Tagged: FNAL LBNF/ DUNE Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:31 am on April 13, 2017 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, LArIAT   

    From FNAL: “LArIAT upgrade will test DUNE design” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    April 13, 2017
    Dan Garisto

    1
    The LArIAT time projection chamber will be used to conduct a proof-of-concept test for the future DUNE detector. Photo: Jen Raaf

    In particle physics, the difference of a millimeter or two can make or break an experiment. In March, the LArIAT experiment began a proof-of-concept test to make sure the planned Deep Underground Neutrino Experiment (DUNE) will work well with that 2-millimeter difference.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL DUNE Argon tank at SURF

    FNAL DUNE Detector prototype

    CERN Proto DUNE Maximillian Brice

    Surf-Dune/LBNF Caverns at Sanford

    FNAL/DUNE Near Site Layout

    Specifically, scientists are looking at what will happen when you increase the space between detection wires inside the future DUNE detectors.

    DUNE will measure neutrinos, mysterious particles that are ubiquitous but elusive and may hold answers to questions about the origins of the universe.

    Like the future DUNE detectors, LArIAT is filled with liquid argon. When a particle strikes an argon nucleus inside the detector, the interaction creates electrons that float through the argon until they’re captured by a wire, which registers a signal. Scientists measure the signal to learn about the particle interaction.

    Unlike the DUNE detectors, LArIAT does not detect neutrinos. Rather, it uses the interactions of other particle types to make inferences about neutrino interactions. And very unlike DUNE, LArIAT is the size of a mini-fridge, a mere speck compared to DUNE’s detectors, which will hold about 22 Olympic-size swimming pools’ worth of liquid argon.

    LArIAT scientists use a beam of charged particles provided by the Fermilab Test Beam Facility that are fired into the liquid argon. These particles interact with matter far more than neutrinos do, so the beam results in many more interactions than a similar beam of neutrinos, which would mostly pass through the argon. The higher level of interactions is what allows LArIAT to forgo the massive size of DUNE.

    Results from LArIAT may help physicists better understand other liquid-argon neutrino detectors at the DOE Office of Science’s Fermilab such as MicroBooNE and SBND.

    FNAL SBND

    FNAL/MicrobooNE

    “The point of the LArIAT experiment is to measure how well we can identify the various types of particles that come out of neutrino interactions and how well we can reconstruct their energy,” said Jen Raaf, LArIAT spokesperson.

    Although LArIAT doesn’t detect neutrinos, the charged-particle interactions can give scientists clues about how neutrinos interact with argon nuclei.

    “Instead of sending a neutrino in and looking at what stuff comes out, you send the other stuff in and see what it does,” Raaf said.

    Interactions in LArIAT are characterized primarily by a mesh of wires that detects the drift electrons. One key factor that affects the accuracy of drift-electron detection is the spacing between each wire.

    “The closer together your wires are, the better spatial resolution you get,” Raaf said. But the more closely spaced the wires are, the more wires that are needed. More wires means more electronics to detect signals from the wires, which can become expensive in a giant detector such as DUNE.

    To keep costs down, scientists are investigating whether DUNE will have a high enough resolution in its measurements of neutrino interactions with wires spaced 5 millimeters apart — larger than the 3-millimeter spacing in smaller Fermilab neutrino experiments such as MicroBooNE.

    Simulations suggest that it should work, but it’s up to Raaf and her team to test whether or not 5-millimeter spacing will do the job.

    LArIAT uses the Fermilab Test Beam Facility, which is an important part of the equation. The facility’s test beam originates from the lab’s accelerators and passes through a set of particle detection instruments before arriving at the LArIAT detector. Scientists can then compare the results from the first set of instruments with the LArIAT results.

    “If you know that it was truly a pion going in to the detector, and then you run your algorithm on it and it says ‘Oh no that was an electron,’ you’re like ‘I know you’re wrong!’” Raaf said. “So you just compare how often you’re wrong with 5 millimeters versus 3 millimeters.”

    She and her team are optimistic, but committed to being thorough.

    “It works in theory, but we always like to measure,” she said.

    This research receives support from the Department of Energy Office of Science and the National Science Foundation.

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:46 pm on March 7, 2017 Permalink | Reply
    Tags: CERN Proto Dune, FNAL LBNF/ DUNE, , Researchers face engineering puzzle, , , Transporting Argon   

    From Symmetry: “Researchers face engineering puzzle” 

    Symmetry Mag

    Symmetry

    03/07/17
    Daniel Garisto

    How do you transport 70,000 tons of liquid argon nearly a mile underground?


    FNAL DUNE Argon tank at SURF

    Nearly a mile below the surface of Lead, South Dakota, scientists are preparing for a physics experiment that will probe one of the deepest questions of the universe: Why is there more matter than antimatter?
    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    SURF


    Surf-Dune/LBNF Caverns at Sanford Lab

    Because neutrinos interact with matter so rarely and so weakly, DUNE scientists need a lot of material to create a big enough target for the particles to run into. The most widely available (and cost effective) inert substance that can do the job is argon, a colorless, odorless element that makes up about 1 percent of the atmosphere.

    The researchers also need to place the detector full of argon far below Earth’s surface, where it will be protected from cosmic rays and other interference.

    “We have to transfer almost 70,000 tons of liquid argon underground,” says David Montanari, a Fermilab engineer in charge of the experiment’s cryogenics. “And at this point we have two options: We can either transfer it as a liquid or we can transfer it as a gas.”

    Either way, this move will be easier said than done.

    Liquid or gas?

    The argon will arrive at the lab in liquid form, carried inside of 20-ton tanker trucks. Montanari says the collaboration initially assumed that it would be easier to transport the argon down in its liquid form—until they ran into several speed bumps.

    Transporting liquid vertically is very different from transporting it horizontally for one important reason: pressure. The bottom of a mile-tall pipe full of liquid argon would have a pressure of about 3000 pounds per square inch—equivalent to 200 times the pressure at sea level. According to Montanari, to keep these dangerous pressures from occurring, multiple de-pressurizing stations would have to be installed throughout the pipe.

    Even with these depressurizing stations, safety would still be a concern. While argon is non-toxic, if released into the air it can reduce access to oxygen, much like carbon monoxide does in a fire. In the event of a leak, pressurized liquid argon would spill out and could potentially break its vacuum-sealed pipe, expanding rapidly to fill the mine as a gas. One liter of liquid argon would become about 800 liters of argon gas, or four bathtubs’ worth.

    Even without a leak, perhaps the most important challenge in transporting liquid argon is preventing it from evaporating into a gas along the way, according to Montanari.

    To remain a liquid, argon is kept below a brisk temperature of minus 180 degrees Celsius (minus 300 degrees Fahrenheit).

    “You need a vacuum-insulated pipe that is a mile long inside a mine shaft,” Montanari says. “Not exactly the most comfortable place to install a vacuum-insulated pipe.”

    To avoid these problems, the cryogenics team made the decision to send the argon down as gas instead.

    Routing the pipes containing liquid argon through a large bath of water will warm it up enough to turn it into gas, which will be able to travel down through a standard pipe. Re-condensers located underground act as massive air conditioners will then cool the gas until becomes a liquid again.

    “The big advantage is we no longer have vacuum insulated pipe,” Montanari says. “It is just straight piece of pipe.”

    Argon gas poses much less of a safety hazard because it is about 1000 times less dense than liquid argon. High pressures would be unlikely to build up and necessitate depressurizing stations, and if a leak occurred, it would not expand as much and cause the same kind of oxygen deficiency.

    The process of filling the detectors with argon will take place in four stages that will take almost two years, Montanari says. This is due to the amount of available cooling power for re-condensing the argon underground. There is also a limit to the amount of argon produced in the US every year, of which only so much can be acquired by the collaboration and transported to the site at a time.

    1
    Illustration by Ana Kova

    Argon for answers

    Once filled, the liquid argon detectors will pick up light and electrons produced by neutrino interactions.

    Part of what makes neutrinos so fascinating to physicists is their habit of oscillating from one flavor—electron, muon or tau—to another. The parameters that govern this “flavor change” are tied directly to some of the most fundamental questions in physics, including why there is more matter than antimatter. With careful observation of neutrino oscillations, scientists in the DUNE collaboration hope to unravel these mysteries in the coming years.

    “At the time of the Big Bang, in theory, there should have been equal amounts of matter and antimatter in the universe,” says Eric James, DUNE’s technical coordinator. That matter and antimatter should have annihilated, leaving behind an empty universe. “But we became a matter-dominated universe.”

    James and other DUNE scientists will be looking to neutrinos for the mechanism behind this matter favoritism. Although the fruits of this labor won’t appear for several years, scientists are looking forward to being able to make use of the massive detectors, which are hundreds of times larger than current detectors that hold only a few hundred tons of liquid argon.

    Currently, DUNE scientists and engineers are working at CERN to construct Proto-DUNE, a miniature replica of the DUNE detector filled with only 300 tons of liquid argon that can be used to test the design and components.


    CERN Proto DUNE Maximillian Brice

    “Size is really important here,” James says. “A lot of what we’re doing now is figuring out how to take those original technologies which have already being developed… and taking it to this next level with bigger and bigger detectors.”

    To search for that answer, the Deep Underground Neutrino Experiment, or DUNE, will look at minuscule particles called neutrinos. A beam of neutrinos will travel 800 miles through the Earth from Fermi National Accelerator Laboratory to the Sanford Underground Research Facility, headed for massive underground detectors that can record traces of the elusive particles.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:04 pm on February 23, 2017 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, ,   

    From FNAL: “The global reach of DUNE” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    [This post is dedicated to LH, a writer whose work I dealy love, and CW, the voice of SURF]

    February 23, 2017

    Leah Hesla

    The neutrino, it would seem, has global appeal.

    The mysteries surrounding the renegade particle are attracting a worldwide science community to the future DUNE experiment. DUNE — the Deep Underground Neutrino Experiment — is a multinational effort to address the biggest questions in neutrino physics. More than 950 researchers from 30 countries have joined the DUNE collaboration, and both numbers are trending upward: Back in 2015, the collaboration comprised about 560 scientists and engineers from 23 countries.

    It’s currently the largest particle physics project being undertaken anywhere in the world since the Large Hadron Collider at the European laboratory CERN. Modeled after CERN’s ATLAS and CMS experiments, the DUNE collaboration is established as an international organization. The experiment will be hosted in the United States by Fermi National Accelerator Laboratory.

    The latest countries to join DUNE include Chile and Peru. The most recent new institutes to join DUNE come from Colombia, the UK and the US.

    “It’s the excitement that’s being generated by the science,” said DUNE spokesperson Mark Thomson, a professor of physics at the University of Cambridge in the UK. “Everybody recognizes the DUNE program as strong, and the technology is interesting as well.”

    Collaborators are developing new technologies for DUNE’s two particle detectors, giant instruments that will help capture the experiment’s notoriously elusive quarry, the neutrino.

    FNAL Dune/LBNF
    FNAL Dune/LBNF map

    With DUNE, which is expected to be up and running in the mid-2020s, scientists plan to get a better grip on the neutrino’s subtleties to settle the question of, for instance, why there’s more matter than antimatter in our universe — in other words, how the stars planets and life as we know it were able to form. Also on the DUNE agenda are studies that could bolster certain theories of the unification of all fundamental forces and, with the help of neutrinos born in supernovae, provide a look into the birth of a black hole.

    It’s a tall order that will take a global village to fill, and researchers worldwide are currently building the experiment or signing up to build it, taking advantage of DUNE’s broad scientific and geographic scope.

    “We’re a country that does a lot of theoretical physics but not a lot of experimental physics, because it’s not so cheap to have a particle physics experiment here,” said DUNE collaborator Ana Amelia Machado, a collaborating scientist at the University of Campinas and a professor at the Federal University of ABC in the ABC region of Brazil. “So we participate in big collaborations like DUNE, which is attractive because it brings together theorists and experimentalists.”

    Machado is currently working on a device named Arapuca, which she describes as a photon catcher that could detect particle phenomena that DUNE is interested in, such as supernova neutrino interactions. She’s also working to connect more Latin American universities with DUNE, adding the University Antonio Nariño to the list of DUNE institutions.

    On the opposite side of the world, scientists and engineers from India are working on upgrading the high intensity superconducting proton accelerator at Fermilab, which will provide the world’s most intense neutrino beam to the DUNE experiment. Building on the past collaborations with other Fermilab experiments, the Indian scientists are also proposing to build the near detector for the DUNE experiment. Not only are India’s contributions important for DUNE’s success, they’re also potential seeds for India’s own future particle physics programs.

    2
    More than 950 researchers from 30 countries have joined DUNE. Collaborators are developing new technologies for DUNE’s particle detectors, giant instruments that will help capture the notoriously elusive neutrino.

    “It’s exciting because it’s something that India’s doing for the first time. India has never built a full detector for any particle physics experiment in the world,” said Bipul Bhuyan, a DUNE collaborator at the Indian Institution of Technology Guwahati. “Building a particle detector for an international science experiment like DUNE will bring considerable visibility to Indian institutions and better industry-academia partnership in developing advanced detector technology. It will help us to build our own future experimental facility in India as well.”

    DUNE’s two particle detectors will be separated by 800 miles: a two-story detector on the Fermilab site in northern Illinois and a far larger detector to be situated nearly a mile underground in South Dakota at the Sanford Underground Research Facility.

    surf-building-in-lead-sd-usa
    SURF logo
    FNAL DUNE Argon tank at SURF
    DUNE Argon tank at SURF
    Sanford Underground levels
    Sanford Underground levels
    surf-dune-lbnf-caverns-at-sanford-lab
    Surf-Dune/LBNF Caverns at Sanford Lab

    Fermilab particle accelerators, part of the Long-Baseline Neutrino Facility for DUNE, will create an intense beam of neutrinos that will pass first through the near detector and then continue straight through Earth to the far detector.

    FNAL LBNF/DUNE Near Detector
    FNAL/DUNE Near Site Layout

    Scientists will compare measurements from the two detectors to examine how the neutrinos morphed from one of three types into another over their interstate journey. The far detector will contain 70,000 tons of cryogenic liquid argon to capture a tiny fraction of the neutrinos that pass through it. DUNE scientists are currently working on ways to improve liquid-argon detection techniques.

    The near detector, which is close to the neutrino beam source and so sees the beam where it is most intense, will be packed with all kinds of components so that scientists can get as many readings as they can on the tricky particles: their energy, their momentum, the likelihood that they’ll interact with the detector material.

    “This is an opportunity for new collaborators, where new international groups can get involved in a big way,” said Colorado State University professor Bob Wilson, chair of the DUNE Institutional Board. “There’s a broad scope of physics topics that will come out of the near detector.”

    As the collaboration expands, so too does the breadth of DUNE physics topics, and the more research opportunities there are, the more other institutions are likely to join the project.

    “There aren’t that many new, big experiments out there,” Thomson said. “We have 950 collaborators now, and we’re likely to hit 1,000 in the coming months.”

    That will be a notable milestone for the collaboration, one that follows another sign of its international strength: Late last month, for the first time, DUNE held its collaboration meeting away from its home base of Fermilab. CERN served as the meeting host.

    DUNE is supported by funding agencies from many countries, including the Department of Energy Office of Science in the United States.

    “We have people from different countries that haven’t been that involved in neutrino physics before and who bring different perspectives,” Wilson said. “It’s all driven by the interest in the science, and the breadth of interest has been tremendous.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 12:03 pm on February 20, 2017 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, Neutrino research   

    From CERN Courier: “ProtoDUNE revealed” 

    CERN Courier

    Feb 15, 2017
    Matthew Chalmers

    1
    Outer vessel

    This 11 m-high structure with thick steel walls will soon contain a prototype detector for the Deep Underground Neutrino Experiment (DUNE), a major international project based in the US for studying neutrinos and proton decay.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA
    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA
    FNAL DUNE Argon tank at SURF
    FNAL DUNE Argon tank at SURF

    It is being assembled in conjunction with CERN’s Neutrino Platform, which was established in 2014 to support neutrino experiments hosted in Japan and the US (CERN Courier July/August 2016 p21), and is pictured here in December as the roof of the structure was lowered into place. Another almost identical structure is under construction nearby and will house a second prototype detector for DUNE. Both are being built at CERN’s new “EHN1” test facility, which was completed last year at the north area of the laboratory’s Prévessin site.

    3
    CERN’s Neutrino Platform

    DUNE, which is due to start operations in the next decade, will address key outstanding questions about neutrinos. In addition to determining the ordering of the neutrino masses, it will search for leptonic CP violation by precisely measuring differences between the oscillations of muon-type neutrinos and antineutrinos into electron-type neutrinos and antineutrinos, respectively (CERN Courier December 2015 p19). To do so, DUNE will consist of two advanced detectors placed in an intense neutrino beam produced at Fermilab’s Long-Baseline Neutrino Facility (LBNF). One will record particle interactions near the source of the beam before the neutrinos have had time to oscillate, while a second, much larger detector will be installed deep underground at the Sanford Underground Research Laboratory in Lead, South Dakota, 1300 km away.

    SURF logo
    Sanford Underground Research Facility Interior
    Sanford Underground Research Facility Interior

    4
    Technology demonstrator

    In collaboration with CERN, the DUNE team is testing technology for DUNE’s far detector based on large liquid-argon (LAr) time-projection chambers (TPCs). Two different technologies are being considered – single-phase and double-phase LAr TPCs – and the eventual DUNE detectors will comprise four modules, each with a total LAr mass of 17 kt. The single-phase technique is well established, having been deployed in the ICARUS experiment at Gran Sasso…

    INFN Gran Sasso ICARUS
    INFN Gran Sasso ICARUS

    …while the double-phase concept offers potential advantages. Both may be used in the final DUNE far detector. Scaling LAr technology to such industrial levels presents several challenges – in particular the very large cryostats required, which has led the DUNE collaboration to use technological solutions inspired by the liquified-natural-gas (LNG) shipping industry.

    The outer structure of the cryostat (red, pictured at top) for the single-phase protoDUNE module is now complete, and an equivalent structure for the double-phase module is taking shape just a few metres away and is expected to be complete by March. In addition, a smaller technology demonstrator for the double-phase protoDUNE detector is complete and is currently being cooled down at a separate facility on the CERN site (image above). The 3 × 1 × 1 m3 module will allow the CERN and DUNE teams to perfect the double-phase concept, in which a region of gaseous argon situated above the usual liquid phase provides additional signal amplification.

    The large protoDUNE modules are planned to be ready for test beam by autumn 2018 at the EHN1 facility using dedicated beams from the Super Proton Synchrotron. Given the intensity of the future LBNF beam, for which Fermilab’s Main Injector recently passed an important milestone by generating a 700 kW, 120 GeV proton beam for a period of more than one hour, the rate and volume of data produced by the DUNE detectors will be substantial. Meanwhile, the DUNE collaboration continues to attract new members and discussions are now under way to share responsibilities for the numerous components of the project’s vast far detectors (see “DUNE collaboration meeting comes to CERN” in this month’s Faces & Places).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

     
  • richardmitnick 11:50 am on January 19, 2017 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, ,   

    From SURF: “Ventilation critical to DUNE success” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    January 17, 2017
    Constance Walter

    1
    Above: The Oro Hondo shaft exhaust fan is essential to controling airflow underground. Below [?]: A laser scanner was lowered into the shaft to map its integrety. Credit: Matthew Kapust

    Air flows down the Yates and Ross shafts and is pulled through specific areas underground by two air shafts: Number 5 Shaft and the Oro Hondo. With the Deep Underground Neutrino Experiment (DUNE) just on the horizon, the reliability of the Oro Hondo ventilation system, in particular, is critical.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA
    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    A direct drive, variable-frequency fan powered by a 3000 horsepower synchronous motor (it currently draws less than 400 hp), the Oro Hondo was built in 1986. Since then, it has undergone repairs and had parts replaced as needed and, in 2010, underwent a significant rebuild as Sanford Lab prepared to install the first physics experiments on the 4850 Level.

    Deterioration of the shaft can inhibit airflow, so it was critical to understand the integrity of the wall rock, said Bryce Pietzyk, underground access director. However, because there is no conveyance in the shaft, Pietzyk turned to experts to find a way to get “eyes on” the rock from the surface to the current muck pile elevation. A special scanning method, developed by Professional Mapping Services, Firmatek and Mine Vision Systems, was lowered into the shaft to collect data on ground conditions.

    “We learned a lot from the baseline scan, and things look good right now,” Pietzyk said. “But we’ll need to do more scans over time to really understand locations of zones where rock wall conditions have deteriorated.” Additional scans will help create a more complete picture of the conditions of the shaft.

    Ventilation surveys helped Sanford Lab engineers determine that while the fan was operating well, the drive system is obsolete and unreliable, and the motor and bearings require preventive maintenance before Long-Baseline Neutrino Facilty (LBNF) starts major construction. Tests also revealed minor corrosion in the ducting, which will be sandblasted and coated to slow further corrosion.

    “But, overall, the entire system is much more efficient than we anticipated,” said Allan Stratman, engineering director.

    Finally, to improve air flow, a borehole needs to be raised from the 4850 to the 3650 Level and improvements made to 31 exhaust, an existing ventilation path. It’s all part of the plans for the LBNF, which will power DUNE.

    Scientists working on DUNE hope to answer questions about the role neutrinos play in the universe, learn more about the formation of neutron stars and black holes and, quite possibly, figure out just how much mass these elusive particles have.

    A neutrino beam will be sent from Fermilab [FNAL] near Chicago, Ill., 800 miles through the earth to Sanford Lab in Lead, S.D. Although no tunnel is required for the neutrino beam, huge caverns must be excavated to house four massive liquid argon detectors on the 4850 Level of Sanford Lab.

    FNAL DUNE Argon tank at SURF
    FNAL DUNE Argon tank at SURF

    Nearly 800,000 tons of rock will be excavated. Proper ventilation is critical when doing construction underground. And that’s why the Oro Hondo is so important to the success of DUNE.

    “This is the only shaft that can provide enough ventilation for the amount of excavation LBNF requires and to remove heat from the DUNE caverns during operations,” said Joshua Willhite, deputy project manager for the LBNF Far Site (Sanford Lab) Conventional Facilities. “The fan has to be highly reliable to reduce risk.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 3:22 pm on January 6, 2017 Permalink | Reply
    Tags: , , FNAL LBNF/ DUNE,   

    From Symmetry: “CERN ramps up neutrino program” 

    Symmetry Mag
    Symmetry

    01/06/17
    Sarah Charley

    1
    Maximilien Brice, CERN

    The research center aims to test two large prototype detectors for the DUNE experiment.

    FNAL LBNF/DUNE from FNAL to SURF
    FNAL LBNF/DUNE from FNAL to SURF

    [I know that I am not a scientist and basically know nothing. But it bothers me that CERN is doing ANY work for DUNE. The U.S. Congress killed the Superconducting Super Collider in 1993 and virtually ceded HEP to Europe. I got into this blog when I found out that 30% of the people at CERN were from the U.S. and our press did not cover anything like this. I know that neutrino research virtually saved FNAL from the scrap heap. I just wish that anything being done for DUNE was being done here in the U.S. in one of our great D.O.E. labs or our great universities like MIT, Hopkins, Caltech, Illinois.]

    In the midst of the verdant French countryside is a workshop the size of an aircraft hangar bustling with activity. In a well lit new extension, technicians cut through thick slices of steel with electric saws and blast metal joints with welding torches.

    Inside this building sits its newest occupant: a two-story-tall cube with thick steel walls that resemble castle turrets. This cube will eventually hold a prototype detector for the Deep Underground Neutrino Experiment, or DUNE, the flagship research program hosted at the Department of Energy’s Fermi National Accelerator Laboratory [FNAL] to better understand the weird properties of neutrinos.

    Neutrinos are the second-most abundant fundamental particle in the visible universe, but because they rarely interact with atoms, little is known about them. The little that is known presents a daunting challenge for physicists since neutrinos are exceptionally elusive and incredibly lightweight.

    They’re so light that scientists are still working to pin down the masses of their three different types. They also continually morph from one of their three types into another—a behavior known as oscillation, one that keeps scientists on their toes.

    “We don’t know what these masses are or have a clear understanding of the flavor oscillation,” says Stefania Bordoni, a CERN researcher working on neutrino detector development. “Learning more about neutrinos could help us better understand how the early universe evolved and why the world is made of matter and not antimatter.”

    In 2015 CERN and the United States signed a new cooperation agreement that affirmed the United States’ continued participation in the Large Hadron Collider research program and CERN’s commitment to serve as the European base for the US-hosted neutrino program. Since this agreement, CERN has been chugging full-speed ahead to build and refurbish neutrino detectors.

    “Our past and continued partnerships have always shown the United States and CERN are stronger together,” says Marzio Nessi, the head of CERN’s neutrino platform. “Our big science project works only because of international collaboration.”

    The primary goal of CERN’s neutrino platform is to provide the infrastructure to test two large prototypes for DUNE’s far detectors. The final detectors will be constructed at Sanford Lab in South Dakota. Eventually they will sit 1.5 kilometers underground, recording data from neutrinos generated 1300 kilometers away at Fermilab.

    Two 8-meter-tall cubes, currently under construction at CERN, will each contain 770 metric tons of liquid argon permeated with a strong electric field. The international DUNE collaboration will construct two smaller, but still large, versions of the DUNE detector to be tested inside these cubes.

    In the first version of the DUNE detector design, particles traveling through the liquid knock out a trail of electrons from argon atoms. This chain of electrons is sucked toward the 16,000 sensors lining the inside of the container. From this data, physicists can derive the trajectory and energy of the original particle.

    In the second version, the DUNE collaboration is working on a new type of technology that introduces a thin layer of argon gas hovering above the liquid argon. The idea is that the additional gas will amplify the signal of these passing particles and give scientists a higher sensitivity to low-energy neutrinos. Scientists based at CERN are currently developing a 3-cubic-meter model, which they plan to scale up into the much larger prototype in 2017.

    In addition to these DUNE prototypes, CERN is also refurbishing a neutrino detector, called ICARUS, which was used in a previous experiment at the Italian Institute for Nuclear Physics’ Gran Sasso National Laboratory in Italy.

    INFN Gran Sasso ICARUS
    INFN Gran Sasso ICARUS

    FNAL/ICARUS
    FNAL/ICARUS

    ICARUS will be shipped to Fermilab in March 2017 and incorporated into a separate experiment.

    CERN plans to serve as a resource for neutrino programs hosted elsewhere in the world as scientists delve deeper into this enigmatic niche of particle physics.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 8:19 am on November 8, 2016 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, ,   

    From FNAL: “Fermilab “deepens” its relationship with Sanford Underground Research Facility” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    November 7, 2016

    1
    Along with Fermilab in Batavia, Illinois, Sanford Underground Research Facility in South Dakota is the site of the future Deep Underground Neutrino Experiment and its Long-Baseline Neutrino Facility. Pictured here is Ross Shaft. Photo: Sanford Underground Research Facility.

    The U.S. Department of Energy pursues discovery science that inspires and transforms our nation — research that can sometimes be pursued only in unique environments. The Sanford Underground Research Facility, owned and operated by the South Dakota Science and Technology Authority, or SDSTA, provides one such unique facility, with laboratories located 4,850 feet underground.

    SURF logo
    Sanford Underground levels
    SURF underground levels

    Because of the “deep” involvement of both Fermilab and Sanford Lab with the international Deep Underground Neutrino Experiment (DUNE), Fermilab has assumed a new role in the general services that support DOE science at the South Dakota facility.

    FNAL LBNF/DUNE from FNAL to SURF
    FNAL LBNF/DUNE from FNAL to SURF

    Starting Oct. 1, Fermilab became the point of contact for the Department of Energy Office of Science at Sanford Lab. In this role, Fermilab is the liaison between DOE and SDSTA. This represents the first time Fermilab has acted in this role for a facility outside Illinois.

    “We are excited about this transition as it brings our two organizations into closer partnership and strengthens the platform for some amazing DOE science,” said Tim Meyer, Fermilab chief operating officer.

    The change demonstrates recognition by the Department of Energy of the major role Fermilab will play in future Sanford Lab operations. Previously, Lawrence Berkeley National Laboratory acted as the point of contact for DOE at Sanford Lab. Berkeley Lab continues its leading role in dark matter experiments at the South Dakota lab.

    Fermilab and Sanford Lab are the sites of the future DUNE international particle physics experiment and the supporting Long-Baseline Neutrino Facility (LBNF).

    Fermilab, located in Batavia, Illinois, will send a beam of particles called neutrinos 1,300 kilometers (800 miles) through Earth to Sanford Lab. There, enormous particle detectors, located nearly a mile underground, will receive the neutrinos and send the data to scientists.

    Sanford Lab hosts multiple science experiments, of which DUNE is only one. The international Large Underground Xenon dark matter detector, known as LUX, has called Sanford Lab home.

    Lux Zeplin project at SURF
    Lux Zeplin project at SURF

    The Majorana Demonstrator neutrino experiment, run by a multinational team, is also conducted at Sanford Lab.

    Majorana Demonstrator Experiment
    Majorana Demonstrator Experiment

    The Department of Energy, the National Science Foundation and NASA all participate in the science experiments at the South Dakota lab.

    As the largest new project being undertaken in particle physics anywhere in the world since the Large Hadron Collider, LBNF/DUNE will be the most ambitious undertaking at Sanford Lab.

    “The SDSTA is proud to partner with Fermilab for the continued operations of the Sanford Lab,” said Mike Headley, executive director of SDSTA. “We’ve had a wonderful, productive relationship with Berkeley Lab, which was instrumental in creating the Sanford Lab — the deepest underground science facility in the United States.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 12:17 pm on September 17, 2016 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, , Northern Illinois University,   

    From NIU via FNAL: “NIU joins DUNE project” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    2
    NorthernStar

    3
    Northern Illinois University

    Sep 15, 2016
    Samantha Malone

    4

    DeKALB | Dan Boyden, third year physics graduate, is hoping to be sent to Switzerland to work hands-on for DUNE, an international particle experiment including more than 140 labs and universities across 27 countries.

    DUNE, which stands for Deep Underground Neutrino Experiment, aims to reveal things about the universe, like why the world has more matter than antimatter. NIU was asked to join the project which is being led by Associate Physics Professor Vishnu Zutshi and Physics Professor Michael Eads.

    FNAL LBNF/DUNE from FNAL to SURF
    FNAL LBNF/DUNE from FNAL to SURF

    Boyden got involved in the experiment when a friend told him that his professor was looking for help on the project. Boyden said he saw the project as a great opportunity to network and get hands-on experience. Networking is vital in his field, and working on DUNE provides the opportunity to connect with many people, Boyden said.

    Zutshi and Eads approached DUNE and were later asked to join the experiment as a result of Zutshi’s knowledge on the topics the experiment explores, like photon detectors.

    “The point to make is this is a new effort here at NIU,” Eads said. “We’re hoping to ramp this up and get more people involved in the near future.”

    The DUNE project hopes to measure the properties of neutrinos, a nearly neutral fundamental particle of the universe, as they travel. There are three types of neutrinos, and as they travel, they can change from one type to another. This process is called oscillation, Physics Professor David Hedin said.

    NIU’s task for DUNE is to build and test the photon detector systems that will measure the neutrino oscillations as they travel. Boyden was assigned the task of testing these systems, which he said were essentially light detectors.

    “I’m performing the tests that are needed for NIU to perform their part,” Boyden said. “Right now, we’ve been mostly just measuring background noise and things like that associated with electronics.”

    While Boyden is the only student involved in the project, Eads said he hopes to provide opportunities for more graduate and undergraduate physics students in the future.

    The photon detectors Boyden is working with will tell scientists on the DUNE team when a neutrino changes, which could allow them to determine the probability of such action, Eads said. Determining that probability could tell scientists why the universe has more matter than antimatter, which allows people to exist, Hedin said.

    “We still have a big question mark about what caused the matter-antimatter difference,” Hedin said. “The guess right now is that the matter-antimatter difference in our universe is in the type of particles like electrons and neutrinos.”

    Hedin, Eads and Zutshi work at Fermilab as visiting scientists. Fermilab and NIU have a partnership that Hedin said gives students and faculty great opportunities. Eads said the close proximity NIU has to Fermilab enhances that.

    Fermilab will house the proton accelerator and produce the neutrinos that will be measured in the DUNE experiment.

    “So what the DUNE project is all about is studying neutrinos,” Eads said. “Neutrinos are one of the particles that make everything up, and we’re just trying to better understand how neutrinos work and what their properties are.”

    DUNE plans to do this by using the world’s largest neutrino beam to shoot the neutrinos from Fermilab, Outer Ring Road, located in Batavia, to Sanford Underground Research Lab in Lead, South Dakota. As the neutrinos travel underground, DUNE will be monitoring their properties and looking for a change in the type of neutrino.

    SURF logo
    surf-dune-lbnf-caverns-at-sanford-lab
    DUNE at SURF

    Because of the massive scale of the project, the first beam is not expected to be launched until 2026, but NIU has already begun work on its contributions.

    “It’s one of those fun research things where it’s not immediately clear how useful it’s [going to] be,” Eads said. “But if you understand the universe better, then it has to be good for something.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 5:13 pm on August 23, 2016 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, , Hyper-Kamiokande, , , ,   

    From Physics Today: “Six reasons to get excited about neutrinos” 

    Physics Today bloc

    Physics Today

    23 August 2016
    Andrew Grant

    Extra Dimensions: New results and upcoming experiments offer hope that neutrinos hold the key to expanding the standard model.

    The headlines from the recent International Conference on High Energy Physics (ICHEP) in Chicago trended sad, focused on the dearth of discoveries from the Large Hadron Collider. (See, for example, “Prospective particle disappears in new LHC data.”) Yet there was some optimism to be found in the Windy City, particularly among neutrino physicists. Here are six reasons to believe that neutrinos might provide the window into new physics that the LHC has not:

    Neutrinos are proof that the standard model is wrong. Sure, we know that dark matter and dark energy are missing from the standard model. But neutrinos are standard-model members, and the theoretical predictions are wrong. Prevailing theory says that neutrinos are massless; the Nobel-winning experiments at the Sudbury Neutrino Observatory and Super-Kamiokande demonstrated definitively that neutrinos oscillate between three flavors (electron, muon, and tau) and thus have mass. André de Gouvêa, a theoretical physicist at Northwestern University, deems neutrinos the “only palpable evidence of physics beyond the standard model.” Everything we learn about neutrinos in the coming years is new physics.

    1
    This signal from May 2014 denotes the detection of an electron neutrino by Fermilab’s NOvA experiment. Credit: NOvA Neutrino Experiment.

    FNAL/NOvA experiment
    FNAL/NOvA experiment map

    Neutrinos’ ability to morph from one flavor to another is only now starting to be understood. Each of neutrinos’ three flavors is actually a quantum superposition of three different mass states. By understanding the interplay of the three mass states, characterized by parameters called mixing angles, physicists can pin down how neutrinos transform between flavors. Fresh data from the NOvA experiment at Fermilab near Chicago suggest that neutrino mixing may not be as simple as most theories predict.

    Neutrinos may exhibit charge conjugation–parity (CP) violation. All known examples of CP violation, in which particle decays proceed differently with matter than with antimatter, take place in processes involving quark-containing particles like kaons and B mesons. But at the Neutrino 2016 meeting in London and at ICHEP, the T2K experiment offered fresh data hinting at matter–antimatter asymmetry for neutrinos.

    T2K Experiment
    Super-Kamiokande
    T2K map
    T2K Experiment

    After firing beams of muon neutrinos and antineutrinos at the Super-Kamiokande detector in Japan, scientists expected to detect 23 electron neutrinos and 7 electron antineutrinos; instead they have spotted 32 and 4, respectively. T2K isn’t anywhere close to achieving a 5 σ result, but the evidence for CP violation seems to be growing as the experiment acquires more data.

    Neutrinos may be the first fundamental particles that are Majorana fermions. Because the neutrino is the only fermion that is electrically neutral, it is also the only one that could be a Majorana fermion, a particle that is identical to its antiparticle. Learning whether neutrinos are Majorana particles or typical Dirac fermions would provide invaluable insight as to how neutrinos acquired mass at the dawn of the universe, de Gouvêa says. To determine the nature of neutrinos, physicists are hunting for a process called neutrinoless double beta decay. In typical double beta decay, two neutrons transform into protons and emit a pair of antineutrinos. If those antineutrinos are Majorana particles, they could annihilate each other. A 16 August paper from the KamLAND-Zen experiment in Japan reports the most stringent limits for the rate of neutrinoless double beta decay, further constraining the possibility that neutrinos are Majorana particles.

    Another neutrino flavor may be waiting to be discovered. The discovery of a fourth neutrino flavor, the sterile neutrino, would make every particle physicist forget about the LHC’s particle drought. Such a neutrino could enable physicists to explain dark matter or the absence of antimatter in the universe. The Antarctic detector IceCube just reported a negative result in the hunt for a sterile neutrino, but results from prior experiments still leave some wiggle room for the particle’s existence.

    Multiple powerful neutrino experiments are on the horizon. The NOvA experiment is up and running and delivering data that, at least so far, seem to complement T2K’s hints of CP violation. Fermilab scientists are already excited about the Deep Underground Neutrino Experiment, which should come on line around 2025.

    FNAL LBNF/DUNE from FNAL to SURF
    FNAL LBNF/DUNE from FNAL to SURF

    Hyper-Kamiokande, a megadetector in Japan with a million-ton tank of water for neutrino detection, should start operations around the same time.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Our mission

    The mission of Physics Today is to be a unifying influence for the diverse areas of physics and the physics-related sciences.

    It does that in three ways:

    • by providing authoritative, engaging coverage of physical science research and its applications without regard to disciplinary boundaries;
    • by providing authoritative, engaging coverage of the often complex interactions of the physical sciences with each other and with other spheres of human endeavor; and
    • by providing a forum for the exchange of ideas within the scientific community.”

     
  • richardmitnick 6:28 am on August 23, 2016 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE, , ,   

    From SURF: “Study improves blasting designs” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    August 22, 2016
    Constance Walter

    1
    This image illustrates the sequence in which a blast round happens. Prior to a blast, the pattern is marked on the face of the rock. The round begins at the center and the hole increases in size with a series of boxes and diamonds. The holes marked in red after the final diamond, called field holes, round out the arch shape of the drift. Production holes along the sides and top of the drift complete the arch. Lastly, the lifters on the ground level out the floor of the drift. Credit: Matt Kapust

    The Long-Baseline Neutrino Facility and associated Deep Underground Neutrino Experiment (LBNF/DUNE) will include constructing facilities above and below ground at Sanford Lab in Lead, S.D., and Fermilab in Batavia, Ill.

    FNAL LBNF/DUNE from FNAL to SURF
    “FNAL LBNF/DUNE from FNAL to SURF

    But it is on the 4850 Level of Sanford Lab that construction could have the greatest impact on current experiments.

    Work at Sanford Lab includes excavating three large caverns on the 4850 Level: two that will house neutrino detectors filled with 70,000 tons of liquid argon, and one that will house utilities. Approximately 800,000 tons of rock will be removed. To understand the impacts such an excavation will have on existing experiments, the LBNF project conducted a blast vibration study.

    “We were primarily interested in how the blast energy moves through both the rock and the air in existing spaces to assess the potential impact on other experiments,” said Tracy Lundin LBNF Conventional Facilities project manager.

    “The different collaborations, including those with the Majorana Demonstrator, the Black Hills State University Underground Campus, and CASPAR (Compact Accelerator System for Performing Astrophysical Research) had concerns about the excavation and its potential impact on their experiments,” said Mike Headley, executive director of the South Dakota Science and Technology Authority. “The LBNF team has regularly consulted with the other collaborations on the blast vibration study plans and results, as well as approaches that can be taken to reduce the impacts the LBNF excavation might have on other experiments.”

    Preparation for the test blast required drilling a pattern of holes into the rock and filling most of them with explosives that get triggered in a specific timed sequence by detonators. A set of holes in the center of the pattern, called the burn cut, is left empty. The pattern is designed such that energy from the blasts in the outer holes propagates radially inward toward the burn cut.

    The initial study, done in December, successfully demonstrated how the energy moves through the rock mass. However, Lundin said, “it did not provide a complete understanding of air blast overpressures and our ability to manage impacts on existing facilities and experiments.”

    Two successive blasts done in March included a redesigned blast pattern, non-electronic detonators, and reinforced air control doors throughout the 4850 Level. Both were successful, informing the next LBNF blast designs. “Doing the study in two phases allowed us to make improvements to the blast design and to mitigate impacts on current experiments,” Lundin said.

    “The new blasting plans will allow LBNF to move forward as planned without harming other experiments,” Headley said.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: