Tagged: FNAL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:24 pm on June 22, 2017 Permalink | Reply
    Tags: , Chicago Quantum Exchange to create technologically transformative ecosystem, Combining strengths in quantum information, FNAL,   

    From U Chicago: “Chicago Quantum Exchange to create technologically transformative ecosystem” 

    U Chicago bloc

    University of Chicago

    June 20, 2017
    Steve Koppes

    1
    UChicago and affiliated laboratories to collaborate on advancing the science and engineering of quantum information. Courtesy of Nicholas Brawand

    The University of Chicago is collaborating with the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

    This hub within the Institute for Molecular Engineering, called the Chicago Quantum Exchange, will facilitate the exploration of quantum information and the development of new applications with the potential to dramatically improve technology for communication, computing and sensing. The collaboration will include scientists and engineers from the two national labs and IME, as well as scholars from UChicago’s departments of physics, chemistry, computer science, and astronomy and astrophysics.

    Quantum mechanics governs the behavior of matter at the atomic and subatomic levels in exotic and unfamiliar ways compared to the classical physics used to understand the movements of everyday objects. The engineering of quantum phenomena could lead to new classes of devices and computing capabilities, permitting novel approaches to solving problems that cannot be addressed using existing technology.

    “The combination of the University of Chicago, Argonne National Laboratory and Fermi National Accelerator Laboratory, working together as the Chicago Quantum Exchange, is unique in the domain of quantum information science,” said Matthew Tirrell, dean and founding Pritzker Director of the Institute for Molecular Engineering and Argonne’s deputy laboratory director for science. “The CQE’s capabilities will span the range of quantum information—from basic solid-state experimental and theoretical physics, to device design and fabrication, to algorithm and software development. CQE aims to integrate and exploit these capabilities to create a quantum information technology ecosystem.”

    Serving as director of the Chicago Quantum Exchange will be David Awschalom, UChicago’s Liew Family Professor in Molecular Engineering and an Argonne senior scientist. Discussions about establishing a trailblazing quantum engineering initiative began soon after Awschalom joined the UChicago faculty in 2013 when he proposed this concept, and were subsequently developed through the recruitment of faculty and the creation of state-of-the-art measurement laboratories.

    “We are at a remarkable moment in science and engineering, where a stream of scientific discoveries are yielding new ways to create, control and communicate between quantum states of matter,” Awschalom said. “Efforts in Chicago and around the world are leading to the development of fundamentally new technologies, where information is manipulated at the atomic scale and governed by the laws of quantum mechanics. Transformative technologies are likely to emerge with far-reaching applications—ranging from ultra-sensitive sensors for biomedical imaging to secure communication networks to new paradigms for computation. In addition, they are making us re-think the meaning of information itself.”

    The collaboration will benefit from UChicago’s Polsky Center for Entrepreneurship and Innovation, which supports the creation of innovative businesses connected to UChicago and Chicago’s South Side. The CQE will have a strong connection with a major Hyde Park innovation project that was announced recently as the second phase of the Harper Court development on the north side of 53rd Street, and will include an expansion of Polsky Center activities. This project will enable the transition from laboratory discoveries to societal applications through industrial collaborations and startup initiatives.

    Companies large and small are positioning themselves to make a far-reaching impact with this new quantum technology. Alumni of IME’s quantum engineering PhD program have been recruited to work for many of these companies. The creation of CQE will allow for new linkages and collaborations with industry, governmental agencies and other academic institutions, as well as support from the Polsky Center for new startup ventures.

    This new quantum ecosystem will provide a collaborative environment for researchers to invent technologies in which all the components of information processing—sensing, computation, storage and communication—are kept in the quantum world, Awschalom said. This contrasts with today’s mainstream computer systems, which frequently transform electronic signals from laptop computers into light for internet transmission via fiber optics, transforming them back into electronic signals when they arrive at their target computers, finally to become stored as magnetic data on hard drives.

    IME’s quantum engineering program is already training a new workforce of “quantum engineers” to meet the need of industry, government laboratories and universities. The program now consists of eight faculty members and more than 100 postdoctoral scientists and doctoral students. Approximately 20 faculty members from UChicago’s Physical Sciences Division also pursue quantum research. These include David Schuster, assistant professor in physics, who collaborates with Argonne and Fermilab researchers.

    Combining strengths in quantum information

    The collaboration will rely on the distinctive strengths of the University and the two national laboratories, both of which are located in the Chicago suburbs and have longstanding affiliations with the University of Chicago.

    At Argonne, approximately 20 researchers conduct quantum-related research through joint appointments at the laboratory and UChicago. Fermilab has about 25 scientists and technicians working on quantum research initiatives related to the development of particle sensors, quantum computing and quantum algorithms.

    “This is a great time to invest in quantum materials and quantum information systems,” said Supratik Guha, director of Argonne’s Nanoscience and Technology Division and a professor of molecular engineering at UChicago. “We have extensive state-of-the-art capabilities in this area.”

    Argonne proposed the first recognizable theoretical framework for a quantum computer, work conducted in the early 1980s by Paul Benioff. Today, including joint appointees, Argonne’s expertise spans the spectrum of quantum sensing, quantum computing, classical computing and materials science.

    Argonne and UChicago already have invested approximately $6 million to build comprehensive materials synthesis facilities—called “The Quantum Factory”—at both locations. Guha, for example, has installed state-of-the-art deposition systems that he uses to layer atoms of materials needed for building quantum structures.

    “Together we will have comprehensive capabilities to be able to grow and synthesize one-, two- and three-dimensional quantum structures for the future,” Guha said. These structures, called quantum bits—qubits—serve as the building blocks for quantum computing and quantum sensing.

    2
    Illustration of near-infrared light polarizing nuclear spins in a silicon carbide chip. Courtesy of Peter Allen

    Argonne also has theorists who can help identify problems in physics and chemistry that could be solved via quantum computing. Argonne’s experts in algorithms, operating systems and systems software, led by Rick Stevens, associate laboratory director and UChicago professor in computer science, will play a critical role as well, because no quantum computer will be able to operate without connecting to a classical computer.

    Fermilab’s interest in quantum computing stems from the enhanced capabilities that the technology could offer within 15 years, said Joseph Lykken, Fermilab deputy director and senior scientist.

    “The Large Hadron Collider experiments, ATLAS and CMS, will still be running 15 years from now,” Lykken said. “Our neutrino experiment, DUNE, will still be running 15 years from now. Computing is integral to particle physics discoveries, so advances that are 15 years away in high-energy physics are developments that we have to start thinking about right now.”

    Lykken noted that almost any quantum computing technology is, by definition, a device with atomic-level sensitivity that potentially could be applied to sensitive particle physics experiments. An ongoing Fermilab-UChicago collaboration is exploring the use of quantum computing for axion detection. Axions are candidate particles for dark matter, an invisible mass of unknown composition that accounts for 85 percent of the mass of the universe.

    Another collaboration with UChicago involves developing quantum computer technology that uses photons in superconducting radio frequency cavities for data storage and error correction. These photons are light particles emitted as microwaves. Scientists expect the control and measurement of microwave photons to become important components of quantum computers.

    “We build the best superconducting microwave cavities in the world, but we build them for accelerators,” Lykken said. Fermilab is collaborating with UChicago to adapt the technology for quantum applications.

    Fermilab also has partnered with the California Institute of Technology and AT&T to develop a prototype quantum information network at the lab. Fermilab, Caltech and AT&T have long collaborated to efficiently transmit the Large Hadron Collider’s massive data sets. The project, a quantum internet demonstration of sorts, is called INQNET (INtelligent Quantum NEtworks and Technologies).

    Fermilab also is working to increase the scale of today’s quantum computers. Fermilab can contribute to this effort because quantum computers are complicated, sensitive, cryogenic devices. The laboratory has decades of experience in scaling up such devices for high-energy physics applications.

    “It’s one of the main things that we do,” Lykken said.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

     
  • richardmitnick 4:01 pm on June 22, 2017 Permalink | Reply
    Tags: , FNAL, , , The history of the web at FNAL   

    From FNAL: “Fermilab celebrates its website’s 25th anniversary” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 21, 2017
    No writer credit found

    Twenty-five years ago this month, Fermilab stood up its first website — one of the earliest websites in the United States.

    The World Wide Web was born at CERN in Europe in 1989 as a tool for exchanging particle physics data. The first U.S. web server was created at Stanford Linear Accelerator Center in December 1991.

    In June 1992, Fermilab’s Computing Division installed its first web server. In late 1992, Computing Division staff created Fermilab’s first HTML page.
    1992
    1

    In 1992, the National Center for Supercomputing Applications at the University of Illinois launched Mosaic, a graphical interface web browser that made the web navigable for people without computer expertise. In February 1994, Fermilab created the laboratory’s first pages designed for the public.

    1994
    2

    In August 1996, the laboratory redesigned its growing volume of public webpages.

    1996
    3

    A complete overhaul of the Fermilab website appeared on March 1, 2001, and its design and the technology behind its webpages has been updated several times since then:

    2001
    3

    2004
    4

    2006
    5

    2009
    6

    2014
    7

    2017
    8

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:22 pm on June 15, 2017 Permalink | Reply
    Tags: 50 years of Basic and Applied Science, FNAL   

    From Symmetry: “From the cornfield to the cosmos” 

    Symmetry Mag

    Symmetry

    06/15/17
    Judith Jackson

    1
    Satellite image of Fermi National Accelerator Laboratory, Batavia near Chicago, Illinois
    U.S. Geological Survey

    Imagine how it must have felt to be Robert R. Wilson in the spring of 1967. The Atomic Energy Commission had hired him as the founding director of the planned National Accelerator Laboratory. Before him was the opportunity to build the most powerful particle accelerator in the world—and to create a great new American laboratory dedicated to giving scientists extraordinary new capabilities to explore the universe.

    2
    Robert R. Wilson

    Fifty years later, we marvel at the boldness and scope of the project, and at the freedom, the leadership, the confidence and the vision that it took to conceive and build it. If anyone was up for the challenge, it was Wilson.

    By the early 1960s, the science of particle physics had outgrown its birthplace in university laboratories. The accelerators and detectors for advancing research had grown too big, complex and costly for any university to build and operate alone. Particle physics required a new model: national laboratories where the resources of the federal government would bring together the intellectual, scientific, engineering, technical and management capabilities to give collaborations of scientists the ability to explore scientific questions that could no longer be addressed at individual universities.

    The NAL, later renamed Fermi National Accelerator Laboratory [FNAL], would be a national facility where university physicists—“users”—would be “at home and loved,” in the words of physicist Leon Lederman, who eventually succeeded Wilson as Fermilab director.

    Leon M. Lederman Nobel laureate, Director of FNAL after R.R. Wilson

    The NAL would be a truly national laboratory rising from the cornfields west of Chicago, open to scientists from across the country and around the world.

    The Manhattan Project in the 1940s had shown the young Wilson—had shown the entire nation—what teams of physicists and engineers could achieve when, with the federal government’s support, they devoted their energy and capability to a common goal. Now, Wilson could use his skills as an accelerator designer and builder, along with his ability to lead and inspire others, to beat the sword of his Manhattan Project experience into the plowshare of a laboratory devoted to peacetime physics research.

    When the Atomic Energy Commission chose Wilson as NAL’s director, they may have been unaware that they had hired not only a gifted accelerator physicist but also a sculptor, an architect, an environmentalist, a penny-pincher (that they would have liked), an iconoclast, an advocate for human rights, a Wyoming cowboy and a visionary.

    Over the dozen years of his tenure Wilson would not only oversee the construction of the world’s most powerful particle accelerator, on time and under budget, and set the stage for the next generation of accelerators. He would also shape the laboratory with a vision that included erecting a high-rise building inspired by a French cathedral, painting other buildings to look like children’s building blocks, restoring a tall-grass prairie, fostering a herd of bison, designing an 847-seat auditorium (a venue for culture in the outskirts of Chicago), and adorning the site with sculptures he created himself.

    3
    Wilson Hall

    4
    Bison at FNAL

    4
    Broken Symmetry, R.R. Wilson, after Alexander Calder

    Fermilab physicist Roger Dixon tells of a student who worked for him in the lab’s early days.

    “One night,” Dixon remembers, “I had Chris working overtime in a basement machine shop. He noticed someone across the way grinding and welding. When the guy tipped back his helmet to examine his work, Chris walked over and asked, ‘What’ve they got you doin’ in here tonight?’ The man said that he was working on a sculpture to go into the reflecting pond in front of the high rise. ‘Boy,’ Chris said, ‘they can think of more ways for you to waste your time around here, can’t they?’ To which Robert Wilson, welder, sculptor and laboratory director, responded with remarks Chris will never forget on the relationship of science, technology and art.”

    Wilson believed a great physics laboratory should look beautiful. “It seemed to me,” he wrote, “that the conditions of its being a beautiful laboratory were the same conditions as its being a successful laboratory.”

    With the passage of years, Wilson’s outsize personality and gift for eloquence have given his role in Fermilab’s genesis a near-mythic stature. In reality, of course, he had help. He used his genius for bringing together the right people with the right skills and knowledge at the right time to recruit and inspire scientists, engineers, technicians, administrators (and an artist) not only to build the laboratory but also to stick around and operate it. Later, these Fermilab pioneers recalled the laboratory’s early days as a golden age, when they worked all hours of the day and night and everyone felt like family.

    By 1972, the Main Ring of the laboratory’s accelerator complex was sending protons to the first university users, and experiments proliferated in the laboratory’s particle beams. In July 1977, Experiment E-288, a collaboration Lederman led, discovered the bottom quark.

    y
    Accelerator complex

    Physicist Patty McBride, who heads Fermilab’s Particle Physics Division, came to Fermilab in 1979 as a Yale graduate student. McBride’s most vivid memory of her early days at the laboratory is meeting people with a wide variety of life experiences.

    “True, there were almost no women,” she says. “But out in this lab on the prairie were people from far more diverse backgrounds than I had ever encountered before. Some, including many of the skilled technicians, had returned from serving in the Vietnam War. Most of the administrative staff were at least bilingual. We always had Russian colleagues; in fact the first Fermilab experiment, E-36, at the height of the Cold War, was a collaboration between Russian and American physicists. I worked with a couple of guest scientists who came to Fermilab from China. They were part of a group who were preparing to build a new accelerator at the Institute of High Energy Physics there.”

    The diversity McBride found was another manifestation of Wilson’s concept of a great laboratory.

    “Prejudice has no place in the pursuit of knowledge,” he wrote. “In any conflict between technical expediency and human rights, we shall stand firmly on the side of human rights. Our support of the rights of the members of minority groups in our laboratory and its environs is inextricably intertwined with our goal of creating a new center of technical and scientific excellence.”

    Designing the future

    Advances in particle physics depend on parallel advances in accelerator technology. Part of an accelerator laboratory’s charge is to develop better accelerators—at least that’s how Wilson saw it. With the Main Ring delivering beam, it was time to turn to the next challenge. This time, he had a working laboratory to help.

    The designers of Fermilab’s first accelerator had hoped to use superconducting magnets for the Main Ring, but they soon realized that in 1967 it was not yet technically feasible. Nevertheless, they left room in the Main Ring tunnel for a next-generation accelerator.

    Wilson applied his teambuilding gifts to developing this new machine, christened the Energy Doubler (and later renamed the Tevatron).

    FNAL Tevatron

    FNAL/Tevatron map


    FNAL/Tevatron DZero detector


    FNAL/Tevatron CDF detector

    In 1972, he brought together an informal working group of metallurgists, magnet builders, materials scientists, physicists and engineers to begin investigating superconductivity, with the goal of putting this exotic phenomenon to work in accelerator magnets.

    No one had more to do with the success of the superconducting magnets than Fermilab physicist Alvin Tollestrup. Times were different then, he recalls.

    “Bob had scraped up enough money from here and there to get started on pursuing the Doubler before it was officially approved,” Tollestrup says. “We had to fight tooth and nail for approval. But in those days, Bob could point the whole machine shop to do what we needed. They could build a model magnet in a week.”

    It took a decade of strenuous effort to develop the superconducting wire, the cable configuration, the magnet design and the manufacturing processes to bring the world’s first large-scale superconducting accelerator magnets into production, establishing Fermilab’s leadership in accelerator technology. Those involved say they remember it as an exhilarating experience.

    By March 1983, the Tevatron magnets were installed underneath the Main Ring, and in July the proton beam in the Tevatron reached a world-record energy of 512 billion electronvolts. In 1985, a new Antiproton Source enabled proton-antiproton collisions that further expanded the horizons of the subatomic world.

    Two particle detectors—called the Collider Detector at Fermilab, or CDF, and DZero—gave hundreds of collaborating physicists the means to explore this new scientific territory. Design for CDF began in 1978, construction in 1982, and CDF physicists detected particle collisions in 1985. Fermilab’s current director, Nigel Lockyer, first came to work at Fermilab on CDF in 1984.

    Nigel Lockyer

    “The sheer ambition of the CDF detector was enough to keep everyone excited,” he says.

    The DZero detector came online in 1992. A primary goal for both experiments was the discovery of the top quark, the heavier partner of the bottom quark and the last undiscovered quark of the six that theory predicted. Both collaborations worked feverishly to be the first to accumulate enough evidence for a discovery.

    In March 1995, CDF and DZero jointly announced that they had found the top. To spread the news, Fermilab communicators tried out a fledgling new medium called the World Wide Web.

    Reaching new frontiers

    Meanwhile, in the 1980s, growing recognition of the links between subatomic interactions and cosmology—between the inner space of particle physics and the outer space of astrophysics—led to the formation of the Fermilab Theoretical Astrophysics Group, pioneered by cosmologists Rocky Kolb and Michael Turner. Cosmology’s rapid evolution from theoretical endeavor to experimental science demanded large collaborations and instruments of increasing complexity and scale, beyond the resources of universities—a problem that particle physics knew how to solve.

    In the mid-1990s, the Sloan Digital Sky Survey turned to Fermilab for help.

    SDSS Telescope at Apache Point Observatory, NM, USA

    Under the leadership of former Fermilab Director John Peoples, who became SDSS director in 1998, the Sky Survey carried out the largest astronomical survey ever conducted and transformed the science of astrophysics.

    The discovery of cosmological evidence of dark matter and dark energy had profound implications for particle physics, revealing a mysterious new layer to the universe and raising critical scientific questions. What are the particles of dark matter? What is dark energy? In 2004, in recognition of Fermilab’s role in particle astrophysics, the laboratory established the Center for Particle Astrophysics.

    As the twentieth century ended and the twenty-first began, Fermilab’s Tevatron experiments defined the frontier of high-energy physics research. Theory had long predicted the existence of a heavy particle associated with particle mass, the Higgs boson, but no one had yet seen it. In the quest for the Higgs, Fermilab scientists and experimenters made a relentless effort to wring every ounce of performance from accelerator and detectors.

    The Tevatron had reached maximum energy, but in 1999 a new accelerator in the Fermilab complex, the Main Injector, began giving an additional boost to particles before they entered the Tevatron ring, significantly increasing the rate of particle collisions. The experiments continuously re-invented themselves using advances in detector and computing technology to squeeze out every last drop of data. They were under pressure, because the clock was ticking.

    A new accelerator with seven times the Tevatron’s energy was under construction at CERN, the European laboratory for particle physics in Geneva, Switzerland.

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    When Large Hadron Collider operations began, its higher-energy collisions and state-of-the-art detectors would eclipse Fermilab’s experiments and mark the end of the Tevatron’s long run.

    In the early 1990s, the Tevatron had survived what many viewed as a near-death experience with the cancellation of the Superconducting Super Collider, planned as a 26-mile ring that would surpass Fermilab’s accelerator, generating beams with 20 times as much energy.

    Superconducting Super Collider map, in the vicinity of Waxahachie, Texas.

    Construction began on the SSC’s Texas site in 1991, but in 1993 Congress canceled funding for the multibillion-dollar project. Its demise meant that, for the time being, the high-energy frontier would remain in Illinois.

    While the SSC drama unfolded, in Geneva the construction of the LHC went steadily onward—helped and supported by US physicists and engineers and by US funding.

    Among the more puzzling aspects of particle physics for those outside the field is the simultaneous competition and collaboration of scientists and laboratories. It makes perfect sense to physicists, however, because science is the goal. The pursuit of discovery drives the advancement of technology. Particle physicists have decades of experience in working collaboratively to develop the tools for the next generation of experiments, wherever in the world that takes them.

    Thus, even as the Tevatron experiments threw everything they had into the search for the Higgs, scientists and engineers at Fermilab—literally across the street from the CDF detector—were building advanced components for the CERN accelerator that would ultimately shut the Tevatron down.

    Going global

    Just as in the 1960s particle accelerators had outgrown the resources of any university, by the end of the century they had outgrown the resources of any one country to build and operate. Detectors had long been international construction projects; now accelerators were, too, as attested by the superconducting magnets accumulating at Fermilab, ready for shipment to Switzerland.

    As the US host for CERN’s CMS experiment, Fermilab built an LHC Remote Operations Center so that the growing number of US collaborating physicists could work on the experiment remotely. In the early morning hours of September 10, 2008, a crowd of observers watched on screens in the ROC as the first particle beam circulated in the LHC. Four years later, the CMS and ATLAS experiments announced the discovery of the Higgs boson. One era had ended, and a new one had begun.

    CERN CMS Higgs Event

    CERN ATLAS Higgs Event

    The future of twenty-first century particle physics, and Fermilab’s future, will unfold in a completely global context. More than half of US particle physicists carry out their research at LHC experiments. Now, the same model of international collaboration will create another pathway to discovery, through the physics of neutrinos. Fermilab is hosting the international Deep Underground Neutrino Experiment, powered by the Long-Baseline Neutrino Facility that will send the world’s most powerful beam of neutrinos through the earth to a detector more than a kilometer underground and 1300 kilometers away in the Sanford Underground Research Facility in South Dakota.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    “We are following the CERN model,” Lockyer says. “We have split the DUNE project into an accelerator facility and an experiment. Seventy-five percent of the facility will be built by the US, and 25 percent by international collaborators. For the experiment, the percentages will be reversed.”

    The DUNE collaboration now comprises more than 950 scientists from 162 institutions in 30 countries. “To design the project,” Lockyer says, “we started with a clean piece of paper and all of our international collaborators and their funding agencies in the room. They have been involved since t=0.”

    In Lockyer’s model for Fermilab, the laboratory will keep its historic academic focus, giving scientists the tools to address the most compelling scientific questions. He envisions a diverse science portfolio with a flagship neutrino program and layers of smaller programs, including particle astrophysics.

    At the same time, he says, Fermilab feels mounting pressure to demonstrate value beyond creating knowledge. One potential additional pursuit involves using the laboratory’s unequaled capability in accelerator design and construction to build accelerators for other laboratories. Lockyer says he also sees opportunities to contribute the computing capabilities developed from decades of processing massive amounts of particle physics data to groundbreaking next-generation computing projects. “We have to dig deeper and reach out in new ways.”

    In the five decades since Fermilab began, knowledge of the universe has flowered beyond anything we could have imagined in 1967. Particles and forces then unknown have become familiar, like old friends. Whole realms of inner space have opened up to us, and outer space has revealed a new dark universe to explore. Across the globe, collaborators have joined forces to extend our reach into the unknown beyond anything we can achieve separately.

    Times have changed, but Wilson would still recognize his laboratory. As it did then, Fermilab holds the same deep commitment to the science of the universe that brought it into being 50 years ago.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:37 pm on June 13, 2017 Permalink | Reply
    Tags: , , , , FNAL, , ,   

    From FNAL: Searches for dark matter evidence with galactic gamma-rays 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 13, 2017
    Troy Rummler

    1
    Researchers believe that gamma rays — a very energetic form of light — could be produced when hypothetical dark matter particles decay or collide and destroy each other. Fermilab scientist Dan Hooper co-discovered more gamma-rays than he could explain at the center of our own galaxy in 2009 and sparked international interest. Whether dark matter particles or something else is responsible for these gamma rays remains an open and hotly debated question.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 9:59 pm on June 6, 2017 Permalink | Reply
    Tags: , , , , , , FNAL   

    From FNAL: “Scientists close in on dark matter using Dark Energy Survey data” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 6, 2017
    Troy Rummler

    Scientists exploring data collected by the Fermilab-constructed, Chilean-based Dark Energy Camera (DECam) discovered 20 satellite galaxies of the Milky Way, nearly doubling the number previously known and adding to those identified by the earlier Sloan Digital Sky Survey, another project where Fermilab played a key role. These tiny satellite galaxies can contain hundreds of times more dark matter than normal matter. Whether the mysterious dark matter turns out to be axions, weakly interacting massive particles or something else, DECam has proven itself to be a powerful new tool for the dark matter community.


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 12:37 pm on June 6, 2017 Permalink | Reply
    Tags: , FNAL, , , ,   

    From FNAL: “Follow the fantastic voyage of the ICARUS neutrino detector” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 6, 2017

    Andre Salles
    Fermilab Office of Communication
    asalles@fnal.gov
    630-840-6733

    CERN Press Office
    press.office@cern.ch
    +41227673432
    +41227672141

    Eleonora Cossi
    INFN
    eleonora.cossi@presid.infn.it,
    +39-06-686-8162

    The world’s largest particle hunter of its kind will travel across the ocean from CERN to Fermilab this summer to become an integral part of neutrino research in the United States.

    It’s lived in two different countries, and it’s about to make its way to a third. It’s the largest machine of its kind, designed to find extremely elusive particles and tell us more about them. Its pioneering technology is the blueprint for some of the most advanced science experiments in the world. And this summer, it will travel across the Atlantic Ocean to its new home (and its new mission) at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

    2
    The ICARUS detector, seen here in a cleanroom at CERN, is being prepared for its voyage to Fermilab. Photo: CERN

    It’s called ICARUS, and you can follow its journey over land and sea with the help of an interactive map on Fermilab’s website.

    The ICARUS detector measures 18 meters (60 feet) long and weighs 120 tons. It began its scientific life under a mountain at the Italian National Institute for Nuclear Physics’ (INFN) Gran Sasso National Laboratory in 2010, recording data from a beam of particles called neutrinos sent by CERN, Europe’s premier particle physics laboratory. The detector was shipped to CERN in 2014, where it has been upgraded and refurbished in preparation for its overseas trek.

    INFN Gran Sasso ICARUS, moving to FNAL

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    When it arrives at Fermilab, the massive machine will take its place as part of a suite of three detectors dedicated to searching for a new type of neutrino beyond the three that have been found. Discovering this so-called “sterile” neutrino, should it exist, would rewrite scientists’ picture of the universe and the particles that make it up.

    “Nailing down the question of whether sterile neutrinos exist or not is an important scientific goal, and ICARUS will help us achieve that,” said Fermilab Director Nigel Lockyer. “But it’s also a significant step in Fermilab’s plan to host a truly international neutrino facility, with the help of our partners around the world.”

    First, however, the detector has to get there. Next week it will begin its journey from CERN in Geneva, Switzerland, to a port in Antwerp, Belgium. From there the detector, separated into two identical pieces, will travel on a ship to Burns Harbor, Indiana, in the United States, and from there will be driven by truck to Fermilab, one piece at a time. The full trip is expected to take roughly six weeks.

    An interactive map on Fermilab’s website (IcarusTrip.fnal.gov) will track the voyage of the ICARUS detector, and Fermilab, CERN and INFN social media channels will document the trip using the hashtag #IcarusTrip. The detector itself will sport a distinctive banner, and members of the public are encouraged to snap photos of it and post them on social media.

    3
    The ICARUS neutrino detector prepares for its trip to Fermilab. Follow #IcarusTrip online! Photo: CERN

    Once the ICARUS detector is delivered to Fermilab, it will be installed in a recently completed building and filled with 760 tons of pure liquid argon to start the search for sterile neutrinos.

    The ICARUS experiment is a prime example of the international nature of particle physics and the mutually beneficial cooperation that exists between the world’s physics laboratories. The detector uses liquid-argon time projection technology – essentially a method of taking a 3-D snapshot of the particles produced when a neutrino interacts with an argon atom – which was developed by the ICARUS collaboration and now is the technology of choice for the international Deep Underground Neutrino Experiment (DUNE), which will be hosted by Fermilab.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    “More than 25 years ago, Nobel Prize winner Carlo Rubbia started a visionary effort with the help and resources of INFN to make use of liquid argon as a particle detector, with the visual power of a bubble chamber but with the speed and efficiency of an electronic detector,” said Fernando Ferroni, president of INFN. “A long series of steps demonstrated the power of this technology that has been chosen for the gigantic future experiment DUNE in the U.S., scaling up the 760 tons of argon for ICARUS to 70,000 tons for DUNE. In the meantime, ICARUS will be at the core of an experiment at Fermilab looking for the possible existence of a new type of neutrino. Long life to ICARUS!”

    CERN’s contribution to ICARUS, bringing the detector in line with the latest technology, expands the renowned European laboratory’s participation in Fermilab’s neutrino program.

    It’s the first such program CERN has contributed to in the United States. Fermilab is the hub of U.S. participation in the CMS experiment on CERN’s Large Hadron Collider, and the partnership between the laboratories has never been stronger.

    CERN CMS Higgs Event


    CERN/CMS

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    ICARUS will be the largest of three liquid-argon neutrino detectors at Fermilab seeking sterile neutrinos. The smallest, MicroBooNE, is active and has been taking data for more than a year, while the third, the Short-Baseline Neutrino Detector, is under construction.

    FNAL/MicrobooNE

    FNAL Short-Baseline Near Detector

    The three detectors should all be operational by 2019, and the three collaborations include scientists from 45 institutions in six countries.

    Knowledge gained by operating the suite of three detectors will be important in the development of the DUNE experiment, which will be the largest neutrino experiment ever constructed. The international Long-Baseline Neutrino Facility (LBNF) will deliver an intense beam of neutrinos to DUNE, sending the particles 800 miles through Earth from Fermilab to the large, mile-deep detector at the Sanford Underground Research Facility in South Dakota. DUNE will enable a new era of precision neutrino science and may revolutionize our understanding of these particles and their role in the universe.

    Research and development on the experiment is under way, with prototype DUNE detectors under construction at CERN, and construction on LBNF is set to begin in South Dakota this year.

    CERN Proto DUNE Maximillian Brice

    A study by Anderson Economic Group, LLC, commissioned by Fermi Research Alliance LLC, which manages the laboratory on behalf of DOE, predicts significant positive impact from the project on economic output and jobs in South Dakota and elsewhere.

    This research is supported by the DOE Office of Science, CERN and INFN, in partnership with institutions around the world.

    Follow the overseas journey of the ICARUS detector at IcarusTrip.fnal.gov. Follow the social media campaign on Facebook and Twitter using the hashtag #IcarusTrip.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:28 pm on June 3, 2017 Permalink | Reply
    Tags: , FNAL, , Kiyomi Seiya, , , Slip stacking   

    From FNAL: “Fermilab is first to successfully implement slip stacking for accelerating beams” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 3, 2017
    Troy Rummler

    1

    The Fermilab accelerator complex smashes protons into so-called targets to produce other particles that scientists can study. The more protons the accelerator can provide, the more data there is to work with. Fermilab accelerator scientists and engineers were the first to successfully implement a technique called “slip stacking,” which allows the injection of multiple batches of beams into an accelerator at one time. By implementing slip stacking, Fermilab effectively doubled the number of protons delivered by its Main Injector accelerator. Kiyomi Seiya was given an IEEE Particle Accelerator Science and Technology award for the work.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:15 pm on June 3, 2017 Permalink | Reply
    Tags: , , , , , FNAL, SSDS   

    From FNAL: “Sloan Digital Sky Survey discovers baryon acoustic oscillations” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 3, 2017
    Troy Rummler

    1
    SDSS Telescope at Apache Point Observatory, NM, USA

    In 2005 the Sloan Digital Sky Survey, of which Fermilab was a major collaborator, confirmed the existence of baryon acoustic oscillations. These BAOs are giant sound waves from the early universe, and their imprint remains on the way matter is distributed today, more than 13 billion years later. Taking measurements of more than 45,000 galaxies, the Sloan survey measured the peaks in these enormous ripples to be roughly 500 million light-years apart.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:05 pm on June 3, 2017 Permalink | Reply
    Tags: , ACPMAPS supercomputer, FNAL, , , , Supercomputiing   

    From FNAL: ” Fermilab pioneers the construction of computing farms” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 3, 2017
    Troy Rummler

    2

    1
    Members of the computing division with the ACP Maps Computer in 1991

    Fermilab once possessed the fastest supercomputer in the world. Known as ACPMAPS, (pronounced “A-C-P maps”), the system was installed in 1989 to facilitate deep theoretical explorations into the strong force, one of nature’s four fundamental forces. Soon Fermilab was building more massively parallel computers, pioneering the construction of low-cost computing farms to replace large and expensive specialized systems. With floods of data generated by high-energy physics experiments and mind-bogglingly complex calculations to be carried out in particle physics theory, Fermilab was pushing the bounds of supercomputing.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 11:22 am on June 3, 2017 Permalink | Reply
    Tags: , FNAL, , Intrabeam scattering, , , Valery Lebedev   

    From FNAL: “Fermilab scientists identify sources of beam losses in accelerators” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    June 3, 2017
    Troy Rummler

    1
    We may think of particles in accelerators as smoothly cruising ahead until they reach their target, but in very high-intensity beams they also destructively interact with each other. James Bjorken and Sekazi Mtingwa, two scientists working at Fermilab, predicted and discovered a number of these “intrabeam scattering” phenomena, which brought about losses and limited the performance of circular accelerators. A related mechanism, called “intrabeam scattering stripping,” was also predicted by theory and experimentally identified by scientist Valery Lebedev as a performance-limiting effect in modern linear accelerators.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: