Tagged: FNAL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:36 pm on June 15, 2019 Permalink | Reply
    Tags: , , FNAL, FNAL Muon G-2 experiment, Muon g-2 anomaly, ,   

    From Fermi National Accelerator Lab: “Physicists are out to unlock the muon’s secret” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    June 13, 2019
    Sabine Hossenfelder

    FNAL Muon G-2 studio

    Physicists count 25 elementary particles that, for all we presently know, cannot be divided any further. They collect these particles and their interactions in what is called the Standard Model of particle physics.

    Standard Model of Particle Physics

    But the matter around us is made of merely three particles: up and down quarks (which combine to protons and neutrons, which combine to atomic nuclei) and electrons (which surround atomic nuclei). These three particles are held together by a number of exchange particles, notably the photon and gluons.

    What’s with the other particles? They are unstable and decay quickly. We only know of them because they are produced when other particles bang into each other at high energies, something that happens in particle colliders and when cosmic rays hit Earth’s atmosphere. By studying these collisions, physicists have found out that the electron has two bigger brothers: The muon (μ) and the tau (τ).

    The muon and the tau are pretty much the same as the electron, except that they are heavier. Of these two, the muon has been studied closer because it lives longer – about 2 x 10^-6 seconds.

    The muon turns out to be… a little odd.

    Physicists have known for a while, for example, that cosmic rays produce more muons than expected. This deviation from the predictions of the standard model is not hugely significant, but it has stubbornly persisted. It has remained unclear, though, whether the blame is on the muons, or the blame is on the way the calculations treat atomic nuclei.

    Next, the muon (like the electron and tau) has a partner neutrino, called the muon-neutrino. The muon neutrino also has some anomalies associated with it. No one currently knows whether those are real or measurement errors.

    The Large Hadron Collider has seen a number of slight deviations from the predictions of the standard model which go under the name lepton anomaly. They basically tell you that the muon isn’t behaving like the electron, which (all other things equal) really it should. These deviations may just be random noise and vanish with better data. Or maybe they are the real thing.

    And then there is the gyromagnetic moment of the muon, usually denoted just g. This quantity measures how muons spin if you put them into a magnetic field. This value should be 2 plus quantum corrections, and the quantum corrections (the g-2) you can calculate very precisely with the standard model. Well, you can if you have spent some years learning how to do that because these are hard calculations indeed. Thing is though, the result of the calculation doesn’t agree with the measurement.

    This is the so-called muon g-2 anomaly, which we have known about since the 1960s when the first experiments ran into tension with the theoretical prediction. Since then, both the experimental precision as well as the calculations have improved, but the disagreement has not vanished.

    The most recent experimental data comes from a 2006 experiment at Brookhaven National Lab, and it placed the disagreement at 3.7σ. That’s interesting for sure, but nothing that particle physicists get overly excited about.

    A new experiments is now following up on the 2006 result: The muon g-2 experiment at Fermilab. The collaboration projects that (assuming the mean value remains the same) their better data could increase the significance to 7σ, hence surpassing the discovery standard in particle physics (which is somewhat arbitrarily set to 5σ).

    For this experiment, physicists first produce muons by firing protons at a target (some kind of solid). This produces a lot of pions (composites of two quarks) which decay by emitting muons. The muons are then collected in a ring equipped with magnets in which they circle until they decay. When the muons decay, they produce two neutrinos (which escape) and a positron that is caught in a detector. From the direction and energy of the positron, one can then infer the magnetic moment of the muon.

    The Fermilab g-2 experiment, which reuses parts of the hardware from the earlier Brookhaven experiment, is already running and collecting data. In a recent paper [ https://arxiv.org/abs/1905.00497 ], Alexander Keshavarzi, on behalf of the collaboration reports they successfully completed the first physics run last year. He writes we can expect a publication of the results from the first run in late 2019. After some troubleshooting (something about an underperforming kicker system), the collaboration is now in the second run.

    Another experiment to measure more precisely the muon g-2 is underway in Japan, at the J-PARC muon facility. This collaboration too is well on the way.

    J-PARC Facility Japan Proton Accelerator Research Complex , located in Tokai village, Ibaraki prefecture, on the east coast of Japan

    While we don’t know exactly when the first data from these experiments will become available, it is clear already that the muon g-2 will be much talked about in the coming years. At present, it is our best clue for physics beyond the standard model. So, stay tuned.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 12:11 pm on May 30, 2019 Permalink | Reply
    Tags: , , FNAL, ,   

    From Fermi National Accelerator Lab: “Long-Baseline Neutrino Facility pre-excavation work is in full swing” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    May 2, 2019
    Kurt Riesselmann

    Unlocking the mysteries of neutrinos in order to get a clearer picture of the universe and understand why we are here at all, is a monumental undertaking. However, before the international Deep Underground Neutrino Experiment, hosted by the Department of Energy’s Fermilab, can start solving those mysteries, a massive construction project is required to provide the necessary infrastructure, named the Long-Baseline Neutrino Facility.

    The LBNF construction in Lead, South Dakota is under way, and a fleet of yellow pickup trucks has become the talk of the town and evidence of the beehive of construction activity that Fermilab is managing at the Sanford Underground Research Facility.

    These trucks are owned by the company Kiewit, part of the Kiewit-Alberici Joint Venture, who are preparing the construction site at Sanford Lab for the excavation of about 800,000 tons of rock to create the huge caverns for the South Dakota-portion of the Long-Baseline Neutrino Facility. (Prep work for the Illinois-portion of the Long-Baseline Neutrino Facility, to be built at Fermilab, will start early next year.)

    2
    The excavation of LBNF/DUNE caverns requires the transport of about 800,000 tons of rock from a mile underground to the surface, and then transporting it to its final resting place in a former mining area known as the Open Cut. Credit: Fermilab

    The excavation will create the three LBNF caverns that vary in length between 500 and 625 feet long, up to 70 feet wide and 95 feet tall. These caverns will house DUNE’s massive particle detectors and the necessary utilities.

    FNAL DUNE Argon tank at SURF

    Excavating such an enormous amount of rock a mile underground, bringing it to the surface, and then transporting it to its final resting place is a huge job. And creating the infrastructure for that job is a huge amount of work by itself—and is going on right now. Fortunately, the mile-deep shaft that workers will use to bring rock to the surface—known as the Ross Shaft—already exists and the seven-year-long shaft renovation project will soon wrap up. But other pre-excavation work remains to be done. The main tasks are (see photo gallery):

    Renovating the area at the bottom of the mile-deep Ross Shaft, where rock will be loaded into large buckets, called skips, that will travel up the shaft;
    Strengthening the Ross headframe—the structure that holds and operates the hoist that conveys the skips filled with rock to the surface;
    Refurbishing the three-story-tall rock crushing system next to the Ross headframe; it was last used in 2001 when the Ross Shaft was still used by the Homestake gold mine.
    Building and installing the three-quarter-mile-long conveyor system that will transport the crushed rock to the Open Cut, an open pit mining area excavated by the Homestake mining company in the 1980s. Despite the massive amount of rock to be excavated for the LBNF caverns, the deposited rock will fill less than one percent of the Open Cut.
    Rehabbing the existing tramway tunnel to prepare it for the installation of the conveyor system;
    Establishing the power infrastructure for operating the LBNF/DUNE experiment, which will include 70,000 tons of liquid argon cooled to minus 300 degrees Fahrenheit (minus 184 degrees Celsius).

    And remember, this massive construction project will enable some truly groundbreaking science. DUNE, hosted by Fermilab, will be the world’s most advanced experiment dedicated to studying the properties of mysterious subatomic particles called neutrinos.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    The DUNE detectors will enable scientists to study a neutrino beam generated at Fermilab. The DUNE collaboration includes more than 1,000 scientists from more than 30 countries around the world. A large prototype detector for the experiment, constructed at the European research center CERN, successfully began recording particle tracks in September.

    CERN Proto Dune

    For more information on LBNF/DUNE, see http://www.fnal.gov/dune.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 12:04 pm on May 14, 2019 Permalink | Reply
    Tags: >Model-dependent vs model-independent research, , , , , FNAL, , , , , ,   

    From Symmetry: “Casting a wide net” 

    Symmetry Mag
    From Symmetry

    05/14/19
    Jim Daley

    1
    Illustration by Sandbox Studio, Chicago

    In their quest to discover physics beyond the Standard Model, physicists weigh the pros and cons of different search strategies.

    On October 30, 1975, theorists John Ellis, Mary K. Gaillard and D.V. Nanopoulos published a paper [Science Direct] titled “A Phenomenological Profile of the Higgs Boson.” They ended their paper with a note to their fellow scientists.

    “We should perhaps finish with an apology and a caution,” it said. “We apologize to experimentalists for having no idea what is the mass of the Higgs boson… and for not being sure of its couplings to other particles, except that they are probably all very small.

    “For these reasons, we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.”

    What the theorists were cautioning against was a model-dependent search, a search for a particle predicted by a certain model—in this case, the Standard Model of particle physics.

    Standard Model of Particle Physics

    It shouldn’t have been too much of a worry. Around then, most particle physicists’ experiments were general searches, not based on predictions from a particular model, says Jonathan Feng, a theoretical particle physicist at the University of California, Irvine.

    Using early particle colliders, physicists smashed electrons and protons together at high energies and looked to see what came out. Samuel Ting and Burton Richter, who shared the 1976 Nobel Prize in physics for the discovery of the charm quark, for example, were not looking for the particle with any theoretical prejudice, Feng says.

    That began to change in the 1980s and ’90s. That’s when physicists began exploring elegant new theories such as supersymmetry, which could tie up many of the Standard Model’s theoretical loose ends—and which predict the existence of a whole slew of new particles for scientists to try to find.

    Of course, there was also the Higgs boson. Even though scientists didn’t have a good prediction of its mass, they had good motivations for thinking it was out there waiting to be discovered.

    And it was. Almost 40 years after the theorists’ tongue-in-cheek warning about searching for the Higgs, Ellis found himself sitting in the main auditorium at CERN next to experimentalist Fabiola Gianotti, the spokesperson of the ATLAS experiment at the Large Hadron Collider who, along with CMS spokesperson Joseph Incandela, had just co-announced the discovery of the particle he had once so pessimistically described.

    CERN CMS Higgs Event


    CERN ATLAS Higgs Event

    Model-dependent vs model-independent

    Scientists’ searches for particles predicted by certain models continue, but in recent years, searches for new physics independent of those models have begun to enjoy a resurgence as well.

    “A model-independent search is supposed to distill the essence from a whole bunch of specific models and look for something that’s independent of the details,” Feng says. The goal is to find an interesting common feature of those models, he explains. “And then I’m going to just look for that phenomenon, irrespective of the details.”

    Particle physicist Sara Alderweireldt uses model-independent searches in her work on the ATLAS experiment at the Large Hadron Collider.

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS

    Alderweireldt says that while many high-energy particle physics experiments are designed to make very precise measurements of a specific aspect of the Standard Model, a model-independent search allows physicists to take a wider view and search more generally for new particles or interactions. “Instead of zooming in, we try to look in as many places as possible in a consistent way.”

    Such a search makes room for the unexpected, she says. “You’re not dependent on the prior interpretation of something you would be looking for.”

    Theorist Patrick Fox and experimentalist Anadi Canepa, both at Fermilab, collaborate on searches for new physics.


    In Canepa’s work on the CMS experiment, the other general-purpose particle detector at the LHC, many of the searches are model-independent.

    While the nature of these searches allows them to “cast a wider net,” Fox says, “they are in some sense shallower, because they don’t manage to strongly constrain any one particular model.”

    At the same time, “by combining the results from many independent searches, we are getting closer to one dedicated search,” Canepa says. “Developing both model-dependent and model-independent searches is the approach adopted by the CMS and ATLAS experiments to fully exploit the unprecedented potential of the LHC.”

    Driven by data and powered by machine learning

    Model-dependent searches focus on a single assumption or look for evidence of a specific final state following an experimental particle collision. Model-independent searches are far broader—and how broad is largely driven by the speed at which data can be processed.

    “We have better particle detectors, and more advanced algorithms and statistical tools that are enabling us to understand searches in broader terms,” Canepa says.

    One reason model-independent searches are gaining prominence is because now there is enough data to support them. Particle detectors are recording vast quantities of information, and modern computers can run simulations faster than ever before, she says. “We are able to do model-independent searches because we are able to better understand much larger amounts of data and extreme regions of parameter and phase space.”

    Machine-learning is a key part of this processing power, Canepa says. “That’s really a change of paradigm, because it really made us make a major leap forward in terms of sensitivity [to new signals]. It really allows us to benefit from understanding the correlations that we didn’t capture in a more classical approach.”

    These broader searches are an important part of modern particle physics research, Fox says.

    “At a very basic level, our job is to bequeath to our descendants a better understanding of nature than we got from our ancestors,” he says. “One way to do that is to produce lots of information that will stand the test of time, and one way of doing that is with model-independent searches.”

    Models go in and out of fashion, he adds. “But model-independent searches don’t feel like they will.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:37 pm on May 11, 2019 Permalink | Reply
    Tags: "How an episode of ‘Chopped’ led to a fix for future particle accelerators", Fermilab scientist designs innovative spun-sugar electrospinning technique, FNAL, ,   

    From University of Chicago: “How an episode of ‘Chopped’ led to a fix for future particle accelerators” 

    U Chicago bloc

    From University of Chicago

    May 10, 2019
    Caitlyn Buongiorno

    Fermilab scientist designs innovative spun-sugar electrospinning technique.


    1
    In electrospinning, a positive charge is applied to liquidized material to create thin strands that eventually harden into a solid, fibrous material. Photo by Reidar Hahn

    Bob Zwaska, a scientist at the UChicago-affiliated Fermi National Accelerator Laboratory, was watching a contestant on the cooking show Chopped spin sugar for their dessert when he realized the same principle might be applicable to accelerator targets.

    The technique he spun out of the idea could hugely boost the power at which future particle accelerators could operate—helping us unlock the secrets of how our universe is built.

    One of the ways particle accelerators produce particles is by firing particle beams at targets. These targets are stationary, solid blocks of material, such as graphite or beryllium. When the beam collides with the target, it produces a spray of particles that can inform scientists about the fundamental building blocks of the universe.

    For example, the pioneering international Deep Underground Neutrino Experiment, or DUNE, an experiment hosted by Fermilab and developed in collaboration with more than 170 institutions worldwide, seeks to understand why matter exists in the universe by unlocking the mysteries of ghostly particles called neutrinos.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    But the experiment is limited by how much the targets can handle; to solve these mysteries, the accelerator beam used by DUNE needs to reach a power of at least 1.2 megawatts—twice the amount current targets can handle.

    The point of collision between the beam and the target—an area significantly smaller than the target itself, varying between the size of an ant and the graphite in a mechanical pencil—as rapidly and repeatedly heated to above 500 degrees Celsius. This heat causes that tiny area to try to expand, but because the currently used targets are solid, there’s no room for expansion. Instead, the hot spot pushes against the surrounding area over and over again, like a jackhammer. This has the potential to damage the target.

    When you dive into a pool, your collision with the water causes waves to ripple across the surface. When the waves reach the edge of the pool, they will rebound and cross over other waves, either destroying each other or combining to make a larger wave. In a pool, if a wave gets too large, the water can simply splash over the edge. In a solid target, however, if a wave gets too big, the material will crack.

    At the Fermilab particle accelerator’s current beam intensities, this isn’t a problem, because targets can withstand the resulting waves for a long time. As Fermilab upgrades its accelerator complex and the intensity increases, that endurance time drops drastically.

    “Worldwide, there is a push for higher-intensity machines to create rare particles. These targets have sometimes been the sole limiting factor in the performance of such facilities,” Zwaska said. “So, to research areas of new physics, we have to be pushing for new technologies to confront this problem.”

    A new spin

    Tasked with coming up with an alternative target to use in high-powered accelerators, like the ones that will send beam to DUNE, Zwaska envisioned a target that consists of many twists and turns to prevent any wave buildup. This sinuous target would also be strong and solid at the microscale.

    He first tested graphite ropes, 3-D-printed fibers, and mostly hollow, reticulated solids before he stumbled upon the spun-sugar concept, which led him to electrospinning.

    First proposed in the early 1900s to produce thinner artificial silk, electrospinning has been used for air filtration in cars, wound dressing and pharmaceutical drugs. Like spinning sugar, electrospinning involves using a liquidized material to create thin strands that eventually harden into the desired structure. Instead of heating the liquid, electrospinning applies a positive charge to it. The charge on the liquid creates an attraction between it and a neutral plate, placed some distance away. This attraction stretches the material towards the plate, creating a solid, fibrous material.

    For accelerator targets, specialists turn metal or ceramic into a solid but porous material that consists of thousands of fiber strands less than a micrometer in diameter. That’s less than a hundredth the thickness of an average human hair, and about a third of a spider’s webbing.

    When the particle beam collides with an electrospun target, the fibers won’t propagate any waves. The lack of potentially material-damaging waves means that these targets can withstand much higher beam intensity.

    Instead of a pool, imagine you jump into a ball pit. Your collision will disrupt the arrangement of the balls immediately around you but leave the surrounding ones alone. The electrospun target acts the same way. The process leaves space between each fiber, allowing the fibers to expand uniformly, avoiding the jackhammer effect.

    Targeting better systems

    While this new technology potentially solves many of the issues with current targets, it has its own obstacles to overcome. Typically, the process to make an electrospun target takes days, with experts frequently having to stop to correct complications in the way the material accumulates.

    Sujit Bidhar, a postdoctoral researcher at Fermilab, is trying to address these issues. Bidhar is developing and testing methods that increase the number of fiber spin-off points that form at a single time, produce a thicker nanofiber target, and decrease the amount of electricity needed to create the positive charge. These advancements would both speed up and simplify the process.

    While he’s still trying different electrospinning techniques, Bidhar has already developed a new patent-pending electrospinning system, including a novel power supply.

    Bidhar’s electrospinning unit is more compact, more lightweight, simpler and cheaper than most conventional units.

    It’s also much safer to use due to its limited output power. Present commercial power supplies put out an amount of electric power that far exceeds what is needed to make electrospun targets. Bidhar’s power supply unit reduces the electric power output and overall unit size by half, which also makes it safer to use.

    “Medical personnel would be able to use this power supply to create biodegradable wound dressings in remote and mobile locations, without a bulky and high-voltage unit,” Bidhar said.

    Electrospun targets, like Bidhar’s power supply, could innovate the future of particle physics accelerators, allowing experiments such as DUNE to reach higher levels of beam intensity. These higher intensity beams will aid scientists in solving the enduring mysteries of astrophysics, nuclear physics and particle physics.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 2:08 pm on May 3, 2019 Permalink | Reply
    Tags: "A quantum leap in particle simulation", , FNAL, , , , Particles called fermions which are the building blocks of matter; and particles called bosons which are field particles and tug on the matter particles.,   

    From Fermi National Accelerator Lab: “A quantum leap in particle simulation” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    May 2, 2019
    Leah Hesla

    A group of scientists at the Department of Energy’s Fermilab has figured out how to use quantum computing to simulate the fundamental interactions that hold together our universe.

    In a paper published in Physical Review Letters, Fermilab researchers fill a conspicuous gap in modeling the subatomic world using quantum computers, addressing a family of particles that, until recently, has been relatively neglected in quantum simulations.

    The fundamental particles that make up our universe can be divided into two groups: particles called fermions, which are the building blocks of matter, and particles called bosons, which are field particles and tug on the matter particles.

    In recent years, scientists have successfully developed quantum algorithms to compute systems made of fermions. But they’ve had a much tougher time doing the same for boson systems.

    For the first time, Fermilab scientist Alexandru Macridin has found a way to model systems containing both fermions and bosons on general-purpose quantum computers, opening a door to realistic simulations of the subatomic realm. His work is part of the Fermilab quantum science program.

    “The representation of bosons in quantum computing was never addressed very well in the literature before,” Macridin said. “Our method worked, and better than we expected.”

    The relative obscurity of bosons in quantum-computation literature has partly to do with bosons themselves and partly with the way quantum-computing research has evolved.

    Over the last decade, the development of quantum algorithms focused strongly on simulating purely fermionic systems, such as molecules in quantum chemistry.

    “But in high-energy physics, we also have bosons, and high-energy physicists are particularly interested in the interactions between bosons and fermions,” said Fermilab scientist Jim Amundson, a co-author on the Physical Review Letters paper. “So we took existing fermion models and extended them to include bosons, and we did that in a novel way.”

    The biggest barrier to modeling bosons related to the properties of a qubit — a quantum bit.

    Mapping the states

    A qubit has two states: 1 and 0.

    Similarly, a fermion state has two distinct modes: occupied and unoccupied.

    The qubit’s two-state property means it can represent a fermion state pretty straightforwardly: One qubit state is assigned to “occupied,” and the other, “unoccupied.”

    (You might remember something about the occupation of states from high school chemistry: An atom’s electron orbitals can each be occupied by a maximum of one electron. So they’re either occupied or not. Those orbitals, in turn, combine to form the electron shells that surround the nucleus.)

    The one-to-one mapping between qubit state and fermion state makes it easy to determine the number of qubits you’ll need to simulate a fermionic process. If you’re dealing with a system of 40 fermion states, like a molecule with 40 orbitals, you’ll need 40 qubits to represent it.

    In a quantum simulation, a researcher sets up qubits to represent the initial state of, say, a molecular process. Then the qubits are manipulated according to an algorithm that reflects how that process evolves.

    More complex processes need a greater number of qubits. As the number grows, so does the computing power needed to carry it out. But even with only a handful of qubits at one’s disposal, researchers are able to tackle some interesting problems related to fermion processes.

    “There’s a well-developed theory for how to map fermions onto qubits,” said Fermilab theorist Roni Harnik, a co-author of the paper.

    Bosons, nature’s force particles, are a different story. The business of mapping them gets complicated quickly. That’s partly because, unlike the restricted, two-choice fermion state, boson states are highly accommodating.

    2
    A system of bosons can be modeled as a system of harmonic oscillators, a phenomenon that occurs everywhere in nature. The motion of a spring bobbing up and down and the vibration of a plucked string are both examples of harmonic oscillators. In quantum mechanics, the harmonic oscillator motion is described by typical wave functions. Several (typical) wave functions are shown here. A Fermilab team recently found a way to represent wave functions for bosonic systems on a quantum computer. Image: Allen McC

    Accommodating bosons

    Since only one fermion can occupy a particular fermion quantum state, that state is either occupied or not — 1 or 0.

    In contrast, a boson state can be variably occupied, accommodating one boson, a zillion bosons, or anything in between. That makes it tough to map bosons to qubits. With only two possible states, a single qubit cannot, by itself, represent a boson state.

    With bosons, the question is not whether the qubit represents an occupied or unoccupied state, but rather, how many qubits are needed to represent the boson state.

    “Scientists have come up with ways to encode bosons into qubits that would require a large number of qubits to give you accurate results,” Amundson said.

    A prohibitively large number, in many cases. By some methods, a useful simulation would need millions of qubits to faithfully model a boson process, like the transformation of a particle that ultimately produces a particle of light, which is a type of boson.

    And that’s just in representing the process’s initial setup, let alone letting it evolve.

    Macridin’s solution was to recast the boson system as something else, something very familiar to physicists — a harmonic oscillator.

    Harmonic oscillators are everywhere in nature, from the subatomic to the astronomical scales. The vibration of molecules, the pulse of current through a circuit, the up-and-down bob of a loaded spring, the motion of a planet around a star — all are harmonic oscillators. Even bosonic particles, like those Macridin looked to simulate, can be treated like tiny harmonic oscillators. Thanks to their ubiquity, harmonic oscillators are well-understood and can be modeled precisely.

    With a background in condensed-matter physics — the study of nature a couple of notches up from its particle foundation — Macridin was familiar with modeling harmonic oscillators in crystals. He found a way to represent a harmonic oscillator on a quantum computer, mapping such systems to qubits with exceptional precision and enabling the precise simulation of bosons on quantum computers.

    And at a low qubit cost: Representing a discrete harmonic oscillator on a quantum computer requires only a few qubits, even if the oscillator represents a large number of bosons.

    “Our method requires a relatively small number of qubits for boson states — exponentially smaller than what was proposed by other groups before,” Macridin said. “For other methods to do the same thing, they would probably need orders of magnitude larger number of qubits.”

    Macridin estimates that six qubits per boson state is enough to explore interesting physics problems.

    Simulation success

    As a trial of Macridin’s mapping method, the Fermilab group first tapped into quantum field theory, a branch of physics that focuses on modeling subatomic structures. They successfully modeled the interaction of electrons in a crystal with the vibrations of the atoms that form the crystal. The ‘unit’ of that vibration is a boson called a phonon.

    Using a quantum simulator at nearby Argonne National Laboratory, they modeled the electron-phonon system and — voila! — they showed they could calculate, with high accuracy, the system’s properties using only about 20 qubits. The simulator is a classical computer that simulates how a quantum computer, up to 35 qubits, works. Argonne researchers leverage the simulator and their expertise in scalable algorithms to explore the potential impact of quantum computing in key areas such as quantum chemistry and quantum materials.

    “We showed that the technique worked,” Harnik said.

    They further showed that, by representing bosons as harmonic oscillators, one could efficiently and accurately describe systems involving fermion-boson interactions.

    “It turned out to be a good fit,” Amundson said.

    “I’d started with one idea, and it didn’t work, so then I changed the representation of the bosons,” Macridin said. “And it worked well. It makes the simulation of fermion-boson systems feasible for near-term quantum computers.”

    Universal application

    The Fermilab group’s simulation is not the first time scientists have modeled bosons in quantum computers. But in the other cases, scientists used hardware specifically designed to simulate bosons, so the simulated evolution of a boson system would happen naturally, so to speak, on those special computers.

    The Fermilab group’s approach is the first that can be applied efficiently in a general-purpose, digital quantum computer, also called a universal quantum computer.

    The next step for Macridin, Amundson and other particle physicists at Fermilab is to use their method on problems in high-energy physics.

    “In nature, fermion-boson interactions are fundamental. They appear everywhere,” Macridin said. “Now we can extend our algorithm to various theories in our field.”

    Their achievement extends beyond particle physics. Amundson says their group has heard from materials scientists who think the work could be useful in solving real-world problems in the foreseeable future.

    “We introduced bosons in a new way that requires fewer resources,” Amundson said. “It really opens up a whole new class of quantum simulations.”

    This work was funded by the DOE Office of Science. Learn more about this result in Physical Review Letters [above]. Visit the Fermilab quantum science website [above] to learn about other quantum initiatives.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:18 pm on April 16, 2019 Permalink | Reply
    Tags: , FNAL, , , , MINOS, ,   

    From Fermi National Accelerator Lab: “Search for sterile neutrinos in MINOS and MINOS+” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 16, 2019

    1
    MINOS far detector as seen in 2012. Photo: Reidar Hahn

    The MINOS+ collaboration at the Department of Energy’s Fermilab has published a paper in Physical Review Letters about their latest results: new constraints on the existence of sterile neutrinos. The collaboration has exploited new high-statistics data and a new analysis regime to set more stringent boundaries on the possibility of sterile neutrinos mixing with muon neutrinos. They have significantly improved on their previous results published in 2016. With close to 40 publications that have garnered more than 6,000 citations, MINOS has been at the forefront of studying neutrino oscillations physics since its first data-taking days in 2005.

    The experiment uses two iron-scintillator sampling-and-tracking calorimetric particle detectors: The near detector is placed 1.04 kilometers from the neutrino source at Fermilab, and the far detector is placed 735 kilometers away in Minnesota.

    FNAL MINOS near detector

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    The MINOS experiment collected data using a low-energy neutrino beam from May 1, 2005, to April 29, 2012, and MINOS+ collected data with a medium-energy neutrino beam from Sept. 4, 2013 to June 29, 2016.

    The detectors have accumulated high-statistics samples of muon neutrino interactions. Using a Fermilab neutrino beam composed of almost 100 percent muon neutrinos, they measured the disappearance of muon neutrinos as the particles arrived at the far detector. The collaboration used these data to obtain some of the most precise to-date measurements of standard three-neutrino mixings. These data also restrict phenomena beyond the Standard Model, including the hypothetical light sterile neutrinos.

    The analysis has simultaneously employed the energy spectra of charged-current (W boson exchange) and neutral-current (Z boson exchange) interactions between the neutrinos and the atoms inside the detector.

    Using a neutrino oscillation model that assumed the existence of the three known kinds of neutrinos plus a fourth type of neutrino referred to as a single sterile neutrino, the MINOS+ collaboration found no evidence of sterile neutrinos. Instead, the collaboration was able to set rigorous limits on the mixing parameter sin2θ24 for the mass splitting Δm241 > 10−4 eV2.

    The results significantly increase the tension with results obtained by experiments conducted with single detectors studying electron neutrino appearance in a muon neutrino beam. The LSND and MiniBooNE techniques and limited statistics present challenges that are now being tackled by the MicroBooNE experiment at Fermilab, designed specifically for this task.

    LSND experiment at Los Alamos National Laboratory and Virginia Tech

    FNAL/MiniBooNE

    FNAL/MicrobooNE

    Scientists from 33 institutions in five countries — the United States, UK, Brazil, Poland and Greece — are members of the MINOS+ collaboration. More information can be found on the MINOS+ website.

    This work is supported by the U.S. Department of Energy Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:24 pm on April 15, 2019 Permalink | Reply
    Tags: , , Deep Underground Neutrino Experiment, Electrospinning, FNAL,   

    From Fermi National Accelerator Lab: “Spinning new targets for accelerators” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 15, 2019
    Caitlyn Buongiorno

    Bob Zwaska, a scientist at the U.S. Department of Energy’s Fermilab, was watching a contestant on the cooking show Chopped spin sugar for their dessert when he realized the same principle might be applicable to accelerator targets.

    One of the ways particle accelerators produce particles is by firing particle beams at targets. These targets are stationary, solid blocks of material, such as graphite or beryllium. When the beam collides with the target, it produces secondary particles, such as pions, which decay into tertiary particles, such as neutrinos and muons.

    Future particle physics experiments are limited by the targets currently used in particle accelerators. One is the international Deep Underground Neutrino Experiment, a cutting-edge experiment hosted by Fermilab and developed in collaboration with more than 170 institutions worldwide. DUNE seeks to understand why matter exists in the universe by unlocking the mysteries of ghostly particles called neutrinos.


    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    SURF DUNE LBNF Caverns at Sanford Lab

    To solve these mysteries, the accelerator beam used by DUNE needs to reach a power of at least 1.2 megawatts, twice the amount current targets can handle.

    The point of collision between the beam and the target — an area significantly smaller than the target itself, varying between the size of an ant and the graphite in a mechanical pencil — is rapidly and repeatedly heated to above 500 degrees Celsius. This heat causes that tiny area to try to expand, but, because the currently used targets are solid, there’s no room for expansion. Instead, the hot spot pushes against the surrounding area over and over again, like a jack hammer. This has the potential to damage the target.

    2
    In electrospinning, a positive charge is applied to liquidized material to create thin strands that eventually harden into a solid, fibrous material. Photo: Reidar Hahn

    When you dive into a pool, your collision with the water causes waves to ripple across the surface. When the waves reach the edge of the pool, they will rebound and cross over other waves, either destroying each other or combining to make a larger wave. In a pool, if a wave gets too large, the water can simply splash over the edge. In a solid target, however, if a wave gets too big, the material will crack.

    At the Fermilab particle accelerator’s current beam intensities, this isn’t a problem, because targets can withstand the resulting waves for a long time. As Fermilab upgrades its accelerator complex and the intensity increases, that endurance time drops drastically.

    “Worldwide, there is a push for higher-intensity machines to create rare particles. These targets have sometimes been the sole limiting factor in the performance of such facilities,” Zwaska said. “So, to research areas of new physics, we have to be pushing for new technologies to confront this problem.”

    Tasked with coming up with an alternative target to use in high-powered accelerators, like the ones that will send beam to DUNE, Zwaska envisioned a target that consists of many twists and turns to prevent any wave buildup. This sinuous target would also be strong and solid at the microscale. He first tested graphite ropes, 3-D-printed fibers, and mostly hollow, reticulated solids before he stumbled upon the spun-sugar concept, which led him to electrospinning.

    First proposed in the early 1900s to produce thinner artificial silk, electrospinning has been used for air filtration in cars, wound dressing and pharmaceutical drugs. Like spinning sugar, electrospinning involves using a liquidized material to create thin strands that eventually harden into the desired structure. Instead of heating the liquid, electrospinning applies a positive charge to it. The charge on the liquid creates an attraction between it and a neutral plate, placed some distance away. This attraction stretches the material towards the plate, creating a solid, fibrous material.

    For accelerator targets, specialists turn metal or ceramic into a solid but porous material that consists of thousands of fiber strands less than a micrometer in diameter. That’s less than a hundredth the thickness of an average human hair, and about a third of a spider’s webbing.

    When the particle beam collides with an electrospun target, the fibers won’t propagate any waves. The lack of potentially material-damaging waves means that these targets can withstand much higher beam intensity.

    Instead of a pool, imagine you jump into a ball pit. Your collision will disrupt the arrangement of the balls immediately around you but leave the surrounding ones alone. The electrospun target acts the same way. The process leaves space between each fiber, allowing the fibers to expand uniformly, avoiding the jack hammer effect.

    While this new technology potentially solves many of the issues with current targets, it has its own obstacles to overcome. Typically, the process to make an electrospun target takes days, with experts frequently having to stop to correct complications in the way the material accumulates.

    Sujit Bidhar, a postdoctoral researcher at Fermilab, is trying to address these issues.

    Bidhar is developing and testing methods that increase the number of fiber spin-off points that form at a single time, produce a thicker nanofiber target, and decrease the amount of electricity needed to create the positive charge. These advancements would both speed up and simplify the process.

    While he’s still trying different electrospinning techniques, Bidhar has already developed a new patent-pending electrospinning system, including a novel power supply.

    Bidhar’s electrospinning unit is more compact, more lightweight, simpler and cheaper than most conventional units.

    Its also much safer to use due to its limited output power. Present commercial power supplies put out an amount of electric power that far exceeds what is needed to make electrospun targets. Bidhar’s power supply unit reduces the electric power output and overall unit size by half, which also makes it safer to use.

    In May 2018, Bidhar’s power supply won the TechConnect Innovation Award. Bidhar is encouraged by what this technology means for particle physics and also for other industries.

    “Medical personnel would be able to use this power supply to create biodegradable wound dressings in remote and mobile locations, without a bulky and high-voltage unit,” Bidhar said.

    Electrospun targets, like Bidhar’s power supply, could innovate the future of particle physics accelerators, allowing experiments such as DUNE to reach higher levels of beam intensity. These higher intensity beams will aid scientists in solving the enduring mysteries of astrophysics, nuclear physics and particle physics.

    Learn more about electrospinning. This work is supported by the U.S. Department of Energy Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 11:26 am on April 12, 2019 Permalink | Reply
    Tags: , , FNAL, , , , ,   

    From Fermi National Accelerator Lab: “Quarks, squarks, stops and charm at this year’s Moriond conference” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 11, 2019
    Don Lincoln

    1
    Fermilab RAs Kevin Pedro and Nadja Strobbe presented a variety of CMS and ATLAS research results at the 53rd annual Recontres de Moriond conference.

    This March, scientists from around the world gathered in LaThuile, Italy, for the 53rd annual Recontres de Moriond conference, one of the longest running and most prestigious conferences in particle physics. This conference is broken into two distinct weeks, with the first week usually covering electroweak physics and the second covering processes involving quantum chromodynamics. Fermilab and the LHC Physics Center were well represented at the conference.

    Fermilab research associates Kevin Pedro and Nadja Strobbe from the CMS group both presented talks on LHC physics result. Pedro spoke on searches for new physics with unconventional signatures at both the ATLAS and CMS experiments. The interest in unusual signatures is driven by the fact that many researchers have already searched for more commonly accepted physical processes. Looking for the unconventional opens up the possibility of unanticipated discoveries. Pedro covered long-lived particles emerging from a complex dark matter sector. The signature for this possible physics result is a jet that originates far from the interaction vertex. He also covered long-lived particles that disappear in the detector. This is a signature for a form of supersymmetry.

    Strobbe presented a thorough overview of searches for strong-force-produced signatures of supersymmetry. She covered both ATLAS and CMS results, covering a broad range of signatures, including the associated production of b quarks and Higgs bosons, diphotons, several stop squark analyses, and the associated production of three bottom quarks and missing transverse momentum. In total, she presented 12 distinct analyses. The phenomenology of strong-force-produced supersymmetry is diverse, and it provides a rich source for the possible discovery of new physics. This is Strobbe’s last Moriond presentation as a Fermilab research associate, as she has recently accepted a faculty position at the University of Minnesota, where she will be starting in the fall.

    Strobbe and Pedro were not the only people associated with the LHC Physics Center presenting or involved at Moriond. Fermilab Senior Scientist Boaz Klima has long been a member of the organizing committee. Meng Xiao (Johns Hopkins) and Greg Landsberg (Brown) also presented.

    More broadly, many interesting physics topics were covered at the conference. The LHCb experiment announced the discovery of new pentaquarks containing charm quarks. They also reported that a peak in the data that was previously thought to be a single pentaquark was actually two distinct particles. Studies of mesons containing both bottom and charm quarks were very well-represented, with ATLAS, CMS and LHCb all making presentations. In the first week of the Moriond conference, both ATLAS and LHCb announced studies in the matter-antimatter asymmetry in decays of mesons containing both bottom and strange quarks. And in an example of very quick inter-collaboration cooperation, the experiments presented a combined result in the second week.

    While the LHC is best known for colliding two beams of protons (studies of which were well represented at Moriond), the LHC also collides lead ions to study the behavior of superhot quark matter – what is called quark-gluon plasma. ALICE presented studies of charmed mesons called J/psi, which showed that charm quarks are affected in quark-gluon plasmas, just like lighter quarks. The ALICE experiment presented data gathered in a special run of proton-proton collisions at an energy unusual for the LHC an observation of charmed baryons in LHC collisions. These particles occur more often in proton-proton collisions than in electron-positron ones.

    The Moriond conference is a fascinating one. It is small and cozy and allows for conversations and collaboration between researchers, with a storied history of over half a century. In its 53rd year, researchers are showing that its second half century will be just as exciting.

    Don Lincoln is a Fermilab scientist on the CMS experiment.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:30 pm on April 2, 2019 Permalink | Reply
    Tags: , , , Fermilab Integrable Optics Test Accelerator (IOTA), FNAL, Synchrotrons   

    From Fermi National Accelerator Lab: “Work at the Fermilab Integrable Optics Test Accelerator” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    April 2, 2019
    Giulio Stancari

    1
    1/2) After the first electron beam was circulated in August 2018, the experimental program at the Fermilab Integrable Optics Test Accelerator (IOTA) continues with commissioning of machine and diagnostics and with the first beam-physics experiments. This view of IOTA was taken in November 2018. Photo: Giulio Stancari

    2
    (2/2) Jamie Santucci works on one of the synchrotron-light diagnostic stations in the Fermilab Integrable Optics Test Accelerator, or IOTA. Photo: Giulio Stancari

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 8:11 am on March 27, 2019 Permalink | Reply
    Tags: FNAL, , ,   

    From Fermi National Accelerator Lab via GIZMODO: “Fermilab Breaks Ground on a New Particle Accelerator to Solve the Mysteries of Neutrinos” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    via

    GIZMODO bloc

    GIZMODO

    3/20/19
    Ryan F. Mandelbaum

    FNAL A superconducting radiofrequency cavity responsible for accelerating particles at the new PIP-II accelerator

    Construction began last week on a new particle accelerator at Fermi National Accelerator Laboratory in Illinois. The new project will power Fermilab’s flagship neutrino-studying accelerator experiment.

    The Proton Improvement Plan II, formally approved by the Department of Energy last summer, includes plans for the highest-energy linear particle accelerator to accelerate a continuous stream of protons using superconducting radio-frequency cavities. That’s a mouthful—so it’s best to think of it as a central component to the American particle physics laboratory.

    PIP-II will “enable other particle physics experiments for many decades,” Lia Merminga, the director of the project from Fermilab, told Gizmodo.

    At present, Fermilab has a 500-foot-long superconducting radio-frequency linear accelerator that can send protons to 400 mega-electronvolts (MeV), or around 70 percent the speed of light. The PIP-II upgrade will include a 700-foot-long accelerator that doubles the energy to 800 MeV, 84 percent the speed of light. This is still a small fraction of the energies of particles produced at the Large Hadron Collider, but rather than producing bunches of particles the PIP-II upgrade will produce a continuous beam.

    Similar to how humming into a cup at just the right pitch makes your voice sound louder, linear accelerators amplify electric fields using resonance. There’s an electric field inside a cavity made from a superconductor and cooled by liquid helium, excited by a radio-frequency source with the same resonant frequency as the cavity. This increases the amplitudes of the electric fields, accelerating the charged particles that pass through.

    Though the accelerator has plenty of potential uses, it’s not the protons you should be most interested right now—instead, these protons will hit a graphite target, producing the incredibly low-mass, mysterious particles called neutrinos. Trillions of these neutrinos will travel 800 miles underground to a detector in South Dakota as part of the Deep Underground Neutrino Experiment, or DUNE.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    Surf-Dune/LBNF Caverns at Sanford


    DUNE’s scientists hope to understand the nature of these particles, like why they oscillate between their three possible types, seemingly by magic.

    PIP-II is also notable as the first Department of Energy-funded accelerator project to be built with significant international contribution. About a quarter of the project’s funding will come from other countries, explained Merminga, including France, India, Italy, and the United Kingdom.

    The project is just one part of the new neutrino experiment, but together with the DUNE detectors and the Long-Baseline Neutrino Facilities that will house the detectors, it will be an important American particle physics experiment to keep your eye on.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

    FNAL MINERvA front face Photo Reidar Hahn

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: