on topics available nowhere else. The universities hosting the sessions provide students with academic credits.

    Running a particle accelerator requires a niche set of skills. But the challenge of acquiring them is worth the chance to use them, Miller says.

    “If you want to get your hands dirty literally and figuratively and you want to learn a lot and you want to be a little confused and frustrated the whole time, operations is for you,” she says. “It’s an experience like no other.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 9:10 am on September 18, 2018 Permalink | Reply
    Tags: , , , FNAL, , , ,   

    From Interactions.org: “First particle tracks seen in prototype for international neutrino experiment” 

    From Interactions.org

    CERN and Fermilab announce big step in Deep Underground Neutrino Experiment.

    18 September 2018 – The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE).

    5
    DUNE collaboration

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    DUNE’s scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe. Neutrinos are all around us, but we know very little about them. Scientists on the DUNE collaboration think that neutrinos may help answer one of the most pressing questions in physics: why we live in a universe dominated by matter. In other words, why we are here at all.

    The enormous ProtoDUNE detector – the size of a three-story house and the shape of a gigantic cube – was built at CERN, the European Laboratory for Particle Physics, as the first of two prototypes for what will be a much, much larger detector for the DUNE project, hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory in the United States. When the first DUNE detector modules record data in 2026, they will each be 20 times larger than these prototypes.

    CERN Proto Dune

    ProtoDune


    Cern ProtoDune

    It is the first time CERN is investing in infrastructure and detector development for a particle physics project in the United States.

    The first ProtoDUNE detector took two years to build and eight weeks to fill with 800 tons of liquid argon, which needs to be kept at temperatures below -184 degrees Celsius (-300 degrees Fahrenheit). The detector records traces of particles in that argon, from both cosmic rays and a beam created at CERN’s accelerator complex. Now that the first tracks have been seen, scientists will operate the detector over the next several months to test the technology in depth.

    “Only two years ago we completed the new building at CERN to house two large-scale prototype detectors that form the building blocks for DUNE,” said Marzio Nessi, head of the Neutrino Platform at CERN. “Now we have the first detector taking beautiful data, and the second detector, which uses a different approach to liquid-argon technology, will be online in a few months.”

    The technology of the first ProtoDUNE detector will be the same to be used for the first of the DUNE detector modules in the United States, which will be built a mile underground at the Sanford Underground Research Facility in South Dakota. More than 1,000 scientists and engineers from 32 countries spanning five continents – Africa, Asia, Europe, North America and South America – are working on the development, design and construction of the DUNE detectors. The groundbreaking ceremony for the caverns that will house the experiment was held in July of 2017.

    “Seeing the first particle tracks is a major success for the entire DUNE collaboration,” said DUNE co-spokesperson Stefan Soldner-Rembold of the University of Manchester, UK. “DUNE is the largest collaboration of scientists working on neutrino research in the world, with the intention of creating a cutting-edge experiment that could change the way we see the universe.”

    When neutrinos enter the detectors and smash into the argon nuclei, they produce charged particles. Those particles leave ionization traces in the liquid, which can be seen by sophisticated tracking systems able to create three-dimensional pictures of otherwise invisible subatomic processes. (An animation of how the DUNE and ProtoDUNE detectors work, along with other videos about DUNE, is available here: https://www.fnal.gov/pub/science/lbnf-dune/photos-videos.html.)

    “CERN is proud of the success of the Neutrino Platform and enthusiastic about being a partner in DUNE, together with Institutions and Universities from its Member States and beyond” said Fabiola Gianotti, Director-General of CERN. “These first results from ProtoDUNE are a nice example of what can be achieved when laboratories across the world collaborate. Research with DUNE is complementary to research carried out by the LHC and other experiments at CERN; together they hold great potential to answer some of the outstanding questions in particle physics today.”

    DUNE will not only study neutrinos, but their antimatter counterparts as well. Scientists will look for differences in behavior between neutrinos and antineutrinos, which could give us clues as to why the visible universe is dominated by matter. DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay. Observing proton decay would bring us closer to fulfilling Einstein’s dream of a grand unified theory.

    “DUNE is the future of neutrino research,” said Fermilab Director Nigel Lockyer. “Fermilab is excited to host an international experiment with such vast potential for new discoveries, and to continue our long partnership with CERN, both on the DUNE project and on the Large Hadron Collider.”

    To learn more about the Deep Underground Neutrino Experiment, the Long-Baseline Neutrino Facility that will house the experiment, and the PIP-II particle accelerator project at Fermilab that will power the neutrino beam for the experiment, visit http://www.fnal.gov/dune.

    Footnotes:
    DUNE comprises 175 institutions from 32 countries: Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Paraguay, Peru, Poland, Portugal, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and United States. The DUNE interim design report provides a detailed description of the technologies that will be used for the DUNE detectors. More information is at dunescience.org.
    CERN, the European Organization for Nuclear Research, is one of the world’s leading laboratories for particle physics. The Organization is located on the French-Swiss border, with its headquarters in Geneva. Its Member States are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland and United Kingdom. Cyprus, Serbia and Slovenia are Associate Member States in the pre-stage to Membership. India, Lithuania, Pakistan, Turkey and Ukraine are Associate Member States. The European Union, Japan, JINR, the Russian Federation, UNESCO and the United States of America currently have Observer status.

    Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC, a joint partnership between the University of Chicago and the Universities Research Association, Inc. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @Fermilab.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

    See the Fermilab article here .
    See the Symmetry article here.
    See the Berkeley lab article here .
    See the CERN article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: