Tagged: FNAL Holometer Experiment Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:56 am on June 8, 2017 Permalink | Reply
    Tags: , , , , , , , FNAL Holometer Experiment, Nautlius, , , Sean Carroll at Caltech, , Will Quantum Mechanics Swallow Relativity   

    From Nautilus: “Will Quantum Mechanics Swallow Relativity?” 

    Nautilus

    Nautilus

    June 8, 2017
    By Corey S. Powell
    Illustration by Nicholas Garber

    The contest between gravity and quantum physics takes a new turn.

    It is the biggest of problems, it is the smallest of problems.

    At present physicists have two separate rulebooks explaining how nature works. There is general relativity, which beautifully accounts for gravity and all of the things it dominates: orbiting planets, colliding galaxies, the dynamics of the expanding universe as a whole. That’s big. Then there is quantum mechanics, which handles the other three forces—electromagnetism and the two nuclear forces. Quantum theory is extremely adept at describing what happens when a uranium atom decays, or when individual particles of light hit a solar cell. That’s small.

    Now for the problem: Relativity and quantum mechanics are fundamentally different theories that have different formulations. It is not just a matter of scientific terminology; it is a clash of genuinely incompatible descriptions of reality.

    The conflict between the two halves of physics has been brewing for more than a century—sparked by a pair of 1905 papers by Einstein, one outlining relativity and the other introducing the quantum—but recently it has entered an intriguing, unpredictable new phase. Two notable physicists have staked out extreme positions in their camps, conducting experiments that could finally settle which approach is paramount.

    Basically you can think of the division between the relativity and quantum systems as “smooth” versus “chunky.” In general relativity, events are continuous and deterministic, meaning that every cause matches up to a specific, local effect. In quantum mechanics, events produced by the interaction of subatomic particles happen in jumps (yes, quantum leaps), with probabilistic rather than definite outcomes. Quantum rules allow connections forbidden by classical physics. This was demonstrated in a much-discussed recent experiment, in which Dutch researchers defied the local effect. They showed two particles—in this case, electrons—could influence each other instantly, even though they were a mile apart. When you try to interpret smooth relativistic laws in a chunky quantum style, or vice versa, things go dreadfully wrong.

    Relativity gives nonsensical answers when you try to scale it down to quantum size, eventually descending to infinite values in its description of gravity. Likewise, quantum mechanics runs into serious trouble when you blow it up to cosmic dimensions. Quantum fields carry a certain amount of energy, even in seemingly empty space, and the amount of energy gets bigger as the fields get bigger. According to Einstein, energy and mass are equivalent (that’s the message of e=mc2), so piling up energy is exactly like piling up mass. Go big enough, and the amount of energy in the quantum fields becomes so great that it creates a black hole that causes the universe to fold in on itself. Oops.

    Craig Hogan, a theoretical astrophysicist at the University of Chicago and the director of the Center for Particle Astrophysics at Fermilab, is reinterpreting the quantum side with a novel theory in which the quantum units of space itself might be large enough to be studied directly. Meanwhile, Lee Smolin, a founding member of the Perimeter Institute for Theoretical Physics in Waterloo, Canada, is seeking to push physics forward by returning back to Einstein’s philosophical roots and extending them in an exciting direction.

    To understand what is at stake, look back at the precedents. When Einstein unveiled general relativity, he not only superseded Isaac Newton’s theory of gravity; he also unleashed a new way of looking at physics that led to the modern conception of the Big Bang and black holes, not to mention atomic bombs and the time adjustments essential to your phone’s GPS. Likewise, quantum mechanics did much more than reformulate James Clerk Maxwell’s textbook equations of electricity, magnetism, and light. It provided the conceptual tools for the Large Hadron Collider, solar cells, all of modern microelectronics.

    What emerges from the dustup could be nothing less than a third revolution in modern physics, with staggering implications. It could tell us where the laws of nature came from, and whether the cosmos is built on uncertainty or whether it is fundamentally deterministic, with every event linked definitively to a cause.

    2
    THE MAN WITH THE HOLOMETER: Craig Hogan, a theoretical astrophysicist at Fermilab, has built a device to measure what he sees as the exceedingly fine graininess of space. “I’m hoping for an experimental result that forces people to focus the theoretical thinking in a different direction,” Hogan says.The Department of Astronomy and Astrophysics, the University of Chicago

    A Chunky Cosmos

    Hogan, champion of the quantum view, is what you might call a lamp-post physicist: Rather than groping about in the dark, he prefers to focus his efforts where the light is bright, because that’s where you are most likely to be able to see something interesting. That’s the guiding principle behind his current research. The clash between relativity and quantum mechanics happens when you try to analyze what gravity is doing over extremely short distances, he notes, so he has decided to get a really good look at what is happening right there. “I’m betting there’s an experiment we can do that might be able to see something about what’s going on, about that interface that we still don’t understand,” he says.

    A basic assumption in Einstein’s physics—an assumption going all the way back to Aristotle, really—is that space is continuous and infinitely divisible, so that any distance could be chopped up into even smaller distances. But Hogan questions whether that is really true. Just as a pixel is the smallest unit of an image on your screen and a photon is the smallest unit of light, he argues, so there might be an unbreakable smallest unit of distance: a quantum of space.

    In Hogan’s scenario, it would be meaningless to ask how gravity behaves at distances smaller than a single chunk of space. There would be no way for gravity to function at the smallest scales because no such scale would exist. Or put another way, general relativity would be forced to make peace with quantum physics, because the space in which physicists measure the effects of relativity would itself be divided into unbreakable quantum units. The theater of reality in which gravity acts would take place on a quantum stage.

    Hogan acknowledges that his concept sounds a bit odd, even to a lot of his colleagues on the quantum side of things. Since the late 1960s, a group of physicists and mathematicians have been developing a framework called string theory to help reconcile general relativity with quantum mechanics; over the years, it has evolved into the default mainstream theory, even as it has failed to deliver on much of its early promise. Like the chunky-space solution, string theory assumes a fundamental structure to space, but from there the two diverge. String theory posits that every object in the universe consists of vibrating strings of energy. Like chunky space, string theory averts gravitational catastrophe by introducing a finite, smallest scale to the universe, although the unit strings are drastically smaller even than the spatial structures Hogan is trying to find.

    Chunky space does not neatly align with the ideas in string theory—or in any other proposed physics model, for that matter. “It’s a new idea. It’s not in the textbooks; it’s not a prediction of any standard theory,” Hogan says, sounding not the least bit concerned. “But there isn’t any standard theory right?”

    If he is right about the chunkiness of space, that would knock out a lot of the current formulations of string theory and inspire a fresh approach to reformulating general relativity in quantum terms. It would suggest new ways to understand the inherent nature of space and time. And weirdest of all, perhaps, it would bolster an au courant notion that our seemingly three-dimensional reality is composed of more basic, two-dimensional units. Hogan takes the “pixel” metaphor seriously: Just as a TV picture can create the impression of depth from a bunch of flat pixels, he suggests, so space itself might emerge from a collection of elements that act as if they inhabit only two dimensions.

    Like many ideas from the far edge of today’s theoretical physics, Hogan’s speculations can sound suspiciously like late-night philosophizing in the freshman dorm. What makes them drastically different is that he plans to put them to a hard experimental test. As in, right now.

    Starting in 2007, Hogan began thinking about how to build a device that could measure the exceedingly fine graininess of space. As it turns out, his colleagues had plenty of ideas about how to do that, drawing on technology developed to search for gravitational waves. Within two years Hogan had put together a proposal and was working with collaborators at Fermilab, the University of Chicago, and other institutions to build a chunk-detecting machine, which he more elegantly calls a “holometer.” (The name is an esoteric pun, referencing both a 17th-century surveying instrument and the theory that 2-D space could appear three-dimensional, analogous to a hologram.)

    Beneath its layers of conceptual complexity, the holometer is technologically little more than a laser beam, a half-reflective mirror to split the laser into two perpendicular beams, and two other mirrors to bounce those beams back along a pair of 40-meter-long tunnels. The beams are calibrated to register the precise locations of the mirrors. If space is chunky, the locations of the mirrors would constantly wander about (strictly speaking, space itself is doing the wandering), creating a constant, random variation in their separation. When the two beams are recombined, they’d be slightly out of sync, and the amount of the discrepancy would reveal the scale of the chunks of space.

    For the scale of chunkiness that Hogan hopes to find, he needs to measure distances to an accuracy of 10-18 meters, about 100 million times smaller than a hydrogen atom, and collect data at a rate of about 100 million readings per second. Amazingly, such an experiment is not only possible, but practical. “We were able to do it pretty cheaply because of advances in photonics, a lot of off the shelf parts, fast electronics, and things like that,” Hogan says. “It’s a pretty speculative experiment, so you wouldn’t have done it unless it was cheap.” The holometer is currently humming away, collecting data at the target accuracy; he expects to have preliminary readings by the end of the year.

    Hogan has his share of fierce skeptics, including many within the theoretical physics community. The reason for the disagreement is easy to appreciate: A success for the holometer would mean failure for a lot of the work being done in string theory. Despite this superficial sparring, though, Hogan and most of his theorist colleagues share a deep core conviction: They broadly agree that general relativity will ultimately prove subordinate to quantum mechanics. The other three laws of physics follow quantum rules, so it makes sense that gravity must as well.

    For most of today’s theorists, though, belief in the primacy of quantum mechanics runs deeper still. At a philosophical—epistemological—level, they regard the large-scale reality of classical physics as a kind of illusion, an approximation that emerges from the more “true” aspects of the quantum world operating at an extremely small scale. Chunky space certainly aligns with that worldview.

    Hogan likens his project to the landmark Michelson-Morley experiment of the 19th century, which searched for the aether—the hypothetical substance of space that, according to the leading theory of the time, transmitted light waves through a vacuum. The experiment found nothing; that perplexing null result helped inspire Einstein’s special theory of relativity, which in turn spawned the general theory of relativity and eventually turned the entire world of physics upside down. Adding to the historical connection, the Michelson-Morley experiment also measured the structure of space using mirrors and a split beam of light, following a setup remarkably similar to Hogan’s.

    “We’re doing the holometer in that kind of spirit. If we don’t see something or we do see something, either way it’s interesting. The reason to do the experiment is just to see whether we can find something to guide the theory,” Hogan says. “You find out what your theorist colleagues are made of by how they react to this idea. There’s a world of very mathematical thinking out there. I’m hoping for an experimental result that forces people to focus the theoretical thinking in a different direction.”

    Whether or not he finds his quantum structure of space, Hogan is confident the holometer will help physics address its big-small problem. It will show the right way (or rule out the wrong way) to understand the underlying quantum structure of space and how that affects the relativistic laws of gravity flowing through it.

    _______________________________________________________________________

    The Black Hole Resolution

    Here on Earth, the clash between the top-down and bottom-up views of physics is playing out in academic journals and in a handful of complicated experimental apparatuses. Theorists on both sides concede that neither pure thought nor technologically feasible tests may be enough to break the deadlock, however. Fortunately, there are other places to look for a more definitive resolution. One of the most improbable of these is also one of the most promising—an idea embraced by physicists almost regardless of where they stand ideologically.

    “Black hole physics gives us a clean experimental target to look for,” says Craig Hogan, a theoretical astrophysicist at the University of Chicago and the director of the Center for Particle Astrophysics at Fermilab. “The issues around quantum black holes are important,” agrees Lee Smolin, a founding member of the Perimeter Institute for Theoretical Physics in Waterloo, Canada.

    Black holes? Really? Granted, these objects are more commonly associated with questions than with answers. They are not things you can create in the laboratory, or poke and prod with instruments, or even study up close with a space probe. Nevertheless, they are the only places in the universe where Hogan’s ideas unavoidably smash into Smolin’s and, more importantly, where the whole of quantum physics collides with general relativity in a way that is impossible to ignore.

    At the outer boundary of the black hole—the event horizon—gravity is so extreme that even light cannot escape, making it an extreme test of how general relativity behaves. At the event horizon, atomic-scale events become enormously stretched out and slowed down; the horizon also divides the physical world into two distinct zones, inside and outside. And there is a very interesting meeting place in terms of the size of a black hole. A stellar-mass black hole is about the size of Los Angeles; a black hole with the mass of the Earth would be roughly the size of a marble. Black holes literally bring the big-small problem in physics home to the human scale.

    The importance of black holes for resolving that problem is the reason why Stephen Hawking and his cohorts debate about them so often and so vigorously. It turns out that we don’t actually need to cozy up close to black holes in order to run experiments with them. Quantum theory implies that a single particle could potentially exist both inside and outside the event horizon, which makes no sense. There is also the question of what happens to information about things that fall into a black hole; the information seems to vanish, even though theory says that information cannot be destroyed. Addressing these contradictions is forcing theoretical physicists to grapple more vigorously than ever before with the interplay of quantum mechanics and general relativity.

    Best of all, the answers will not be confined to the world of theory. Astrophysicists have increasingly sophisticated ways to study the region just outside the event horizon by monitoring the hot, brilliant clouds of particles that swirl around some black holes. An even greater breakthrough is just around the corner: the Event Horizon Telescope. This project is in the process of linking together about a dozen radio dishes from around the world, creating an enormous networked telescope so powerful that it will be able to get a clear look at Sagittarius A*, the massive black hole that resides in the center of our galaxy. Soon, possibly by 2020, the Event Horizon Telescope should deliver its first good portraits. What they show will help constrain the theories of black holes, and so offer telling clues about how to solve the big-small problem.

    Human researchers using football stadium-size radio telescopes, linked together into a planet-size instrument, to study a star-size black hole, to reconcile the subatomic-and-cosmic-level enigma at the heart of physics … if it works, the scale of the achievement will be truly unprecedented.

    Event Horizon Telescope Array

    Event Horizon Telescope map

    The locations of the radio dishes that will be part of the Event Horizon Telescope array. Image credit: Event Horizon Telescope sites, via University of Arizona at https://www.as.arizona.edu/event-horizon-telescope.

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment (APEX)

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    Future Array/Telescopes

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    _______________________________________________________________________

    3
    THE SYNTHESIZER: Black holes are the only place where the whole of quantum physics collides with general relativity in a way that is impossible to ignore. An artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy in the southern constellation of Centaurus. Observations at a European Southern Observatory in Chile have revealed not only the torus of hot dust around the black hole but also a wind of cool material in the polar regions. ESO/M. Kornmesser

    A Really, Really Big Show

    If you are looking for a totally different direction, Smolin of the Perimeter Institute is your man. Where Hogan goes gently against the grain, Smolin is a full-on dissenter: “There’s a thing that Richard Feynman told me when I was a graduate student. He said, approximately, ‘If all your colleagues have tried to demonstrate that something’s true and failed, it might be because that thing is not true.’ Well, string theory has been going for 40 or 50 years without definitive progress.”

    And that is just the start of a broader critique. Smolin thinks the small-scale approach to physics is inherently incomplete. Current versions of quantum field theory do a fine job explaining how individual particles or small systems of particles behave, but they fail to take into account what is needed to have a sensible theory of the cosmos as a whole. They don’t explain why reality is like this, and not like something else. In Smolin’s terms, quantum mechanics is merely “a theory of subsystems of the universe.”

    A more fruitful path forward, he suggests, is to consider the universe as a single enormous system, and to build a new kind of theory that can apply to the whole thing. And we already have a theory that provides a framework for that approach: general relativity. Unlike the quantum framework, general relativity allows no place for an outside observer or external clock, because there is no “outside.” Instead, all of reality is described in terms of relationships between objects and between different regions of space. Even something as basic as inertia (the resistance of your car to move until forced to by the engine, and its tendency to keep moving after you take your foot off the accelerator) can be thought of as connected to the gravitational field of every other particle in the universe.

    That last statement is strange enough that it’s worth pausing for a moment to consider it more closely. Consider a thought problem, closely related to the one that originally led Einstein to this idea in 1907. What if the universe were entirely empty except for two astronauts. One of them is spinning, the other is stationary. The spinning one feels dizzy, doing cartwheels in space. But which one of the two is spinning? From either astronaut’s perspective, the other is the one spinning. Without any external reference, Einstein argued, there is no way to say which one is correct, and no reason why one should feel an effect different from what the other experiences.

    The distinction between the two astronauts makes sense only when you reintroduce the rest of the universe. In the classic interpretation of general relativity, then, inertia exists only because you can measure it against the entire cosmic gravitational field. What holds true in that thought problem holds true for every object in the real world: The behavior of each part is inextricably related to that of every other part. If you’ve ever felt like you wanted to be a part of something big, well, this is the right kind of physics for you. It is also, Smolin thinks, a promising way to obtain bigger answers about how nature really works, across all scales.

    “General relativity is not a description of subsystems. It is a description of the whole universe as a closed system,” he says. When physicists are trying to resolve the clash between relativity and quantum mechanics, therefore, it seems like a smart strategy for them to follow Einstein’s lead and go as big as they possibly can.

    Smolin is keenly aware that he is pushing against the prevailing devotion to small-scale, quantum-style thinking. “I don’t mean to stir things up, it just kind of happens that way. My role is to think clearly about these difficult issues, put my conclusions out there, and let the dust settle,” he says genially. “I hope people will engage with the arguments, but I really hope that the arguments lead to testable predictions.”

    At first blush, Smolin’s ideas sound like a formidable starting point for concrete experimentation. Much as all of the parts of the universe are linked across space, they may also be linked across time, he suggests. His arguments led him to hypothesize that the laws of physics evolve over the history of the universe. Over the years, he has developed two detailed proposals for how this might happen. His theory of cosmological natural selection, which he hammered out in the 1990s, envisions black holes as cosmic eggs that hatch new universes. More recently, he has developed a provocative hypothesis about the emergence of the laws of quantum mechanics, called the principle of precedence—and this one seems much more readily put to the test.

    Smolin’s principle of precedence arises as an answer to the question of why physical phenomena are reproducible. If you perform an experiment that has been performed before, you expect the outcome will be the same as in the past. (Strike a match and it bursts into flame; strike another match the same way and … you get the idea.) Reproducibility is such a familiar part of life that we typically don’t even think about it. We simply attribute consistent outcomes to the action of a natural “law” that acts the same way at all times. Smolin hypothesizes that those laws actually may emerge over time, as quantum systems copy the behavior of similar systems in the past.

    One possible way to catch emergence in the act is by running an experiment that has never been done before, so there is no past version (that is, no precedent) for it to copy. Such an experiment might involve the creation of a highly complex quantum system, containing many components that exist in a novel entangled state. If the principle of precedence is correct, the initial response of the system will be essentially random. As the experiment is repeated, however, precedence builds up and the response should become predictable … in theory. “A system by which the universe is building up precedent would be hard to distinguish from the noises of experimental practice,” Smolin concedes, “but it’s not impossible.”

    Although precedence can play out at the atomic scale, its influence would be system-wide, cosmic. It ties back to Smolin’s idea that small-scale, reductionist thinking seems like the wrong way to solve the big puzzles. Getting the two classes of physics theories to work together, though important, is not enough, either. What he wants to know—what we all want to know—is why the universe is the way it is. Why does time move forward and not backward? How did we end up here, with these laws and this universe, not some others?

    The present lack of any meaningful answer to those questions reveals that “there’s something deeply wrong with our understanding of quantum field theory,” Smolin says. Like Hogan, he is less concerned about the outcome of any one experiment than he is with the larger program of seeking fundamental truths. For Smolin, that means being able to tell a complete, coherent story about the universe; it means being able to predict experiments, but also to explain the unique properties that made atoms, planets, rainbows, and people. Here again he draws inspiration from Einstein.

    “The lesson of general relativity, again and again, is the triumph of relationalism,” Smolin says. The most likely way to get the big answers is to engage with the universe as a whole.

    And the Winner Is …

    If you wanted to pick a referee in the big-small debate, you could hardly do better than Sean Carroll, an expert in cosmology, field theory, and gravitational physics at Caltech. He knows his way around relativity, he knows his way around quantum mechanics, and he has a healthy sense of the absurd: He calls his personal blog Preposterous Universe.

    Right off the bat, Carroll awards most of the points to the quantum side. “Most of us in this game believe that quantum mechanics is much more fundamental than general relativity is,” he says. That has been the prevailing view ever since the 1920s, when Einstein tried and repeatedly failed to find flaws in the counterintuitive predictions of quantum theory. The recent Dutch experiment demonstrating an instantaneous quantum connection between two widely separated particles—the kind of event that Einstein derided as “spooky action at a distance”—only underscores the strength of the evidence.

    Taking a larger view, the real issue is not general relativity versus quantum field theory, Carroll explains, but classical dynamics versus quantum dynamics. Relativity, despite its perceived strangeness, is classical in how it regards cause and effect; quantum mechanics most definitely is not. Einstein was optimistic that some deeper discoveries would uncover a classical, deterministic reality hiding beneath quantum mechanics, but no such order has yet been found. The demonstrated reality of spooky action at a distance argues that such order does not exist.

    “If anything, people under-appreciate the extent to which quantum mechanics just completely throws away our notions of space and locality [the notion that a physical event can affect only its immediate surroundings]. Those things simply are not there in quantum mechanics,” Carroll says. They may be large-scale impressions that emerge from very different small-scale phenomena, like Hogan’s argument about 3-D reality emerging from 2-D quantum units of space.

    Despite that seeming endorsement, Carroll regards Hogan’s holometer as a long shot, though he admits it is removed from his area of research. At the other end, he doesn’t think much of Smolin’s efforts to start with space as a fundamental thing; he regards the notion as absurd as trying to argue that air is more fundamental than atoms. As for what kind of quantum system might take physics to the next level, Carroll remains broadly optimistic about string theory, which he says “seems to be a very natural extension of quantum field theory.” In all these ways, he is true to the mainstream, quantum-based thinking in modern physics.

    Yet Carroll’s ruling, while almost entirely pro-quantum, is not purely an endorsement of small-scale thinking. There are still huge gaps in what quantum theory can explain. “Our inability to figure out the correct version of quantum mechanics is embarrassing,” he says. “And our current way of thinking about quantum mechanics is simply a complete failure when you try to think about cosmology or the whole universe. We don’t even know what time is.” Both Hogan and Smolin endorse this sentiment, although they disagree about what to do in response. Carroll favors a bottom-up explanation in which time emerges from small-scale quantum interactions, but declares himself “entirely agnostic” about Smolin’s competing suggestion that time is more universal and fundamental. In the case of time, then, the jury is still out.

    No matter how the theories shake out, the large scale is inescapably important, because it is the world we inhabit and observe. In essence, the universe as a whole is the answer, and the challenge to physicists is to find ways to make it pop out of their equations. Even if Hogan is right, his space-chunks have to average out to the smooth reality we experience every day. Even if Smolin is wrong, there is an entire cosmos out there with unique properties that need to be explained—something that, for now at least, quantum physics alone cannot do.

    By pushing at the bounds of understanding, Hogan and Smolin are helping the field of physics make that connection. They are nudging it not just toward reconciliation between quantum mechanics and general relativity, but between idea and perception. The next great theory of physics will undoubtedly lead to beautiful new mathematics and unimaginable new technologies. But the best thing it can do is create deeper meaning that connects back to us, the observers, who get to define ourselves as the fundamental scale of the universe.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
  • richardmitnick 9:40 pm on December 3, 2015 Permalink | Reply
    Tags: , FNAL Holometer Experiment,   

    From Symmetry: “Holometer rules out first theory of space-time correlations” 

    Symmetry

    12/03/15
    Andre Salles

    The extremely sensitive quantum-spacetime-measuring tool will serve as a template for continuing scientific exploration.

    1

    Our common sense and the laws of physics assume that space and time are continuous. The Holometer, an experiment based at the US Department of Energy’s Fermi National Accelerator Laboratory, challenges this assumption.

    We know that energy on the atomic level, for instance, is not continuous and comes in small, indivisible amounts. The Holometer was built to test if space and time behave the same way.

    In a new result (1) Search for space-time correlations from the Planck scale with the Fermilab Holometer released this week after a year of data-taking, the Holometer collaboration has announced that it has ruled out one theory of a pixelated universe to a high level of statistical significance.

    If space and time were not continuous, everything would be pixelated, like a digital image.

    When you zoom in far enough, you see that a digital image is not smooth, but made up of individual pixels. An image can only store as much data as the number of pixels allows. If the universe were similarly segmented, then there would be a limit to the amount of information space-time could contain.

    The main theory the Holometer was built to test was posited by Craig Hogan, a professor of astronomy and physics at the University of Chicago and the head of Fermilab’s Center for Particle Astrophysics. The Holometer did not detect the amount of correlated holographic noise—quantum jitter—that this particular model of space-time predicts.

    But as Hogan emphasizes, it’s just one theory, and with the Holometer, this team of scientists has proven that space-time can be probed at an unprecedented level.

    “This is just the beginning of the story,” Hogan says. “We’ve developed a new way of studying space and time that we didn’t have before. We weren’t even sure we could attain the sensitivity we did.”

    The Holometer isn’t much to look at. It’s a small array of lasers and mirrors with a trailer for a control room.

    Temp 1
    During an exceptionally snowy winter, Aaron Chou and Vanderbilt University student Brittany Kamai make their way to the Holometer’s modest home base, a relatively isolated trailer on the Fermilab prairie. Photo by: Reidar Hahn, Fermilab

    But the low-tech look of the device belies the fact that it is an unprecedentedly sensitive instrument, able to measure movements that last only a millionth of a second and distances that are a billionth of a billionth of a meter—a thousand times smaller than a single proton.

    The Holometer uses a pair of laser interferometers placed close to one another, each sending a 1-kilowatt beam of light through a beam splitter and down two perpendicular arms, 40 meters each. The light is then reflected back into the beam splitter where the two beams recombine.

    If no motion has occurred, then the recombined beam will be the same as the original beam. But if fluctuations in brightness are observed, researchers will then analyze these fluctuations to see if the splitter is moving in a certain way, being carried along on a jitter of space itself.

    According to Fermilab’s Aaron Chou, project manager of the Holometer experiment, the collaboration looked to the work done to design other, similar instruments, such as the one used in the Laser Interferometer Gravitational-Wave Observatory [LIGO] experiment.

    Caltech Ligo
    MIT/Caltech Advanced LIGO

    Chou says that once the Holometer team realized that this technology could be used to study the quantum fluctuation they were after, the work of other collaborations using laser interferometers (including LIGO) was invaluable.

    “No one has ever applied this technology in this way before,” Chou says. “A small team, mostly students, built an instrument nearly as sensitive as LIGO’s to look for something completely different.”

    The challenge for researchers using the Holometer is to eliminate all other sources of movement until they are left with a fluctuation they cannot explain. According to Fermilab’s Chris Stoughton, a scientist on the Holometer experiment, the process of taking data was one of constantly adjusting the machine to remove more noise.

    “You would run the machine for a while, take data, and then try to get rid of all the fluctuation you could see before running it again,” he says. “The origin of the phenomenon we’re looking for is a billion billion times smaller than a proton, and the Holometer is extremely sensitive, so it picks up a lot of outside sources, such as wind and traffic.”

    If the Holometer were to see holographic noise that researchers could not eliminate, it might be detecting noise that is intrinsic to space-time, which may mean that information in our universe could actually be encoded in tiny packets in two dimensions.

    The fact that the Holometer ruled out his theory to a high level of significance proves that it can probe time and space at previously unimagined scales, Hogan says. It also proves that if this quantum jitter exists, it is either much smaller than the Holometer can detect, or is moving in directions the current instrument is not configured to observe.

    So what’s next? Hogan says the Holometer team will continue to take and analyze data, and will publish more general and more sensitive studies of holographic noise. The collaboration already released a result related to the study of gravitational waves.

    And Hogan is already putting forth a new model of holographic structure that would require similar instruments of the same sensitivity, but different configurations sensitive to the rotation of space. The Holometer, he says, will serve as a template for an entirely new field of experimental science.

    “It’s new technology, and the Holometer is just the first example of a new way of studying exotic correlations,” Hogan says. “It is just the first glimpse through a newly invented microscope.”

    The Holometer experiment is supported by funding from the DOE Office of Science. The Holometer collaboration includes scientists from Fermilab, the University of Chicago, the Massachusetts Institute of Technology and the University of Michigan.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 10:33 am on April 9, 2015 Permalink | Reply
    Tags: , FNAL Holometer Experiment,   

    From FNAL: “Absence of gravitational-wave signal extends limit on knowable universe” 

    FNAL Home

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    April 9, 2015
    Diana Kwon

    FNAL Holometer
    The Holometer is sensitive to high-frequency gravitational waves, allowing it to look for events such as cosmic strings. Photo: Reidar Hahn

    Imagine an instrument that can measure motions a billion times smaller than an atom that last a millionth of a second. Fermilab’s Holometer is currently the only machine with the ability to take these very precise measurements of space and time, and recently collected data has improved the limits on theories about exotic objects from the early universe.

    Our universe is as mysterious as it is vast. According to Albert Einstein’s theory of general relativity, anything that accelerates creates gravitational waves, which are disturbances in the fabric of space and time that travel at the speed of light [in a vacuum] and continue infinitely into space. Scientists are trying to measure these possible sources all the way to the beginning of the universe.

    The Holometer experiment, based at the Department of Energy’s Fermilab, is sensitive to gravitational waves at frequencies in the range of a million cycles per second. Thus it addresses a spectrum not covered by experiments such as the Laser Interferometer Gravitational-Wave Observatory, which searches for lower-frequency waves to detect massive cosmic events such as colliding black holes and merging neutron stars.

    “It’s a huge advance in sensitivity compared to what anyone had done before,” said Craig Hogan, director of the Center for Particle Astrophysics at Fermilab.

    This unique sensitivity allows the Holometer to look for exotic sources that could not otherwise be found. These include tiny black holes and cosmic strings, both possible phenomena from the early universe that scientists expect to produce high-frequency gravitational waves. Tiny black holes could be less than a meter across and orbit each other a million times per second; cosmic strings are loops in space-time that vibrate at the speed of light.

    The Holometer is composed of two Michelson interferometers that each split a laser beam down two 40-meter arms. The beams reflect off the mirrors at the ends of the arms and travel back to reunite. Passing gravitational waves alter the lengths of the beams’ paths, causing fluctuations in the laser light’s brightness, which physicists can detect.

    3
    A conceptual design of Fermilab’s holometer. Image credit: symmetry magazine

    The Holometer team spent five years building the apparatus and minimizing noise sources to prepare for experimentation. Now the Holometer is taking data continuously, and with an hour’s worth of data, physicists were able to confirm that there are no high-frequency gravitational waves at the magnitude where they were searching.

    The absence of a signal provides valuable information about our universe. Although this result does not prove whether the exotic objects exist, it has eliminated the region of the universe where they could be present.

    “It means that if there are primordial cosmic string loops or tiny black hole binaries, they have to be far away,” Hogan said. “It puts a limit on how much of that stuff can be out there.”

    Detecting these high-frequency gravitational waves is a secondary goal of the Holometer. Its main purpose is to determine whether our universe acts like a 2-D hologram, where information is coded into two-dimensional bits at the Planck scale, a length around ten trillion trillion times smaller than an atom. That investigation is still in progress.

    “For me, it’s gratifying to be able to contribute something new to science,” said researcher Bobby Lanza, who recently earned his Ph.D. conducting research on the Holometer. He is the lead author on an upcoming paper about the result. “It’s part of chipping away at the whole picture of the universe.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:15 pm on April 8, 2014 Permalink | Reply
    Tags: FNAL Holometer Experiment, , ,   

    From Symmetry: “Searching for the holographic universe” 

    April 08, 2014
    Fermilab Leah Hesla
    Leah Hesla

    Physicist Aaron Chou keeps the Holometer experiment—which looks for a phenomenon whose implications border on the unreal—grounded in the realities of day-to-day operations.

    The beauty of the small operation—the mom-and-pop restaurant or the do-it-yourself home repair—is that pragmatism begets creativity. The industrious individual who makes do with limited resources is compelled onto paths of ingenuity, inventing rather than following rules to address the project’s peculiarities.

    As project manager for the Holometer experiment at Fermilab, physicist Aaron Chou runs a show that, though grandiose in goal, is remarkably humble in setup. Operated out of a trailer by a small team with a small budget, it has the feel more of a scrappy startup than of an undertaking that could make humanity completely rethink our universe.

    trailer
    During an exceptionally snowy winter, Aaron Chou and Vanderbilt University student Brittany Kamai make their way to the Holometer’s modest home base, a relatively isolated trailer on the Fermilab prairie. Photo by: Reidar Hahn, Fermilab

    The experiment is based on the proposition that our familiar, three-dimensional universe is a manifestation of a two-dimensional, digitized space-time. In other words, all that we see around us is no more than a hologram of a more fundamental, lower-dimensional reality.

    If this were the case, then space-time would not be smooth; instead, if you zoomed in on it far enough, you would begin to see the smallest quantum bits—much as a digital photo eventually reveals its fundamental pixels.

    In 2009, the GEO600 experiment, which searches for gravitational waves emanating from black holes, was plagued by unaccountable noise. This noise could, in theory, be a telltale sign of the universe’s smallest quantum bits. The Holometer experiment seeks to measure space-time with far more precision than any experiment before—and potentially observe effects from those fundamental bits.

    Such an endeavor is thrilling—but also risky. Discovery would change the most basic assumptions we make about the universe. But there also might not be any holographic noise to find. So for Chou, managing the Holometer means building and operating the apparatus on the cheap—not shoddily, but with utmost economy.

    Thus Chou and his team take every opportunity to make rather than purchase, to pick up rather than wait for delivery, to seize the opportunity and take that measurement when all the right people are available.

    tools
    Some of the Holometer’s parts are ordered custom, and some are homemade. Chou makes sure all of them work together in harmony.
    Photo by: Reidar Hahn, Fermilab

    “It’s kind of like solving a Rubik’s cube,” Chou says. “You have an overview of every aspect of the measurement that you’re trying to make. You have to be able to tell the instant something doesn’t look right, and tell that it conflicts with some other assumption you had. And the instant you have a conflict, you have to figure out a way to resolve it. It’s a lot of fun.”

    Chou is one of the experiment’s 1.5 full-time staff members; a complement of students rounds out a team of 10. Although Chou is essentially the overseer, he runs the experiment from down in the trenches.

    ac
    Aaron Chou, project manager for Fermilab’s Holometer, tests the experiment’s instrumentation.
    Photo by: Reidar Hahn, Fermilab

    The Holometer experimental area, for example, is a couple of aboveground, dirt-covered tunnels whose walls don’t altogether keep out the water after a heavy rain. So any time the area needs the attention of a wet-dry vacuum, he and his team are down on the ground, cheerfully squeegeeing, mopping and vacuuming away.

    ins
    Research takes place as much in the trailer as in the Holometer tunnel, where the instrument itself sits.
    Photo by: Reidar Hahn, Fermilab

    “That’s why I wear such shabby clothes,” he says. “This is not the type of experiment where you sit behind the computer and analyze data or control things remotely all day long. It’s really crawling-around-on-the-floor kind of work, which I actually find to be kind of a relief, because I spent more than a decade sitting in front of a computer for more well-established experiments where the installation took 10 years and most of the resulting experiment is done from behind a keyboard.”

    As a graduate student at Stanford University, Chou worked on the SLD experiment at SLAC National Accelerator Laboratory, writing software to help look for parity violation in Z bosons. As a Fermilab postdoc on the Pierre Auger experiment, he analyzed data on ultra-high-energy cosmic rays.

    Now Chou and his team are down in the dirt, hunting for the universe’s quantum bits. In length terms, these bits are expected to be on the smallest scale of the universe, the Planck scale: 1.6 x 10-35 meters. That’s roughly 10 trillion trillion times smaller than an atom; no existing instrument can directly probe objects that small. If humanity could build a particle collider the size of the Milky Way, we might be able to investigate Planck-scale bits directly.

    The Holometer instead will look for a jitter arising from the cosmos’ minuscule quanta. In the experiment’s dimly lit tunnels, the team built two interferometers, L-shaped configurations of tubes. Beginning at the L’s vertex, a laser beam travels down each of the L’s 40-meter arms simultaneously, bounces off the mirrors at the ends and recombines at the starting point. Since the laser beam’s paths down each arm of the L are the same length, absent a holographic jitter, the beam should cancel itself out as it recombines. If it doesn’t, it could be evidence of the jitter, a disruption in the laser beam’s flight.

    inter
    The light path through a Michelson interferometer. The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the three mirrors. No image credit.

    And why are there two interferometers? The two beam spots’ particular brightening and dimming will match if it’s the looked-for signal.

    “Real signals have to be in sync,” Chou says. “Random fluctuations won’t be heard by both instruments.”

    Should the humble Holometer find a jitter when it looks for the signal—researchers will soon begin the initial search and expect results by 2015—the reward to physics would be extraordinarily high, especially given the scrimping behind the experiment and the fact that no one had to build an impossibly high-energy, Milky Way-sized collider. The data would support the idea that the universe we see around us is only a hologram. It would also help bring together the two thus-far-irreconcilable principles of quantum mechanics and relativity.

    “Right now, so little experimental data exists about this high-energy scale that theorists are unable to construct any meaningful models other than those based on speculation,” Chou says. “Our experiment is really a mission of exploration—to obtain data about an extremely high-energy scale that is otherwise inaccessible.”

    man
    In the Holometer trailer, University of Michigan scientist Dick Gustafson checks a signal from the Holometer during a test.
    Photo by: Reidar Hahn, Fermilab

    What’s more, when the Holometer is up and running, it will be able to look for other phenomena that manifest themselves in the form of high-frequency gravitational waves, including topological defects in our cosmos—areas of tension between large regions in space-time that were formed by the big bang.

    “Whenever you design a new apparatus, what you’re doing is building something that’s more sensitive to some aspect of nature than anything that has ever been built before,” Chou says. “We may discover evidence of holographic jitter. But even if we don’t, if we’re smart about how we use our newly built apparatus, we may still be able to discover new aspects of our universe.”

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.



    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: