Tagged: FNAL LBNF/ DUNE at SURF Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:00 pm on November 14, 2019 Permalink | Reply
    Tags: "How do you make the world’s most powerful neutrino beam?", , , FNAL LBNF/ DUNE at SURF,   

    From Symmetry: “How do you make the world’s most powerful neutrino beam?” 

    Symmetry Mag
    From Symmetry<

    11/13/19
    Lauren Biron

    DUNE will need lots of neutrinos—and to make them, scientists and engineers will use extreme versions of some common sounding ingredients: magnets and pencil lead.

    1
    Photo by Reidar Hahn, Fermilab

    What do you need to make the most intense beam of neutrinos in the world? Just a few magnets and some pencil lead. But not your usual household stuff. After all, this is the world’s most intense high-energy neutrino beam, so we’re talking about jumbo-sized parts: magnets the size of park benches and ultrapure rods of graphite as tall as Danny DeVito.

    Physics experiments that push the extent of human knowledge tend to work at the extremes: the biggest and smallest scales, the highest intensities. All three are true for the international Deep Underground Neutrino Experiment, hosted by the Department of Energy’s Fermilab.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    The design of the experiment is elegant—produce neutrinos and measure them at Fermilab, send them straight through 1,300 kilometers of earth, then measure them again in giant liquid-argon detectors at Sanford Lab.
    Courtesy of Fermilab

    The experiment brings together more than 1000 people from 30-plus countries to tackle questions that have kept many a person awake at night: Why is the universe full of matter and not antimatter, or no matter at all? Do protons, one of the building blocks of atoms (and of us), ever decay? How do black holes form? And did I leave the stove on?

    Maybe not the last one.

    To tackle the biggest questions, DUNE will look at mysterious subatomic particles called neutrinos: neutral, wispy wraiths that rarely interact with matter. Because neutrinos are so antisocial, scientists will build enormous particle detectors to catch and study them. More matter inside the DUNE detectors means more things for neutrinos to interact with, and these behemoth neutrino traps will contain a total of 70,000 tons of liquid argon. At their home 1.5 kilometers below the rock in the Sanford Underground Research Facility in South Dakota, they’ll be shielded from interfering cosmic rays—though neutrinos will have no trouble passing through that buffer and hitting their mark.

    SURF-Sanford Underground Research Facility, Lead, South Dakota, USA

    The detectors can pick up neutrinos from exploding stars that might evolve into black holes and capture interactions from a deliberately aimed beam of neutrinos.

    Neutrinos (and their antimatter counterparts, antineutrinos) are born as other particles decay, carrying away small amounts of energy to balance the cosmic ledger. You’ll find them coming in droves from stars like our sun, inside Earth, even the potassium in bananas. But if you want to make trillions of high-energy neutrinos every second and send them to a particle detector deep underground, you’d be hard-pressed to do it by throwing fruit toward South Dakota.

    That’s where Fermilab’s particle accelerator complex comes in.

    Fermilab sends particles through a series of accelerators, each adding a burst of speed and energy. Work has started for an upgrade to the complex that will include a new linear accelerator at the start of the journey: PIP-II. This is the first accelerator project in the United States with major international contributions, and it will propel particles to 84% of the speed of light as they travel about the length of two football fields. Particles then enter the booster for another… well, boost, and finally head to the Main Injector, Fermilab’s most powerful accelerator.

    FNAL booster

    FNAL Main Injector Accelerator

    The twist? Fermilab’s particle accelerators propel protons—useful particles, but not the ones that neutrino scientists want to study.

    So how do researchers plan to turn Fermilab’s first megawatt beam of protons into the trillions of high-energy neutrinos they need for DUNE every second? This calls for some extra infrastructure: The Long-Baseline Neutrino Facility, or LBNF. A long baseline means that LBNF will send its neutrinos a long distance—1300 kilometers, from Fermilab to Sanford Lab—and the neutrino facility means … let’s make some neutrinos.

    Step 1: Grab some protons

    The first step is to siphon off particles from the Main Injector—otherwise, the circular accelerator will act more like a merry-go-round. Engineers will need to build and connect a new beamline. That’s no easy feat, considering all the utilities, other beamlines, and Main Injector magnets around.

    “It’s in one of the most congested areas of the Fermilab accelerator complex,” says Elaine McCluskey, the LBNF project manager at Fermilab. Site prep work starting at Fermilab in 2019 will move some of the utilities out of the way. Later, when it’s time for the LBNF beamline construction, the accelerator complex will temporarily power down.

    Crews will move some of the Main Injector magnets safely out of the way and punch into the accelerator’s enclosure. They’ll construct a new extraction area and beam enclosure, then reinstall the Main Injector magnets with a new Fermilab-built addition: kicker magnets to change the beam’s course. They’ll also build the new LBNF beamline itself, using 24 dipole and 17 quadrupole magnets, most of them built by the Bhabha Atomic Research Centre in India.

    Step 2: Aim

    Neutrinos are tricky particles. Because they are neutral, they can’t be steered by magnetic forces in the same way that charged particles (such as protons) are. Once a neutrino is born, it keeps heading in whatever direction it was going, like a kid riding the world’s longest Slip ‘N Slide. This property makes neutrinos great cosmic messengers but means an extra step for Earth-bound engineers: aiming.

    As they build the LBNF beamline, crews will drape it along the curve of an 18-meter-tall hill. When the protons descend the hill, they’ll be pointed toward the DUNE detectors in South Dakota. Once the neutrinos are born, they’ll continue in that same direction, no tunnel required.

    With all the magnets in place and everything sealed up tight, accelerator operators will be able to direct protons down the new beamline, like switching a train on a track. But instead of pulling into a station, the particles will run full speed into a target.

    Step 3: Smash things

    The target is a crucial piece of engineering. While still being designed, it’s likely to be a 1.5-meter-long rod of pure graphite—think of your pencil lead on steroids.

    Together with some other equipment, it will sit inside the target hall, a sealed room filled with gaseous nitrogen. DUNE will start up with a proton beam that will run at more than 1 megawatt of power, and there are already plans to upgrade the beam to 2.4 megawatts. Almost everything being built for LBNF is designed to withstand that higher beam intensity.

    Because of the record-breaking beam power, manipulating anything inside the sealed hall will likely require the help of some robot friends controlled from outside the thick walls. Engineers at KEK, the high-energy accelerator research organization in Japan, are working on prototypes for elements of the sealed LBNF target hall design.

    KEK-Accelerator Laboratory, Tsukuba, Japan

    The high-power beam of protons will enter the target hall and smash into the graphite like bowling balls hitting pins, depositing their energy and unleashing a spray of new particles—mostly pions and kaons.

    “These targets have a very hard life,” says Chris Densham, group leader for high-power targets at STFC’s Rutherford Appleton Laboratory in the UK, which is responsible for the design and production of the target for the one-megawatt beam.

    STFC Rutherford Appleton Laboratory at Harwell in Oxfordshire

    “Each proton pulse causes the temperature to jump up by a few hundred degrees in a few microseconds.”

    The LBNF target will operate around 500 degrees Celsius in a sort of Goldilocks scenario. Graphite performs well when it’s hot, but not too hot, so engineers will need to remove excess heat. But they can’t let it get too cool, either. Water, which is used in some current target designs, would provide too much cooling, so specialists at RAL are also developing a new method. The current proposed design circulates gaseous helium, which will be moving about 720 kilometers per hour—the speed of a cruising airliner—by the time it exits the system.

    Step 4: Focus the debris

    As protons strike the target and produce pions and kaons, devices called focusing horns take over. The pions and kaons are electrically charged, and these giant magnets direct the spray back into a focused beam. A series of three horns that will be designed and built at Fermilab will correct the particle paths and aim them at the detectors at Sanford Lab.

    For the design to work, the target—a cylindrical tube—must sit inside the first horn, cantilevered into place from the upstream side. This causes some interesting engineering challenges. It boils down to a balance between what physicists want—a lengthier target that can stay in service for longer—with what engineers can build. The target is only a couple of centimeters in diameter, and every extra centimeter of length makes it more likely to droop under the barrage of protons and the pull of Earth’s gravity.

    Much like a game of Operation, physicists don’t want the target to touch the sides of the horn.

    To create the focusing field, the metallic horns receive a 300,000-amp electromagnetic pulse about once per second—delivering more charge than a powerful lightning bolt. If you were standing next to it, you’d want to stick your fingers in your ears to block out the noise—and you certainly wouldn’t want anything touching the horns, including graphite. Engineers could support the target from both ends, but that would make the inevitable removal and replacement much more complicated.

    “The simpler you can make it, the better,” Densham says. “There’s always a temptation to make something clever and complicated, but we want to make it as dumb as possible, so there’s less to go wrong.”

    Step 5: Physics happens

    Focused into a beam, the pions and kaons exit the target hall and travel through a 200-meter-long tunnel full of helium. As they do, they decay, giving birth to neutrinos and some particle friends. Researchers can also switch the horns to focus particles with the opposite charge, which will then decay into antineutrinos. Shielding at the end of the tunnel absorbs the extra particles, while the neutrinos or antineutrinos sail on, unperturbed, straight through dirt and rock, toward their South Dakota destiny.

    “LBNF is a complex project, with a lot of pieces that have to work together,” says Jonathan Lewis, the LBNF Beamline project manager. “It’s the future of the lab, the future of the field in the United States, and an exciting and challenging project. The prospect of uncovering the properties of neutrinos is exciting science.”

    Time to science

    DUNE scientists will examine the neutrino beam at Fermilab just after its production using a sophisticated particle detector on site, placed right in the path of the beam. Most neutrinos will pass straight through the detector, like they do with all matter. But a small fraction will collide with atoms inside the DUNE near-site detector, providing valuable information on the composition of the neutrino beam as well as high-energy neutrino interactions with matter.

    Then it’s time to wave farewell to the other neutrinos. Be quick—their 1300-kilometer journey at close to the speed of light will take four milliseconds, not even close to how long it takes to blink your eye. But for DUNE scientists, the work will be only beginning.

    FNAL Long-Baseline Neutrino Facility – South Dakota Site


    DUNE’s far detector will use four modules to capture interactions between argon atoms and the neutrinos sent from the LBNF beamline at Fermilab.

    Scientists will measure the neutrinos again with their gigantic particle detectors in South Dakota. Researchers will collect mountains of data, examine how neutrinos change, and try to figure out some of the many neutrino puzzles, including: which of the three types of neutrinos is actually the lightest? Do neutrinos behave the same as their antimatter counterparts? And the biggest question of all, are neutrinos the key to why matter won the battle with antimatter at the dawn of the universe?

    They’re lofty topics, and scientists have been preparing for this monumental work. Fermilab has a rich history of neutrino research, including short-distance experiments like MicroBooNE and MINERvA and long-distance projects like NOvA and MINOS.

    FNAL/MicrobooNE

    Scientists at Fermilab use the MINERvA to make measurements of neutrino interactions that can support the work of other neutrino experiments. Photo Reidar Hahn

    NOvA Far Detector Block

    FNAL/NOvA experiment map

    FNAL/MINOS

    DUNE will benefit from the experience gained building and running those experiments, much like LBNF will benefit from the experience of building the NuMI (Neutrinos from the Main Injector) beamline, built to make neutrinos for the MINOS detectors at Fermilab and in Minnesota.

    Fermilab NuMI Tunnel

    “The NuMI beamline was something we had never made at Fermilab, and it enabled us to learn a lot of things about how to make neutrinos, operate a beamline efficiently, and replace components,” McCluskey says. “We have a lot of people who worked on that beamline who are designing the new one, and incorporating those lessons to make an effective, efficient, and unprecedented beam power for DUNE.”

    And that’s how you make the world’s most powerful neutrino beam.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 12:18 pm on October 8, 2019 Permalink | Reply
    Tags: "Underground personnel capacity doubles at Sanford Lab", FNAL LBNF/ DUNE at SURF, LBNF has undertaken multiple projects to ensure worker safety. Working closely with Sanford Lab staff LBNF recently completed an upgrade to emergency systems,   

    From Sanford Underground Research Facility: “Underground personnel capacity doubles at Sanford Lab” 

    SURF logo
    Sanford Underground levels

    From Sanford Underground Research Facility

    October 7, 2019
    Erin Broberg

    LBNF project upgrades refuge chamber, increases evacuation capabilities.

    1
    Entrance to the Refuge Chamber on the 4850 Level of Sanford Underground Research Facility. The Compressed Air Management System (CAMS) can be seen to the left of the door. With this recent upgrade, the Refuge Chamber can now shelter 144 people in case of an underground emergency.
    Photo by Nick Hubbard

    Preparing Sanford Underground Research Facility (Sanford Lab) for its role as the Far Site for the largest physics experiment on United States soil demands a sizeable workforce: the Fermi National Accelerator Laboratory (Fermilab) Long-Baseline Neutrino Facility (LBNF) team; contractors; and Sanford Lab infrastructure technicians, safety teams and support scientists, just to name a few. All these teams converge in Lead, South Dakota, to ready the facility for the Deep Underground Neutrino Experiment (DUNE), hosted by Fermilab.

    With an increasing underground workforce, LBNF has undertaken multiple projects to ensure worker safety. Working closely with Sanford Lab staff, LBNF recently completed an upgrade to emergency systems, including areas of refuge and evacuation capabilities.

    “This recent project doubles the number of people that can safely work underground at once, increasing the headcount from 72 to 144 people,” said Mike Headley, executive director of Sanford Lab. “This is a healthy increase that will allow us to support construction for LBNF.”

    The main component of this project was the upgrade of the 4850 Level Refuge Chamber, designed to shelter people in case of an underground emergency in which immediate evacuation is not possible. Previously, the Refuge Chamber could provide shelter to 72 people for 96 hours. Now, using a newly installed compressed air management system (CAMS), an indefinite supply of breathing air will be available. The team also replaced former CO2 scrubbers with smaller, more efficient scrubbers as a secondary air source.

    2
    The Refuge Chamber is outfitted with MineARC Systems CO2 scrubbers as a secondary air supply system. Photo by Nick Hubbard.

    “With LBNF construction continuing to ramp up, we need greater capacity for workers underground—for the LBNF project as well as all the Sanford Lab maintenance crews and other science collaborations,” said Colton Clark, a Fermilab LBNF engineer who led the Refuge Chamber upgrade. “This project means we can safely bring more workers underground at once.”

    Engineers also designed new railings for the Yates Shaft Work Deck, allowing the platform to be used in addition to the cage during an emergency evacuation. This upgrade allows for the timely evacuation of 144 people from the underground.

    “Whether people need to take refuge underground or the space needs to be evacuated quickly, these upgrades allow us to ensure their safety in case of an emergency,” said Andrew Brosnahan, the Sanford Lab engineer who designed the Work Deck railings.

    3
    Peter Girtz trains a facility guide on new Refuge Chamber procedures. Photo by Nick Hubbard.

    “We can expect to see a modest increase in the underground workforce in the near term,” said Headley. “As LBNF starts to see an increase in construction activities in 2020, and certainly as they transition into the main cavern excavation at the end of 2020, we’ll see a noticeable increase in onsite personnel.”

    DUNE will consist of two neutrino detectors placed in the path of the world’s most intense neutrino beam. One detector will record particle interactions near the source of the beam, at Fermilab in Batavia, Illinois. A second, much larger, detector will be installed more than a kilometer underground at Sanford Lab—1,300 kilometers (800 miles) from Fermilab. These detectors will enable scientists to search for new subatomic phenomena and potentially transform our understanding of neutrinos and their role in the universe.

    Fermilab’s Long-Baseline Neutrino Facility will house the neutrino beamline at Fermilab and additional infrastructure as well as the far site DUNE detectors at Sanford Lab.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    LBNL LZ project at SURF, Lead, SD, USA, will replace LUX at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    LUX’s mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.
    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”
    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL LBNE/DUNE from FNAL to SURF, Lead, South Dakota, USA


    LBNE

    U Washington Majorana Demonstrator Experiment at SURF

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with GERDA for a future tonne-scale 76Ge 0νββ search.

    CASPAR at SURF


    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

     
  • richardmitnick 12:45 pm on September 24, 2019 Permalink | Reply
    Tags: , , , FNAL LBNF/ DUNE at SURF, , ,   

    From Penn Today: “Can neutrinos help explain what’s the matter with antimatter?” 


    From Penn Today

    September 23, 2019
    Erica K. Brockmeier

    Results of a new study will help physicists establish a cutting-edge neutrino research facility to study some of the most abundant yet least understood particles in the universe.

    1
    The Main Injector is a powerful particle accelerator at Fermilab near Chicago. It is also the source of the world’s highest-energy neutrino beams that will be used in the Deep Underground Neutrino Experiment (DUNE), an international flagship neutrino experiment involving researchers at Penn. (Image: Peter Ginter/Fermilab)

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    In physics, antimatter is simply the “opposite” of matter. Antimatter particles have the same mass as their counterparts but with other properties flipped; for example, protons in matter have a positive charge while antiprotons are negative. Antimatter can be made in a lab using high-energy particle collisions, but these events almost always create equal parts of both antimatter and matter and, when two opposing particles come in contact with one another, both are destroyed in a powerful wave of pure energy.

    What puzzles physicists is that most everything in the universe, people included, is made of matter, not of equal parts matter and antimatter. While looking for insights that could explain what kept the universe from creating separate matter and antimatter galaxies, or exploding into nothingness, researchers found some evidence that the answer could be hiding in very common yet poorly understood particles known as neutrinos.

    A team of researchers led by Christopher Mauger published results from the first set of experiments that can help answer these and other questions in fundamental physics. As part of the Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrino (CAPTAIN) program, their results, published in Physical Review Letters, are an important first step towards building the Deep Underground Neutrino Experiment (DUNE), an experimental facility for neutrino science and particle physics research.

    Particle colliders, such as the Large Hadron Collider at CERN, do experiments on quarks, one type of elementary particle.

    LHC

    CERN map


    CERN LHC Maximilien Brice and Julien Marius Ordan


    CERN LHC particles

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS

    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    These experiments found some evidence that explains matter-antimatter symmetry, but only part of it. Experiments on another type of elementary particle, leptons, hints that these particles could more fully explain this universal asymmetry. Previous research on neutrinos, a type of lepton, found unexpected patterns in the three neutrino “flavors,” results which physicists believe might also mean that their asymmetry might be larger than expected.

    2
    The outer structures (red) for two prototype DUNE detectors that are currently being evaluated at CERN. (Image: CERN)

    But the challenge with studying neutrinos is that they rarely interact with other particles; a single neutrino can pass through a light-year of lead without doing anything. Finding these rare interactions means that researchers need to study a large number of neutrinos for long periods of time. As an added challenge, the steady stream of muons produced by cosmic ray interactions in the upper atmosphere can make it difficult to spot the infrequent interactions that researchers are more interested in seeing.

    The solution? Go 5,000 feet underground, build four 10-kiloton detectors filled with liquid argon, and fire a beam of neutrinos made in a particle accelerator that’s 800 miles away. This is the eventual goal of DUNE, an international neutrino research facility run by Fermilab, a particle physics and accelerator laboratory near Chicago. Excavations for the detector, which will be installed at the Sanford Underground Research Facility in South Dakota, are underway, and researchers are now busy with experiments before the first detector is installed in 2022.

    3
    Los Alamos National Lab staff member Charles Taylor prepares the Mini-CAPTAIN detector. (Image: Christopher Mauger)

    As the first publication to come from CAPTAIN, researchers addressed a key technical challenge: How to handle measurements on other particle interactions. For example, when a neutrino interacts with argon, the neutrino picks up a charge and kicks out neutrons. A large fraction of the energy from the interaction will go into the neutron, but it has not been possible to determine the amount. “We must understand argon-neutron interactions if we want to properly do the experiment that’s going to impact our understanding of matter and antimatter asymmetry,” says Mauger.

    He and his team built a 400-kilogram prototype of the DUNE detector, known as Mini-CAPTAIN, and collected data from a neutron beam at the Los Alamos National Laboratory. Former Penn postdoc Jorge Chaves, who worked as the analysis leader for this research, says that the bulk of the work involved reconstructing the signals from the detector into meaningful insights about the properties that they are interested in studying further.

    Cern ProtoDune


    CERN Proto Dune

    As the first-ever dataset on neutron interactions in liquid argon at the energy ranges that will be used in DUNE, Chaves says that he is encouraged by the results obtained so far, even though they still need to get additional data. “Before, there was no measurement of this interaction cross-section, but now we have provided actual experimental results,” he says. “With more data of the same quality, we would be able to make an even more precise measurement.”

    In the near-term, the CAPTAIN team will focus on refining the methods developed for this paper as well as on running other experiments before DUNE begins collecting data in 2026. Once the project officially kicks off, researchers hope to be able to use this facility to help answer questions from the fields of particle physics, nuclear physics, and even astrophysics.

    Mauger considers the ongoing efforts of CAPTAIN and other projects as “Physics R&D,” work that will help researchers collect important measurements and study phenomena in a way never done before. The many lofty goals of DUNE will take decades to complete, but Mauger says that what they are trying to achieve makes the effort worthwhile.

    “Neutrinos are so hard to measure, sort of enigmatic, and there’s some kind of allure in trying to understand how they work. Studying this really interesting particle that’s all around us, and yet is so hard to measure, that could hold the key to understanding why we’re here at all, is exciting—and I get to do this for a living,” says Mauger.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at Penn is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

     
  • richardmitnick 12:35 pm on December 4, 2018 Permalink | Reply
    Tags: 176-meter-long 800-million-electronvolt superconducting linear accelerator at FNAL, , FNAL LBNF/ DUNE at SURF, , INFN-Istituto Nazionale di Fisica Nucleare Laboratory for Accelerators and Applied Superconductivity   

    From Fermi National Accelerator Lab: “U.S. Department of Energy and Italy’s Ministry of Education, Universities and Research to collaborate on particle accelerator construction at Fermilab” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    December 4, 2018

    1
    Jim Siegrist, associate director of the DOE Office of High-Energy Physics, and Maurizio Greganti, deputy chief of mission for the Embassy of Italy to the United States, sign an agreement to collaborate on Fermilab’s PIP-II project.

    Today the U.S. Department of Energy (DOE) and Italy’s Ministry of Education, Universities and Research (MIUR) signed an agreement to collaborate on the development and production of technical components for PIP-II, a major U.S. particle accelerator project to be located at DOE’s Fermi National Accelerator Laboratory in Batavia, Illinois. The signing took place at the Embassy of Italy in Washington.

    Italy and its National Institute of Nuclear Physics (INFN) will provide major contributions to the construction of the 176-meter-long superconducting particle accelerator that is the centerpiece of the PIP-II (Proton Improvement Plan-II) project. The new accelerator will become the heart of the Fermilab accelerator complex and provide the proton beam to power a broad program of accelerator-based particle physics research for many decades to come. In particular, PIP-II will enable the world’s most powerful high-energy neutrino beam to power the international Fermilab-hosted Deep Underground Neutrino Experiment (DUNE).

    FNAL Particle Accelerator

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    “It is with great appreciation that the Department of Energy enters into this agreement with our partners at MIUR and INFN,” said DOE Undersecretary for Science Paul Dabbar. “We’re proud that Fermilab’s PIP-II accelerator project, designed to create one of the most advanced machines for enabling discovery in the United States, is attracting major contributions from international partners for its construction.”

    The INFN Laboratory for Accelerators and Applied Superconductivity is expected to build components for the PIP-II accelerator. Based in Segrate, Italy, the laboratory is a center of excellence on an international scale for the development of advanced particle accelerators technologies.

    “The Agreement signed today by the Italian Ministry of Education, Universities and Research and DOE is the latest example of the scope and breadth of the scientific and technological cooperation between our two countries and of the importance of international cooperation,” said Armando Varricchio, ambassador of Italy to the United States. “This new step in our cooperation comes at a very significant time as we celebrate the 30th anniversary of the U.S.-Italy Agreement on Scientific and Technological Cooperation and renew our bilateral projects portfolio for the next three years.”

    At the signing, representatives from both countries recognized the long tradition of collaboration between Italian scientists and Fermilab, named after Italy’s own Enrico Fermi.

    “Following a long tradition of collaboration, the engagement of INFN on the construction of the PIP-II accelerator constitutes an important step in the context of unraveling neutrino properties through the ambitious DUNE project,” said INFN President Fernando Ferroni.

    The centerpiece of the PIP-II project will be an 800-million-electronvolt superconducting linear accelerator, which will modernize the front end of the existing Fermilab accelerator chain and provide a platform for future enhancements. The new accelerator will feature acceleration cavities made of niobium and double the beam energy of its predecessor. Such a boost will enable the Fermilab accelerator complex to achieve megawatt-scale proton beam power.

    “Our Italian partners are critical to the successful completion of Fermilab’s PIP-II superconducting accelerator,” said PIP-II Project Director Lia Merminga of Fermilab. “It takes a global community to build advanced, state-of-the-art accelerators like the one we’re developing for PIP-II.”

    In addition to Italy, other international partners are making significant contributions to PIP-II. They include India, the United Kingdom, and France. DOE’s Argonne and Lawrence Berkeley National Laboratories are also contributing key components to the project.

    “At the INFN Laboratory for Accelerators and Applied Superconductivity, we have a great experience of fruitful collaboration with Fermilab on advanced technologies for superconducting particle accelerators,” said Carlo Pagani of the University of Milan, Italian PIP-II project manager. “We are colleagues and friends, and I am excited for the opportunity that PIP-II is giving both for further growing together.”

    The partnership is one example of the increasingly global character of particle physics-related projects. The PIP-II accelerator complex will be made available to the international particle physics community and will extend the scientific discovery potential beyond that which currently can be reached.

    “It’s exciting to think that, in just a few years, the new PIP-II accelerator will produce some of the world’s most intense neutrino beams, which could give us a clearer picture of our universe’s evolution,” said Fermilab Director Nigel Lockyer. “This bright future is thanks in large part to our Italian partners. And since these partnerships strengthen over time, we could very well build on the relationship for future exciting projects in fundamental science.”


    This 40-second animation provides an overview of the PIP-II project. To learn more, visit pip2.fnal.gov.

    The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    INFN, Istituto Nazionale di Fisica Nucleare, is the public Italian research institute dedicated to the study of the fundamental constituents of matter and their interactions. INFN conducts theoretical and experimental research in the fields of subnuclear, nuclear and astroparticle physics. Fundamental research in these areas requires the use of cutting-edge technology and instruments, developed by the INFN at its own laboratories and in collaboration with industries. All of the INFN’s research activities are conducted in close collaboration with Italian universities and undertaken within an international framework.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 2:49 pm on October 26, 2018 Permalink | Reply
    Tags: , , FNAL LBNF/ DUNE at SURF, , J-PARC accelerator, , , Super Kamiokande experiment, T2K (Tokai to Kamiokande) experiment   

    From Live Science: “Could Misbehaving Neutrinos Explain Why the Universe Exists?” 

    Livescience
    From Live Science

    October 24, 2018

    FNAL’s Don Lincoln

    1
    Credit: Shutterstock

    Scientists revel in exploring mysteries, and the bigger the mystery, the greater the enthusiasm. There are many huge unanswered questions in science, but when you’re going big, it’s hard to beat “Why is there something, instead of nothing?”

    That might seem like a philosophical question, but it’s one that is very amenable to scientific inquiry. Stated a little more concretely, “Why is the universe made of the kinds of matter that makes human life possible so that we can even ask this question?” Scientists conducting research in Japan have announced a measurement last month that directly addresses that most fascinating of inquiries. It appears that their measurement disagrees with the simplest expectations of current theory and could well point toward an answer of this timeless question.

    Their measurement seems to say that for a particular set of subatomic particles, matter and antimatter act differently.

    Matter v. Antimatter

    Using the J-PARC accelerator, located in Tokai, Japan, scientists fired a beam of ghostly subatomic particles called neutrinos and their antimatter counterparts (antineutrinos) through the Earth to the Super Kamiokande experiment, located in Kamioka, also in Japan.

    J-PARC Facility Japan Proton Accelerator Research Complex , located in Tokai village, Ibaraki prefecture, on the east coast of Japan

    Super-Kamiokande experiment. located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan

    This experiment, called T2K (Tokai to Kamiokande), is designed to determine why our universe is made of matter. A peculiar behavior exhibited by neutrinos, called neutrino oscillation, might shed some light on this very vexing problem.

    T2K map, T2K Experiment, Tokai to Kamioka, Japan

    Asking why the universe is made of matter might sound like a peculiar question, but there is a very good reason that scientists are surprised by this. It’s because, in addition to knowing of the existence of matter, scientists also know of antimatter.

    In 1928, British physicist Paul Dirac proposed the existence of antimatter — an antagonistic sibling of matter. Combine equal amounts of matter and antimatter and the two annihilate each other, resulting in the release of an enormous amount of energy. And, because physics principles usually work equally well in reverse, if you have a prodigious quantity of energy, it can convert into exactly equal amounts of matter and antimatter. Antimatter was discovered in 1932 by American Carl Anderson and researchers have had nearly a century to study its properties.

    However, that “into exactly equal amounts” phrase is the crux of the conundrum. In the brief moments immediately after the Big Bang, the universe was full of energy. As it expanded and cooled, that energy should have converted into equal parts matter and antimatter subatomic particles, which should be observable today. And yet our universe consists essentially entirely of matter. How can that be?

    By counting the number of atoms in the universe and comparing that with the amount of energy we see, scientists determined that “exactly equal” isn’t quite right. Somehow, when the universe was about a tenth of a trillionth of a second old, the laws of nature skewed ever-so-slightly in the direction of matter. For every 3,000,000,000 antimatter particles, there were 3,000,000,001 matter particles. The 3 billion matter particles and 3 billion antimatter particles combined — and annihilated back into energy, leaving the slight matter excess to make up the universe we see today.

    Since this puzzle was understood nearly a century ago, researchers have been studying matter and antimatter to see if they could find behavior in subatomic particles that would explain the excess of matter. They are confident that matter and antimatter are made in equal quantities, but they have also observed that a class of subatomic particles called quarks exhibit behaviors that slightly favor matter over antimatter. That particular measurement was subtle, involving a class of particles called K mesons which can convert from matter to antimatter and back again. But there is a slight difference in matter converting to antimatter as compared to the reverse. This phenomenon was unexpected and its discovery led to the 1980 Nobel prize, but the magnitude of the effect was not enough to explain why matter dominates in our universe.

    Ghostly beams

    Thus, scientists have turned their attention to neutrinos, to see if their behavior can explain the excess matter. Neutrinos are the ghosts of the subatomic world. Interacting via only the weak nuclear force, they can pass through matter without interacting nearly at all. To give a sense of scale, neutrinos are most commonly created in nuclear reactions and the biggest nuclear reactor around is the Sun. To shield one’s self from half of the solar neutrinos would take a mass of solid lead about 5 light-years in depth. Neutrinos really don’t interact very much.

    Between 1998 and 2001, a series of experiments — one using the Super Kamiokande detector, and another using the SNO detector in Sudbury, Ontario ­­— proved definitively that neutrinos also exhibit another surprising behavior. They change their identity.

    SNOLAB, a Canadian underground physics laboratory at a depth of 2 km in Vale’s Creighton nickel mine in Sudbury, Ontario


    SNOLAB, Sudbury, Ontario, Canada.

    Physicists know of three distinct kinds of neutrinos, each associated with a unique subatomic sibling, called electrons, muons and taus. Electrons are what causes electricity and the muon and tau particle are very much like electrons, but heavier and unstable.

    The three kinds of neutrinos, called the electron neutrino, muon neutrino and tau neutrino, can “morph” into other types of neutrinos and back again. This behavior is called neutrino oscillation.

    Neutrino oscillation is a uniquely quantum phenomenon, but it is roughly analogous to starting out with a bowl of vanilla ice cream and, after you go and find a spoon, you come back to find that the bowl is half vanilla and half chocolate. Neutrinos change their identity from being entirely one type, to a mix of types, to an entirely different type, and then back to the original type.

    Antineutrino oscillations

    Neutrinos are matter particles, but antimatter neutrinos, called antineutrinos, also exist. And that leads to a very important question. Neutrinos oscillate, but do antineutrinos also oscillate and do they oscillate in exactly the same way as neutrinos? The answer to the first question is yes, while the answer to the second is not known.

    Let’s consider this a little more fully, but in a simplified way: Suppose that there were only two neutrino types — muon and electron. Suppose further that you had a beam of purely muon type neutrinos. Neutrinos oscillate at a specific speed and, since they move near the speed of light, they oscillate as a function of distance from where they were created. Thus, a beam of pure muon neutrinos will look like a mix of muon and electron types at some distance, then purely electron types at another distance and then back to muon-only. Antimatter neutrinos do the same thing.

    However, if matter and antimatter neutrinos oscillate at slightly different rates, you’d expect that if you were a fixed distance from the point at which a beam of pure muon neutrinos or muon antineutrinos were created, then in the neutrino case you’d see one blend of muon and electron neutrinos, but in the antimatter neutrino case, you’d see a different blend of antimatter muon and electron neutrinos. The actual situation is complicated by the fact that there are three kinds of neutrinos and the oscillation depends on beam energy, but these are the big ideas.

    The observation of different oscillation frequencies by neutrinos and antineutrinos would be an important step towards understanding the fact that the universe is made of matter. It’s not the entire story, because additional new phenomena must also hold, but the difference between matter and antimatter neutrinos is necessary to explain why there is more matter in the universe.

    In the current prevailing theory describing neutrino interactions, there is a variable that is sensitive to the possibility that neutrinos and antineutrinos oscillate differently. If that variable is zero, the two types of particles oscillate at identical rates; if that variable differs from zero, the two particle types oscillate differently.

    When T2K measured this variable, they found it was inconsistent with the hypothesis that neutrinos and antineutrinos oscillate identically. A little more technically, they determined a range of possible values for this variable. There is a 95 percent chance that the true value for that variable is within that range and only a 5 percent chance that the true variable is outside that range. The “no difference” hypothesis is outside the 95 percent range.

    In simpler terms, the current measurement suggests that neutrinos and antimatter neutrinos oscillate differently, although the certainty does not rise to the level to make a definitive claim. In fact, critics point out that measurements with this level of statistical significance should be viewed very, very skeptically. But it is certainly an enormously provocative initial result, and the world’s scientific community is extremely interested in seeing improved and more precise studies.

    The T2K experiment will continue to record additional data in hopes of making a definitive measurement, but it’s not the only game in town. At Fermilab, located outside Chicago, a similar experiment called NOvA is shooting both neutrinos and antimatter neutrinos to northern Minnesota, hoping to beat T2K to the punch.

    FNAL NOvA Near Detector


    FNAL/NOvA experiment map


    FNAL NOvA far detector in northern Minnesota


    NOvA Far Detector Block

    And, looking more to the future, Fermilab is working hard on what will be its flagship experiment, called DUNE (Deep Underground Neutrino Experiment), which will have far superior capabilities to study this important phenomenon.


    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    SURF DUNE LBNF Caverns at Sanford Lab

    While the T2K result is not definitive and caution is warranted, it is certainly tantalizing. Given the enormity of the question of why our universe seems to have no appreciable antimatter, the world’s scientific community will avidly await further updates.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 12:41 pm on October 23, 2018 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE at SURF, , , High-Luminosity LHC (HL-LHC) at CERN, , LBNL/DESI Dark Energy Spectroscopic Instrument for the Nicholas U. Mayall 4-meter telescope at Kitt Peak National Observatory near Tucson Ariz USA, SLAC Large Synoptic Survey Telescope at Cerro Pachon Chile, ,   

    From Symmetry: “The building boom” 

    Symmetry Mag
    From Symmetry

    10/23/18
    By Diana Kwon

    4
    Illustration by Sandbox Studio, Chicago with Ana Kova

    These international projects, selected during the process to plan the future of US particle physics, are all set to come online within the next 10 years.

    A mile below the surface at Sanford Underground Research Facility in South Dakota, crews are preparing to excavate more than 800,000 tons of rock. Once the massive caverns they’re creating are complete, they will install four modules that make up a giant particle detector for the Deep Underground Neutrino Experiment. DUNE, hosted by the US Department of Energy’s Fermi National Accelerator Laboratory, is an ambitious, international effort to study neutrinos—the tiny, elusive and yet most abundant matter particles in the universe.

    DUNE is one of several particle physics and astrophysics projects with US participation currently under some stage of construction. These include large-scale projects, such as the construction of Mu2e, the muon-to-electron conversion experiment at Fermilab, and upgrades to the Large Hadron Collider at CERN. And they include smaller ones, such as the assembly of the LZ and SuperCDMS dark matter experiments. Together, these scientific endeavors will investigate a wide range of important concepts, including neutrino mass, the nature of dark matter and cosmic acceleration.

    “In the last 10 years, there have been many facilities in the US that wound down,” says Saul Gonzalez, a program director at the National Science Foundation. “But right now we’re definitely going through a boom—it’s a very exciting time.”

    A community effort

    Members of the US particle physics community identified these projects through a regularly occurring study of the field called the Snowmass planning process, named after the Colorado village where some of the first such dialogs took place in the early 1980s.

    After the most recent Snowmass meeting in Minneapolis in 2013, the 25-member Particle Physics Project Prioritization Panel, or P5, gathered to pinpoint the most important scientific problems in particle physics and propose a 10-year plan to take them on. “Snowmass enabled us to get the questions out there as a field,” says Steven Ritz, the University of California, Santa Cruz physicist who led the P5 panel. “But we’re also aware that budgets are constrained—so P5’s job was to prioritize them.”

    P5’s report, which was published in May 2014 [PDF], outlined five key areas of study: the Higgs boson; neutrinos; dark matter; dark energy and cosmic inflation; and undiscovered particles, interactions and physical principles.

    Shorter-term efforts to address questions in these areas, such as the Mu2e experiment and the Large Synoptic Survey Telescope in Chile, both already under construction, have projected start-up dates around 2020. Longer-term plans, such as DUNE and the high-luminosity upgrade to the LHC, are expected be ready for physics in the mid to latter part of the 2020s.

    “If you look at the timeline, we don’t build everything at once, because of budget and resource constraints,” says Young-Kee Kim, a physicist at the University of Chicago and a former member of the High Energy Physics Advisory Panel, the advisory group that P5 reports to.

    Another consideration was the importance of maintaining a continual stream of data, Ritz says. “We didn’t want to have a building boom where there was no new data for 5 or 10 years.”

    Having multiple experiments at various stages of completion is important for junior scientists. “If you’re a grad student or a postdoc and you’re working on something that’s not going to have physics data until 2024, that’s kind of a problem,” says Kate Scholberg, a physicist at Duke University who was on the P5 panel.

    A staggered timeline gives junior scientists the option of working on a project like DUNE, where they can contribute to research and development, then switch to another experiment where data is available for analysis.

    “Being in a construction phase does have some short-term challenges, but it’s really important as an investment for the future,” Scholberg says. “Because if you stop constructing, then eventually you’re not going to have any more data.”

    Global contributions

    The United States is not undertaking these experiments alone. “Every experiment is really an international collaboration,” Gonzalez says.

    The DUNE collaboration, for example, already includes more than 1100 scientists from 32 countries and counting. And although the Long-Baseline Neutrino Facility, the future home of DUNE, will be in the US, researchers are currently building prototype detectors for the project at the CERN research center in Europe.

    More than 1700 US scientists participate in research at the LHC at CERN; many of them are currently working on future upgrades to the accelerator and its experiments. Although LSST will operate on a mountaintop in Chile, its gigantic digital camera is being assembled at SLAC National Accelerator Laboratory using parts from institutions elsewhere in the United States and in France, Germany and the UK.

    Smaller experiments also have a global presence. Dark matter experiment SuperCDMS, a 23-institution collaboration led by SLAC, will be located at SNOLAB underground laboratory in Ontario and has members in Canada, France and India.

    People with specialized expertise are needed to build the apparatus for these experiments. For example, Fermilab’s Proton Improvement Plan-II, a project to upgrade the lab’s particle accelerator complex to provide protons beams for DUNE, requires individuals with expertise in superconducting radio-frequency technology. “We’re tapping into the SRF expertise around the world to build this,” says Michael Procario, the Director of the Facilities Division in the Office of High Energy Physics within DOE’s Office of Science.

    These DOE-supported endeavors—and the theory and data analysis that go along with them—will likely keep scientists busy until 2035 and beyond. “All the experiments are going to give us definitive answers. Even a null result will give us important information,” Ritz says. “I think it’s a great time for physics.”

    The experiments:

    Muon g-2

    FNAL Muon g-2 studio

    This experiment will measure the magnetic moment of a muon, a subatomic particle 200 times more massive than an electron, in an attempt to identify physics beyond the Standard Model.

    Location: Fermilab, Illinois, United States
    Lead institution: Fermilab
    Currently running

    Axion Dark Matter Experiment (ADMX-Gen 2)

    Inside the ADMX experiment hall at the University of Washington Credit Mark Stone U. of Washington

    U Washington ADMX

    Physicists are probing for signs of axions, hypothetical low-mass dark matter particles at the University of Washington-based ADMX detector.

    Location: University of Washington, United States
    Lead institution: University of Washington
    Currently running

    Physicists will use Mu2e to search for the never-observed direct conversion of a muon into an electron, a process predicted by theories beyond the Standard Model.

    FNAL Mu2e facility under construction


    FNAL Mu2e solenoid

    Location: Fermilab, Illinois, United States
    Lead institution: Fermilab
    Scheduled start-up: 2020

    LUX-ZEPLIN (LZ)

    LBNL LZ project at SURF, Lead, SD, USA


    LZ Dark Matter Experiment at SURF lab

    A liquified xenon detector surrounded by 70,000 gallons of water will be located more than 4000 feet underground at the Sanford Underground Research Facility, where researchers will hunt for interactions between matter and dark matter.

    Location: Sanford Lab, South Dakota, United States
    Lead institution: Berkeley Lab
    Scheduled start-up: 2020

    Dark Energy Spectroscopic Instrument (DESI)

    LBNL/DESI Dark Energy Spectroscopic Instrument for the Nicholas U. Mayall 4-meter telescope at Kitt Peak National Observatory near Tucson, Ariz, USA


    NOAO/Mayall 4 m telescope at Kitt Peak, Arizona, USA, Altitude 2,120 m (6,960 ft)

    Scientists will measure the effect of dark energy on cosmic expansion at the 4-meter Mayall Telescope at Kitt Peak National Observatory in Arizona.

    Location: Kitt Peak National Observatory, Arizona, United States
    Lead institution: Berkeley Lab
    Scheduled start-up: 2021

    Super Cyogenic Dark Matter Search (SuperCDMS)

    SNOLAB, a Canadian underground physics laboratory at a depth of 2 km in Vale’s Creighton nickel mine in Sudbury, Ontario

    SNOLAB, a Canadian underground physics laboratory at a depth of 2 km in Vale’s Creighton nickel mine in Sudbury, Ontario

    SLAC SuperCDMS, at SNOLAB (Vale Inco Mine, Sudbury, Canada)

    SLAC SuperCDMS, at SNOLAB (Vale Inco Mine, Sudbury, Canada)

    Physicists will hunt for dark matter particles with a cryogenic germanium detector located deep underground at SNOLAB in Canada.

    Location: SNOLAB, Ontario, Canada
    Lead institution: SLAC
    Scheduled start-up: Early 2020s

    Large Synoptic Survey Telescope (LSST)

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    The 8-meter Large Synoptic Survey Telescope, situated in northern Chile, will observe the whole accessible sky hundreds of times over 10 years to produce the deepest, widest image of the universe to date. This will allow physicists to probe questions about dark energy, dark matter, galaxy formation and more.

    Location: Cerro Pachon, Chile
    Lead institution: SLAC
    Scheduled start-up: Early 2020s

    Proton Improvement Pla-II (PIP-II)

    Upgrades to the Fermilab accelerator complex, including the construction of a 175-meter-long superconducting linear particle accelerator, will create the high-intensity proton beam that will produce beams of neutrinos for DUNE.

    Location: Fermilab, Illinois, United States
    Lead institution: Fermilab
    Scheduled start-up: mid-2020s

    Deep Underground Neutrino Experiment (DUNE)

    CERN Proto DUNE Maximillian Brice

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    SURF DUNE LBNF Caverns at Sanford Lab

    Scientists will send the world’s most powerful beam of neutrinos through two sets of detectors separated by 800 miles—one at the source of the beam at Fermilab in Illinois and the other at Sanford Underground Research Facility in South Dakota—to help scientists address fundamental concepts in particle physics, such as neutrino mass, matter-antimatter asymmetry, proton decay and black hole formation.

    Location: Fermilab, Illinois and Sanford Lab, South Dakota, United States
    Lead institution: Fermilab
    Scheduled partial start-up (with two detector modules): 2026

    High-Luminosity LHC (HL-LHC)

    LHC

    CERN map


    CERN LHC Tunnel

    CERN LHC particles

    An upgrade to CERN’s Large Hadron Collider will increase its luminosity—the number of collisions it can achieve—by a factor of 10. More collisions means more data and a higher probability of spotting rare events. The LHC experiments will receive upgrades to manage the higher collision frequency.

    Location: CERN, near Geneva, Switzerland
    Lead institution: CERN
    Scheduled start-up: 2026

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 1:00 pm on September 6, 2018 Permalink | Reply
    Tags: , , FNAL LBNF/ DUNE at SURF, , , ,   

    From Symmetry: “ProtoDUNE in pictures” 

    Symmetry Mag
    From Symmetry

    09/06/18
    Lauren Biron

    4
    Photo by CERN

    Twenty photos, two detectors, one goal.

    To investigate some of the biggest mysteries in the universe, particle physicists design and build high-tech detectors. On top of the incredible science they make possible, these experiments are often staggeringly beautiful. Views of the process of putting them together look like they could come straight out of a sci-fi film or from an alien planet.

    This is true of the ProtoDUNE detectors, which often appear in photographs as giant gold-colored cubes. These test beds are how scientists assess the technologies that will go into the Deep Underground Neutrino Experiment, the biggest international science project in the United States.

    Hosted by the US Department of Energy’s Fermi National Accelerator Laboratory, DUNE will send particles called neutrinos 800 miles (1300 kilometers) through the earth from Illinois to South Dakota.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    There, about a mile (1.5 kilometers) underground, the largest liquid-argon neutrino detector ever built will analyze how those neutrinos behave. Researchers will use the data to investigate some of the biggest unsolved mysteries in particle physics, including why matter exists and what role neutrinos played in the universe’s evolution.

    DUNE is an international endeavor with 1100 scientists and engineers from more than 30 countries. DUNE is supported by international funding agencies, including the DOE Office of Science. The prototype detectors for DUNE are under construction at the neutrino platform at CERN, the European Center for Nuclear Physics and home of another amazing science machine, the Large Hadron Collider.

    The two ProtoDUNE detectors will help finalize the two different technologies that will be used for the four modules that will comprise DUNE’s far detector and will be filled with 70,000 tons of liquid argon.

    Take a look at the construction and evolution of the two prototypes in these 20 photographs—and keep in mind that each of the final DUNE detector modules in South Dakota will be 20 times bigger.

    2
    The first step in constructing the mammoth, cube-shaped ProtoDUNE detectors was to weld together portions of the steel cages, the red objects in this photo.
    Photo by CERN

    3
    Welders assemble parts of the steel cages for ProtoDUNE. This outer structure provides the necessary support for the interior membrane (or cryostat) that holds the liquid argon.
    Photo by CERN

    Please see the full article for all 20 photos.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 1:25 pm on July 30, 2018 Permalink | Reply
    Tags: , FNAL LBNF/ DUNE at SURF, ,   

    From Fermilab: “DUNE collaboration completes Interim Design Report for gigantic particle detectors” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermilab , an enduring source of strength for the US contribution to scientific research world wide.

    July 30, 2018
    Kurt Riesselmann

    1

    The more than 1,000 scientists and engineers from 32 countries working on the international Deep Underground Neutrino Experiment (DUNE), hosted by the Department of Energy’s Fermilab, achieved a milestone on July 29 when the collaboration released its 687-page Interim Design Report for the construction of gigantic particle detector modules a mile underground in South Dakota.

    The three-volume interim report, which was posted on the scientific online repository arXiv (Volume One, Volume Two, Volume Three), summarizes the DUNE physics goals and the design of the detector to meet these goals. It is based on the experience that DUNE scientists have gained during the design and construction of three-story-tall prototype detectors at CERN in Europe. The final detector modules, to be sited in the United States, will be about 20 times the size of the prototypes.

    “It is amazing how much work this collaboration has accomplished in the last couple of years,” said DUNE co-spokesperson Stefan Soldner-Rembold, professor at the University of Manchester in the UK. “The Interim Design Report is a major step toward the preparation of the final, more detailed Technical Design Report, which we will write next.”

    The DUNE Technical Design Report for the first two detector modules will be finalized roughly a year from now and will be the blueprint for the construction of those modules.

    “The Interim Design Report presents an enormous body of work,” said Sam Zeller, Fermilab, who served as the co-editor of the document together with Tim Bolton, Kansas State University. “The document doesn’t just contain drawings. It also includes detailed technical specifications and photos of the prototype equipment that was built during the last 12 months.”

    DUNE is an experiment to unlock the mysteries of neutrinos, the particles that could be the key to explaining why matter and the universe exist. The experiment will send a neutrino beam generated by Fermilab’s particle accelerator complex in Illinois 800 miles straight through Earth to the DUNE far detector modules to be built at the Sanford Underground Research Facility in South Dakota. DUNE scientists also will use the large detector modules to search for rare subatomic processes such as proton decay and watch for neutrinos stemming from the explosion of stars in our galaxy.

    2
    The giant DUNE detector will record images of particle tracks created by neutrinos colliding with argon atoms. No image credit.

    “The DUNE physics program addresses key questions that will give us further insight in the understanding of the universe,” said DUNE collaborator Albert de Roeck, leader of the CERN experimental neutrino group. “Neutrinos are still very enigmatic particles and no doubt will surprise us in future.”

    Groundbreaking for the construction of the caverns that will host the DUNE modules took place in July 2017, and the experiment is expected to be operational with two far detector modules online by 2026. Ultimately, DUNE will comprise four far detector modules filled with a total of 70,000 tons of liquid argon, as well as a smaller near detector at Fermilab.

    The Interim Design Report specifies the two technologies that DUNE scientists will use for the far detector: single- and dual-phase time projection chambers filled with cold, crystal clear liquid argon, the same technologies used to build the two prototype detectors at CERN, known as the ProtoDUNE detectors.

    “Designing liquid-argon time projection chambers of this size is an unprecedented effort requiring state-of-the-art technologies,” said CNRS Research Director Dario Autiero of the French National Institute of Nuclear and Particle Physics, Institut de Physique Nucleaire, Lyon, and DUNE collaborator. “DUNE pushes the technological limits in detector design, high-voltage systems, photon detection systems, low-noise electronics, and high-bandwidth data acquisition systems. DUNE collaborators have been developing these technologies for years, and they are being deployed in the two prototype detectors at CERN.”

    Both types of far detector modules will record images of particle tracks created by neutrinos colliding with argon atoms. In the single-phase technology, the entire volume of the detector is filled with liquid argon, and a horizontal high-voltage electric field “projects” the particle tracks towards the walls of the detector. Arrays of thin wires placed in front of the detector walls capture the signals created by the particle tracks and send them to a data acquisition system.

    “These giant detectors are being designed and developed by a great team of scientists and engineers, working together to unveil the secrets of the universe,” said Inés Gil-Botella, leader of the CIEMAT neutrino group, Madrid, Spain, and member of the DUNE collaboration. “Careful planning and coordination is the key to the success of DUNE.”

    The three volumes of the DUNE Far Detector Interim Design Report are available online: Volume One, Volume Two, Volume Three.

    The DUNE collaboration comprises 175 institutions from 32 countries: Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Paraguay, Peru, Poland, Portugal, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and United States. More information is at dunescience.org.

    To learn more about the Deep Underground Neutrino Experiment, the Long-Baseline Neutrino Facility that will house the experiment, and the PIP-II particle accelerator project at Fermilab that will power the neutrino beam for the experiment, visit http://www.fnal.gov/dune.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 4:30 pm on December 19, 2017 Permalink | Reply
    Tags: , , CERN Large Hadron Collider, FNAL LBNF/ DUNE at SURF, , , , Large Electron-Positron Collider, , , , , ,   

    From Symmetry: “Machine evolution” 

    Symmetry Mag
    Symmetry

    12/19/17
    Amanda Solliday

    1
    Courtesy of SLAC

    Planning the next big science machine requires consideration of both the current landscape and the distant future.

    Around the world, there’s an ecosystem of large particle accelerators where physicists gather to study the most intricate details of matter.

    These accelerators are engineering marvels. From planning to construction to operation to retirement, their lifespans stretch across decades.

    But to get the most out of their investments of talent and funding, laboratories planning such huge projects have to think even longer-term: What could these projects become in their next lives?

    The following examples show how some of the world’s big physics machines have evolved to stay at the forefront of science and technology.

    Same tunnel, new collisions

    Before CERN research center in Geneva, Switzerland, had its Large Hadron Collider, it had the Large Electron-Positron Collider. LEP was the largest electron-positron collider ever built, occupying a nearly 17-mile circular tunnel dug beneath the border of Switzerland and France. The tunnel took three years to completely excavate and build.

    The first particle beam traveled around the LEP circular collider in 1989. Long before then, the international group of CERN physicists and engineers were already thinking about what CERN’s next machine could be.

    “People were saying, ‘Well, if we do build LEP, then we should make it compatible with the [then-proposed] Large Hadron Collider,’” says James Gillies, a senior communications advisor and member of the strategic planning and evaluation unit at CERN. “If you want to have a future facility, you often have to engage the people who just finished designing one machine to start thinking about the next one.”

    LEP’s designers chose an energy for the collider that would mass-produce Z bosons, fundamental particles discovered by earlier experiments at CERN. The LHC would be a step up from LEP, reaching higher energies that scientists hoped could produce the Higgs boson. In the 1960s, theorists proposed the Higgs as a way to explain the origin of the mass of elementary particles. And the new machine to look for it could be built in the same 17-mile tunnel excavated for LEP.

    Engineers began working on the LHC while LEP was still running. The new machine required enlargements to underground areas—it needed bigger detectors and new experimental halls.

    “That was challenging because these caverns are huge. As they were being excavated, the pressure on the LEP tunnel was reduced and the LEP beamline needed realignment,” Gillies says. “So you constantly had to realign the collider for experiments as you were digging.”

    After LEP reached its highest energy in 2000, it was switched off. The tunnel remained the same, says Gillies, but there were many other changes. Only one of the LEP detectors, DELPHI, remains underground at CERN as a visitors’ point.

    In 2012, LHC scientists announced the discovery of the long-sought Higgs boson. The LHC is planned to continue running until at least 2035, gradually increasing the intensity of its particle collisions. The research and development into the accelerator’s successor is already happening. The possibilities include a higher energy LHC, a compact linear collider or an even larger circular collider.

    2

    Large Electron-Positron Collider
    Location: CERN—Geneva, Switzerland
    First beam: 1989
    Link to LEP Timeline: Timeline
    Courtesy of CERN

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    Large Hadron Collider
    Location: CERN—Geneva, Switzerland
    First beam: 2008
    Link to LHC Timeline: Timeline
    Courtesy of CERN

    High-powered science
    Decades before the LHC came into existence, a suburb of Chicago was home to the most powerful collider in the world: the Tevatron. A series of accelerators at Fermi National Accelerator Laboratory boosted protons and antiprotons to nearly the speed of light. In the final, 4-mile Tevatron ring, the particles reached record energy levels, and more than 1000 superconducting magnets steered them into collisions. Physicists used the Tevatron to make the first direct measurement of the tau neutrino and to discover the top quark, the last observed lepton and quark, respectively, in the Standard Model.

    The Tevatron shut down in 2011 after the LHC came up to speed, but the rest of Fermilab’s accelerator infrastructure was still hard at work powering research in particle physics—particularly on the abundant, mysterious and difficult-to-detect neutrino.

    Starting in 1999, a brand-new, 2-mile circular accelerator called the Main Injector was added to the Fermilab complex to increase the number of Tevatron particle collisions tenfold. It was joined in its tunnel by the Recycler, a permanent magnet ring that stored and cooled antiprotons.

    But before the Main Injector was even completed, scientists had identified a second purpose: producing powerful beams of neutrinos for experiments in Illinois and 500 miles away in Minnesota.

    FNAL/NOvA experiment map

    By 2005, the proton beam circulating in the Main Injector was doing double duty: sending ever-more-intense beams to the Tevatron collider and smashing into a target to produce neutrinos. Following the shutdown of the Tevatron, the Recycler itself was recycled to increase the proton beam power for neutrino research.

    “I’m still amazed at how we are able to use the Recycler. It can be difficult to transition if a machine wasn’t originally built for that purpose,” says Ioanis Kourbanis, the head of the Main Injector department at Fermilab.

    Fermilab’s high-energy neutrino beam is already the most intense in the world, but the laboratory plans to enhance it with future improvements to the Main Injector and the Recycler, and to build a brand-new neutrino beamline.

    Neutrinos almost never interact with matter, so they can pass straight through the Earth on their way to detectors onsite and others several hundred miles away. Scientists hope to learn more about neutrinos and their possible role in shaping our early universe.

    The new beamline will be part of the Long-Baseline Neutrino Facility, which will send neutrinos 800 miles underground to the massive, mile-deep detectors of the Deep Underground Neutrino Experiment.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    Scientists from around the world will use the DUNE data to answer questions about neutrinos, thanks to the repurposed pieces of the Fermilab accelerator complex.

    5

    FNAL Tevatron

    FNAL/Tevatron map


    FNAL/Tevatron DZero detector


    FNAL/Tevatron CDF detector

    Tevatron
    Location: Fermilab—Batavia, Illinois
    First beam: 1983
    Link to Tevatron Timeline: Timeline
    Courtesy of Fermilab

    6

    Neutrinos at the Main Injector (NuMI) beam
    Location: Fermilab—Batavia, Illinois
    First beam: 2004
    Link to Fermilab Timeline: Timeline
    Courtesy of Fermilab

    A monster accelerator

    When physicists first came up with the idea to build a two-mile linear accelerator at what is now called SLAC National Accelerator Laboratory, managed by Stanford University, they called it “Project M” for “Monster.” Engineers began building it from hand-drawn designs. Once completed, the machine was able to accelerate electrons to near the speed of light, producing its first particle beam in May 1966.

    SLAC Campus

    The accelerator’s scientific purpose has gone through several iterations of particle physics experiments over the decades, from fixed-target experiments to the Stanford Linear Collider (the only electron-positron linear collider ever built) to an injector for a circular collider, the Positron-Electron Project.

    These experiments led to the discovery that protons are made of quarks, the first evidence that the charm quark existed (through observations of the J/psi particle, co-discovered with researchers at MIT) and the discovery of the tau lepton.

    In 2009, the lab used the accelerator as the backbone for a different type of science machine—an X-ray free-electron laser, the Linac Coherent Light Source.

    “Looking around, SLAC was the only place in the world with a linear accelerator capable of driving a free-electron laser,” says Claudio Pellegrini, a distinguished professor emeritus of physics at the University of California, Los Angeles and a visiting scientist and consulting professor at SLAC. Pellegrini first proposed the idea to transform SLAC’s linear accelerator.

    The new machine, a DOE Office of Science user facility, would be the world’s first laser of its kind that could produce extremely bright hard X-rays, the high-energy X-rays that let scientists take snapshots of atoms and molecules.

    “Much of the physics and many of the tools learned and developed during the operation of the Stanford Linear Collider were directly applicable to the free electron laser,” says Lia Merminga, head of the accelerator directorate at SLAC. “This was a big factor in the LCLS being commissioned in record time. Without the Stanford Linear Collider experience, this significant body of work would have to be reinvented and reproduced almost from scratch.”

    Little about the accelerator itself needed to change. But to create a free-electron laser, scientists needed to design a new part: an electron gun, a device that generates electrons to be injected into the accelerator. A collaboration of several national labs and UCLA created a new type of electron gun for LCLS, while other national labs helped build undulators, a series of magnets that would wiggle the electrons to create X-rays.

    LCLS used only the last third of SLAC’s original linear accelerator. In part of the remaining section, scientists are developing plasma wakefield and other new particle acceleration techniques.

    For the X-ray laser’s next iteration, LCLS-II, scientists are aiming for an even brighter laser that will fire 1 million pulses per second, allowing them to observe rare and exceptionally transient events.

    SLAC/LCLS II

    To do this, they will need to replace the original copper structures with superconducting technology. The technology is derived from designs for a large International Linear Collider [ILC] proposed to be built in Japan.

    ILC schematic

    “I’m in awe of the foresight of the original builders of SLAC’s linear accelerator,” Merminga adds. “We’ve been able to do so much with this machine, and the end is not yet in sight.”

    7

    Fixed target and collider experiments

    Location: SLAC—Menlo Park, California
    First beam: 1966
    Link to SLAC Timeline: Timeline
    Courtesy of SLAC

    8

    Linac Coherent Light Source
    Location: SLAC—Menlo Park, California
    First beam: 2009
    Link to SLAC Timeline: Timeline
    Courtesy of SLAC

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 1:05 pm on December 7, 2017 Permalink | Reply
    Tags: , , Dan Rederth, FNAL LBNF/ DUNE at SURF, South Dakota is already home to a growing suite of physics experiments located a mile beneath the surface in the Sanford Underground Research Facility, , Wenzhao Wei, Wenzhao Wei and Dan Rederth are the first to earn physics PhDs within the state of South Dakota,   

    From Symmetry: Women in STEM – “The PhD pioneers” Wenzhao Wei and also Dan Rederth, obviously not a Woman in STEM 

    Symmetry Mag
    Symmetry

    12/07/17
    Tom Barratt

    1
    Wenzhao Wei

    2
    Dan Rederth

    Wenzhao Wei and Dan Rederth are the first to earn physics PhDs within the state of South Dakota.

    Completing a PhD in physics is hard. It’s even harder when you’re one of the first to do it not just at your university, but at any university in your entire state.

    That’s exactly the situation Wenzhao Wei and Dan Rederth found themselves in earlier this year, when completing their doctorates at the University of South Dakota and the South Dakota School of Mines and Technology, respectively. Wei and Rederth are graduates of a joint program between the two institutions.

    Wei found out just a few weeks before going in front of a committee at USD to defend her thesis. A couple of students ahead of her had dropped out of the PhD program, leaving her suddenly at the head of the pack.

    “When I found out, I was very nervous,” Wei says. “When you’re the first, you don’t have any examples to follow, you don’t know how to prepare your defense, and you can’t get experience from other people who have already done it.”

    She recalls running between as many professors and committee members as she could for advice. “I did a lot of checking with them and asking questions. I had no idea what they would be expecting from the first PhD student.”

    Despite her wariness, and with some significant publications in the field as the first author, Dr. Wei’s defense was successful, and she is now working as a postdoc at the University of South Dakota.

    Rederth knew he was the first at SDSMT but wasn’t aware it was a first in South Dakota until after he had handed in his dissertation and completed his defense. “The president of the school told me I was the first in South Dakota after I finished,” he says. “But I wasn’t aware that Wenzhao had also completed her PhD at the same time.

    “Being the first, I was not prepared for the level of questioning I received during my defense – it went much deeper into physics than just my research. Together with Wenzhao, being the first in South Dakota really is a feather in the cap to something which took years of hard work to achieve.”

    Different paths to physics

    Rederth started on his path to physics research at a young age. “The most satisfying aspect of my PhD research dates back to my childhood,” he says. “I was always intrigued by magnetism and the mystery of how it works, so it was fascinating to do my research.”

    His work involved studying strange magnetic quantum effects that arise when certain particles are confined in special materials. A computer program he developed to model the effects could help bring new technologies into electronics.

    For Wei’s success, you might expect she had also always made a beeline to research, but physics was actually a late calling for her. At Central China Normal University, she had studied computer science and only switched to physics at master’s level.

    “In high school, I remember liking physics, but I ended up choosing computer science,” Wei says. “Then at college, I had some friends who did physics who were part of the same clubs as me, and they kept talking about really interesting things. I found I was becoming less interested in computer science and more interested in physics, so I switched.”

    Wei’s thesis, entitled “Advanced germanium detectors for rare event physics searches,” and her current research involve developing technologies for new kinds of particle physics detectors—ones that use germanium, a metal-like element similar to tin and silicon. Such detectors could be used for future neutrino and dark matter experiments.

    South Dakota is already home to a growing suite of physics experiments located a mile beneath the surface in the Sanford Underground Research Facility. It was in part a result of these experiments being located in the same state that Wei’s pioneering PhD program came about. USD has been involved with several experiments at SURF, among them the Deep Underground Neutrino Experiment, which will study neutrinos in a beam sent from Fermilab 1300 kilometers away.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    “DUNE and SURF have been a vehicle to move the physics PhD program at USD forward,” says Dongming Mei, Wei’s doctoral advisor at USD. “With the progress of DUNE, future PhD students from USD will be exposed to thousands of world-class scientists and engineers.”

    Post-doctorate, Wei is now continuing the research she began during her thesis. But with a twist.

    “For my PhD, I did lots of computer simulations of dark matter interactions, so I spent a lot of time stuck at a computer,” Wei says. “Now I’m actually able to get hands-on with the germanium crystals we grow here at USD and test them for things like their electrical properties.”

    So where next for South Dakota’s first locally certified doctors of physics?

    “I want to stay in physics for the long-term,” Wei says. “I taught some physics to undergraduates during my PhD and really loved it, so I’m hoping to be a researcher and lecturer one day.”

    Rederth, too, wants to help inspire the next generation. “I want to stay in the Black Hills area to help raise science and math proficiency in the local schools. I’ve been a judge for the local science fair and would like to become more involved,” he says.

    Perhaps some of their future students will go on to join the list of South Dakota’s physics doctorates, started by their trailblazing teachers.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: