Tagged: Extraterrestrial life Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:00 pm on October 21, 2016 Permalink | Reply
    Tags: , , , Extraterrestrial life   

    From Ethan Siegel: “Are We Looking For Aliens In All The Wrong Ways?” 

    10.21.16
    Ethan Siegel

    1
    A modified alien planet might exhibit unique electromagnetic signals, but that might not be the best way to find them. Image credit: flickr user Ryan Somma, under a cc-by-2.0 license.

    A little over 80 years ago, humanity first began broadcasting radio and television signals with enough power that they should leave Earth’s atmosphere and progress deep into interstellar space. If someone living in a distant star system were keeping a vigilant eye out for these signals, they would not only be able to pick them up, but immediately identify them as created by an intelligent species. In 1960, Frank Drake first proposed searching for such signals from other star systems by using large radio dishes, giving rise to SETI: the Search for Extra-Terrestrial Intelligence.

    NAIC/Arecibo Observatory, Puerto Rico, USA
    NAIC/Arecibo Observatory, Puerto Rico, USA

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA
    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA

    FAST radio telescope located in the Dawodang depression in Pingtang county Guizhou Province, South China
    FAST radio telescope located in the Dawodang depression in Pingtang county Guizhou Province, South China

    Yet over the past half-century, we’ve developed far more efficient ways to communicate across the globe than with broadcast radio and TV signals. Does searching for aliens in the electromagnetic spectrum even make sense anymore?

    This question, of course, is extraordinarily speculative, but gives us a chance to look at our own technological progress, and to consider how that might play out elsewhere in the Universe. After all, if someone from a culture that was versed only in smoke signals and drum beats found themselves deep inside the heart of a forest, they might conclude that there was no intelligent life around. Yet if you gave them a cellphone, there’s a good chance they could get reception from right where they stood! Our conclusions may be as biased as the methods we apply.

    The mechanism of electricity only began to be understood in the late 18th century, with the work of Ben Franklin. The power of electricity only began to be harnessed to run electric circuits and other powered devices during the 19th century, and the phenomena associated with classical electromagnetism only became understood through the latter half of that century. The first transmissions of electromagnetic signals for communication didn’t take place until 1895, and the power of radio broadcasts to extend far out into interplanetary and interstellar space wasn’t achieved until the 1930s.

    2
    The reach of our radio signals as of 2011. Image credit: Abstruse Goose.

    The speed of light is quite a limiting thing as well: if our radio signals have been traveling through interstellar space for 80 years, that means that only civilizations within 80 light years of us would have had an opportunity to receive those signals, and that only civilizations within 40 light years would have had the opportunity to receive those signals and send something back to us that we would’ve received by now. If the Fermi Paradox is the question of “where is everyone,” the answer is, “not within 40 light years of us,” which doesn’t tell us very much about intelligent life in the Universe at all.

    While there might be hundreds of billions of stars within our galaxy alone, and around two trillion galaxies in the observable Universe, there are less than 1,000 stars within 40 light years of Earth.

    3
    There are a few dozen stars within 14 light years of Earth; that number rises up to only about 1000 after 40 light years, which is close to the maximum round-trip time of a light signal sent from Earth by humans capable of reaching out into the Universe. Image credit: Wikimedia Commons user Inductiveload.

    And to make matters worse, electromagnetic signals going out from Earth into interstellar space are decreasing, not increasing. Television and radio broadcasts are increasingly being run through cables or via satellite, not from transmission towers here on Earth. By time another century passes, it’s very likely that the signals we sent out (and hence, began looking for) during the 20th century will cease to be emitted from Earth altogether. Perhaps an alien civilization, making note of these observations when the signals do arrive, would draw the conclusion that this blue, watery planet orbiting our star in the great distance actually achieved intelligent, technologically advance life for a short while, and then wiped ourselves out as the signals gradually stopped.

    Or, perhaps, drawing conclusions from what is or isn’t present in any form of electromagnetic signal is altogether wrongheaded.

    4
    The Earth at night emits electromagnetic signals, but it would take a telescope of incredible resolution to create an image like this from light years away. Image credit: NASA’s Earth Observatory/NOAA/DOD.

    If we were to look at Earth from a nearby distance in visible light, there would be no doubts about the fact of whether or not it’s inhabited: the great glow of cities at night is unmistakably a sign of our activity. Yet this light pollution is relatively new, and is something we’re finally learning how to manage and control if we put the effort (i.e., time, money, manpower and resources) into it. There’s no reason not to be optimistic that by the end of the 21st or 22nd centuries, the Earth at night will look no different than it did for billions of years: dark, except for the occasional aurora, lightning storm or erupting volcano.

    5
    The aurora borealis is one such transient feature that can be seen from space… or across the interstellar distances. Image credit: United States Air Force photo by Senior Airman Joshua Strang.

    But if we weren’t looking for electromagnetic signals, what would we look at? Indeed, everything in the known Universe is limited by the speed of light, and any signal created on another world would necessitate that we be able to observe it. These signals — in terms of what could reach us — fall into four categories:

    1. Electromagnetic signals, which include any form of light of any wavelength that would indicate the presence of intelligent life.
    2. Gravitational wave signals, which, if there is one unique to intelligent life, would be detectable with sensitive enough equipment anywhere in the Universe.
    3. Neutrino signals, which — although incredibly low in flux at great distances — would have an unmistakeable signature dependent on the reaction that created them.
    4. And finally, actual, macroscopic space probes, either robotic, computerized, free-floating or inhabited, which made its way towards Earth.

    How remarkable that our science-fiction imaginations focus almost exclusively on the fourth possibility, which is by far the least likely!

    When you think about the vast distances between the stars, how many stars there are with potentially habitable planets (or potentially habitable moons), and how much it takes, in terms of resources, to physically send a space probe from one planet around one star to another planet around another star, it seems literally crazy to consider that method to be a good plan. Far more likely, you’d think, it would be smart to build the right type of detector, to survey all the various regions of the sky, and seek out the signals that could unambiguously show us the presence of intelligent life.

    6
    Long-term average precipitation by month (mm/day and in/day), based on 1961-1990 data, which affects the H2O concentration and therefore the emission spectrum of Earth. Image credit: Wikimedia Commons user PZmaps under a c.c.a.-s.a.-3.0 license.

    In the electromagnetic spectrum, we know what our living world does in response to the seasons. With winters and summers, there are seasonal (and hence, orbital) changes in what electromagnetic signals our planet emits. As the seasons change, so do the colors on various parts of our planet. With a large enough telescope (or array of telescopes), perhaps the individual signs of our civilization could be seen: cities, satellites, airplanes and more. But perhaps the best thing we could look for is alterations of the natural environment, consistent with something that only an intelligent civilization would create.

    7
    An artist’s impression of an ammonia world with an advanced stage of life on it. Yet we must be careful to rule out any natural signals that could mimic what we observe before we conclude, “it’s aliens.” Image credit: Wikimedia Commons user Ittiz, under a c.c.a.-s.a.-3.0 license.

    We haven’t yet done these things, but perhaps large-scale modifications of a planet would be the exact thing we should be looking for, and should be the large-scale projects we’d aspire towards. Remember, any civilization that we find is unlikely to be in their technological infancy like we are. If they survive it and thrive through it, we’ll likely encounter them in a state tens or hundreds of thousands of years more advanced than we are. (And if that doesn’t boggle your mind, consider how much more advanced we are than we were just a few hundred years ago!) But this brings up two other possibilities, too.

    8
    Earlier this year, LIGO announced the first-ever direct detection of gravitational waves. By building a gravitational wave observatory in space, we may be able to reach the sensitivities necessary to detect a deliberate alien signal. Image credit: ESA / NASA and the LISA collaboration.

    ESA/eLISA
    ESA/eLISA

    Perhaps — as our gravitational wave technology becomes set to detect the first signals from the Universe — we’ll discover that there are subtle effects that lend themselves to detection across the cosmos. Perhaps there’s something to be said for a world with tens of thousands of satellites orbiting it, something unique that a gravitational wave detector could spot? We haven’t worked it out in great detail because this field is in its infancy and not yet developed to the point where it could detect such a small signal. But these signals don’t degrade the way electromagnetic ones do, nor is there anything that shields them. Perhaps this new branch of astronomy will be the way to go, hundreds of years from now. But my money’s on the third options, if you want an out-of-the-box thought.

    9
    Reactor nuclear experimental RA-6 (Republica Argentina 6), en marcha, showing the characteristic Cherenkov radiation from the faster-than-light-in-water particles emitted. The reactions also produce copious amounts of antineutrinos. Image credit: Centro Atomico Bariloche, via Pieck Darío.

    What’s likely to be the power source for a sufficiently advanced civilization? I submit to you that it’s nuclear power, most likely fusion power, and most likely a specific type of fusion that’s proven to be efficient, abundant, different from what occurs in the cores of stars, and that emits a very, very specific neutrino (or antineutrino) signature as a by-product. And those neutrinos should come with a very specific, explicit signature as far its energy spectrum goes: one that isn’t produced by any natural process.

    10
    There are many natural neutrino signatures produced by stars and other processes in the Universe. But note the unique and unambiguous signal of “reactor anti-neutrinos.” Image credit: IceCube collaboration / NSF / University of Wisconsin, via https://icecube.wisc.edu/masterclass/neutrinos.

    If we can predict what that signature is, understand it, build a detector for it and measure it, we can find a fusion-powered civilization anywhere, and not have to worry about whether they’re broadcasting or not. So long as they’re making power, we can find them. With SETI focusing solely on electromagnetic signatures, we may, at present, be looking for the cosmic equivalent of smoke signals in a cellphone-filled world. But this likely won’t be the case for long. As our technology continues to advance, our knowledge of what to look for will advance along with it. And perhaps someday — perhaps even someday soon — the Universe may have the most pleasant surprise of all in store for us: the news that we aren’t alone, after all.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
    • Matthew Wright 1:41 pm on October 21, 2016 Permalink | Reply

      Part of the problem is we’ve always looked for aliens ‘in our own image’, which isn’t actually automatic or inevitable despite the long-standing ideas of progressivism that make us think it is. And if there were intelligent aliens out there, who says they’d conduct themselves as we do? Maybe they’re entirely satisfied swimming in their oceans of methane and doing nothing by our standards? But in any case there’s also the vast gulf not just of space, but of time – maybe nearby aliens came and went before we appeared, or won’t turn up until after we’re long gone? When we look at the emerging diversity of the planetary systems we know about, I suspect there’s a high chance of life in various forms (but not as we know them, necessarily) – but also odds are on that we’re the only technical civilisation around just now in our general area of the galaxy. Further away? Maybe, but we’d likely be looking at thousands of years to exchange messages, even if we could detect them (or they us).

      Like

  • richardmitnick 7:25 am on July 1, 2016 Permalink | Reply
    Tags: , , Extraterrestrial life, ,   

    From INVERSE: “Scientists Disproving Alien Megastructure Hypothesis Made a Discovery 

    INVERSE

    INVERSE

    June 29, 2016
    Neel V. Patel

    A joint investigation between scientists from the Center for SETI Research at the SETI Institute and METI International resulted in the discovery of exactly zero radio transmissions emanating from KIC 8462852, aka Tabby’s Star, aka that “alien megastructures” star everyone freaked out about late last year.

    1
    Tabby’s star
    2
    Star KIC 8462852 in infrared (2MASS survey) and ultraviolet (GALEX).

    According to new findings published in The Astrophysical Journal Letters, we still haven’t found signs of extraterrestrial intelligence. Our cold streak continues.

    In case you don’t remember, there was a big hooplah last fall when Jason Wright, an astronomer at Penn State University, dropped a small suggestion that strange stellar light patterns glowing from Tabby’s Star, nearly 1,500 light-years away from Earth, were caused by “alien megastructures,” a catchall phrase for materials artificially placed in orbit. Since then, study after study has basically put that hypothesis to rest, with more reasonable ideas like a family of weird comets garnering more and more support based on new data.

    But science is about making confirmations, so the dutiful scientists at the SETI Institute and METI international came together and used the Boquete Optical SETI Observatory in Panama to determine whether or not the strange dimming patterns were caused by intelligent extraterrestrials, as well as use the Allen Telescope Array in California to measure whether the star system was spewing out any radio signals indicative of advanced technology.

    1
    Boquete Optical SETI Observatory, Province of Chiriquí, Panama

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA
    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA

    “We were looking to see if there are intentional laser signals being beamed at us,” says METI International research and study coauthor Douglas Vakoch. He tells Inverse he and his colleagues were looking for the kinds of signs of technology that us humans on Earth might be capable of building and using to broadcast our presence to the rest of the universe.

    Unfortunately, they did not find any radio signals, and the optical signals found were less than encouraging. No optical signal of a particular period pattern was measured, and the power of the light pulsing from Tabby’s Star didn’t seem characteristic of a laser signal. “If there is a large laser facility kicking out signals of 5 mega-joules or stronger, we would have been able to detect those,” says Vakoch. “We didn’t.”

    Vakoch emphasizes that the results don’t totally discount alien life living in the star system. He and his team were using Boquete during Panama’s rainy season — “the worst possible time,” he says. He acknowledges that the results “don’t say for sure there aren’t extraterrestrials out there.” It’s always possible E.T. is sending weaker signals out or exhibiting patterns stretching across a larger timeframe.

    “But we can say that within the scenario where we could have possibly gotten a signal, we didn’t get one,” says Vakoch.

    Disheartening, sure, but there’s a strong silver lining to the new findings. While SETI research around the world centers in large part around the measure of radio signals, the new investigation allowed the scientists to flex their optics muscles and get practice at looking for signs of E.T. across other frequencies as well. “If we get a signal, there may be different sources of information at different frequencies, so we need to be ready to jump on that,” said Vakoch.

    Moreover, the study demonstrated the feasibility of using even a modest-sized optical telescope to conduct SETI observations. This runs counter to the whole “bigger is better” mentality that permeates space science, and Vakoch thinks the new methodological approaches he and his colleagues outline in their paper illustrate a new model for doing SETI research that is more efficient and sustainable. He says a major goal of METI International, after all, is to answer “how do we sustain the search going forward” as funding for these types of projects drop or become thinned out over more and more initiatives.

    “We still don’t have a natural explanation for what is going on” with Tabby’s Star, says Vakoch. And he doesn’t find that particularly discouraging. “This is the type of ambiguity we can expect if we really got a signal from E.T. It will be a slow unfolding and grappling of the data. So we continue to search for answers.”

    See the full article here .

    READ ABOUT MORE SETI RESEARCH HERE

    1

    Air & Space

    June 2016
    Damond Benningfield

    2
    The Green Bank radio telescope in West Virginia may pull in an alien signal. (Jiuguang Wang)

    Dan Werthimer doesn’t mean to be rude, but he’s getting ready to eavesdrop on the neighbors.

    For decades, astronomers have been listening for messages sent to us—a “Hello, is anyone out there?” signal from intelligent aliens. But now Werthimer is about to get nosier; his team at the University of California at Berkeley is conducting the first search for communities on other worlds that are speaking to one another—between planets and even across star systems. And to do it, he has two of the world’s largest radio telescopes and support from a planet‑hunting optical telescope.

    Thanks to a new initiative announced last July, Werthimer’s team will begin searching for extraterrestrial civilizations, using instruments with greater sensitivity and scanning across a wider range of frequencies than any SETI (search for extraterrestrial intelligence) project to date. Called Breakthrough Listen, it began earlier this year and will continue for a decade at a price tag of $100 million. “It’s a lot of money, a lot of telescope time,” says Werthimer. “We’ll be able to look at a hundred billion radio channels simultaneously. A big problem in SETI is we don’t know on what frequency ET might be transmitting, so the more channels you can listen to, the better chance you have of finding” a communication.

    It’s an incredibly exciting time scientifically,” adds Werthimer’s colleague Andrew Siemion, director of Berkeley’s SETI Research Center and another Breakthrough Listen leader. “Something like one in five stars has an Earth-like planet…. And our ability to look for different kinds of signals from intelligent civilizations on those planets is growing by leaps and bounds.”

    3
    Andrew Siemion eyed the Green Bank Telescope, in the 13,000 square-mile National Radio Quiet Zone, as ideal for SETI research in 2010. (Dr. Andrew P.V. Siemion)

    Even with improvements in technology, though, SETI has remained a tiny area within the field of radio astronomy. “In the entire world, there are probably fewer than 12 people who do full-time SETI research,” according to Seth Shostak, a senior astronomer for the SETI Institute in nearby Mountain View.

    But that small cadre of researchers, with the help of a few dozen part-time SETI dabblers, has plowed through an impressive number of projects. They have scanned the skies at radio and optical wavelengths for intentional messages from other civilizations. Researchers have picked through data from NASA’s planet-hunting Kepler space telescope for evidence of vast architecture eclipsing part of a star’s light. (The public release of one star’s odd light curve last year generated a round of speculation about alien mega-structures. Sadly, followup observations have suggested that the more likely explanation is a swarm of comets.) And they’ve looked for super-civilizations producing copious amounts of waste heat in the form of infrared energy. And the ideas never stop coming: There is a proposal to search for alien probes and artifacts in the solar system (possible payoffs but expensive) and another to listen for signals in beams of neutrinos or the recently discovered gravitational waves (far beyond current technology).

    The bottleneck is never a lack of ideas,” says Shostak. “The problem has always been funding.”

    From the first search for extraterrestrial signals—Frank Drake’s Project Ozma in 1960—SETI has struggled to be taken seriously by traditional funding agencies. Modest NASA studies in the 1970s and 1980s were criticized by the U.S. Congress; in 1993, legislators axed what was meant to be NASA’s long-term sky survey after just a year. Since then the field has survived, barely, primarily on private funding sources.

    Then last summer, Russian billionaire Yuri Milner announced he would foot the bill for the biggest alien hunt in history. “In the 20th century, we stepped out from our planet—to space, to the moon, to the solar system,” Milner said at a press conference for Breakthrough Listen last summer. “In the 21st century, we will find out about life on a galactic scale…. It is time to open our eyes, our ears, and our minds to the cosmos.” Among the luminaries endorsing Milner’s project that day was astrophysicist Stephen Hawking.

    Milner, named after first-human-in-space Yuri Gagarin, was studying physics at Moscow University in the 1980s when the entrepreneurial spirit first hit him. He started buying American-made personal computers and reselling them in local shops, then ventured to the United States to get an MBA. After briefly working at the World Bank, he returned to Russia and began investing in businesses, parlaying the purchase of a small factory into the takeover of the country’s largest Internet company. With that move as an entry to the world of technology, Milner organized a venture capital fund, DST Global, which became an early investor in Facebook, then Twitter, Groupon, and Airbnb, along with major companies in India and China. According to Forbes, by the end of 2015 Milner amassed a net worth of $3.3 billion. In happy news for non-billionaire scientists, Milner started a foundation in 2012 that awards three $3 million prizes annually—the largest academic prize in the world—for achievements in fundamental physics, life sciences, and mathematics.

    He also refuses to give interviews about his latest investment, so we can get a sense of his intentions only from the people now running the Breakthrough Listen project. “He studied physics, he studied the same kind of books in school that I did, so he knows a lot about SETI,” says Werthimer. “He really appreciates all the subtle nuances, and he asks a lot of great questions. He knows the chances that we might find something are slim. But he speaks about this in the long term. He’s in it for the long haul.”

    4
    The Nickel Telescope at California’s Lick Observatory (with SETI’s Dan Werthimer, second from left) will look for lasers. Being used in the Niroseti project (Laurie Hatch)

    Werthimer was already in it for the long haul—he’s been working on SETI for decades, although his original love was the hardware, rather than the research. He’s been a tech junkie since his school days, when he joined the Homebrew Computer Club in California, where his fellow members included Apple founders Steve Jobs and Steve Wozniak. “We were kind of messing around in our basements, and we made the very first desktop,” Werthimer says. “Everybody in that club got filthy rich except for me, because I wanted to use the computers to do astronomy. But I got really good at computing. I built a lot of cool machines that were in some ways better than the Apple, but I never thought about selling them.”

    Werthimer began to build instruments that collect and analyze radio signals from space, and eventually started SETI@Home in 1999, a program that harnesses the background processing power of any computer it’s installed on to help sift through portions of the massive amounts of data from the Arecibo Observatory in Puerto Rico.

    SETI@home, BOINC project at UC Berkeley Space Science Lab
    SETI@home, BOINC project at UC Berkeley Space Science Lab

    NAIC/Arecibo Observatory, Puerto Rico, USA
    NAIC/Arecibo Observatory, Puerto Rico, USA

    And although his work hasn’t revealed any alien civilizations, Werthimer isn’t bothered by the silence. “I wouldn’t be in this field if I were not an optimist,” he says. “We’ve covered maybe a billionth of the parameter space. We can rule out super-civilizations that want to conquer the galaxy”—whew—“but we can’t rule out civilizations like ours.”

    Siemion too developed an early interest in science and technology. “I did a report when I was in third grade on a book by Stephen Hawking, A Brief History of Time,” he says. “When I got to Berkeley I was looking over possible research opportunities, and I discovered that there was a SETI group. I had an ‘aha’ moment—I knew immediately that that’s what I would do.”

    Siemion led his first SETI project while he was still a graduate student. He got the idea in 2010, while he was attending a meeting at the Robert C. Byrd Green Bank Telescope in West Virginia to commemorate the 50th anniversary of Project Ozma. Attendees were re-creating Ozma, which originally used a small radio antenna at the Green Bank location, with the observatory’s new 300-foot-diameter Green Bank Telescope, the largest fully steerable radio telescope in the world. While Ozma took about 150 hours of telescope time, the re-creation required only a few seconds to scan the same amount of sky.

    “I started thinking: Why not do some real SETI with the telescope,” Siemion says. “On the plane back to San Francisco, I met in the aisle with a few other people, and we decided to write a proposal.” The idea was to look at star systems in which the Kepler space telescope had discovered planets. “We actually received not the best grade from the time allocation committee at Green Bank,” he says. “They gave us a C, because I think they were a little bit suspicious about whether we would actually be able to do it, but luckily, even though it wasn’t highly ranked, we still got the time.”

    Breakthrough Listen will take advantage of the data from Siemion’s work with Green Bank, but more importantly, it comes at a crucial time for the observatory. Constructed in a valley in the West Virginia mountains, the Green Bank Telescope opened in 2000 as part of the National Radio Astronomy Observatory. NRAO is funded by the National Science Foundation and runs several facilities, including the Very Large Array in New Mexico and the Atacama Large Millimeter/Submillimeter Array, or ALMA, in Chile (“The Universe’s Baby Boom,” Aug. 2013).

    NRAO/VLA, on the Plains of San Agustin fifty miles west of Socorro, New Mexico.
    NRAO/VLA, on the Plains of San Agustin fifty miles west of Socorro, New Mexico

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array

    But in 2012, NSF issued a report on the next 10 years of astronomy research that recommended pulling Green Bank’s funding by 2017, because some of its research abilities are duplicated at larger facilities like the VLA and Arecibo Observatory. Now SETI—usually the research area struggling for funding—has come along with Breakthrough Listen at just the right moment, providing a reason and the means to keep the telescope operating while its staff looks for additional funding.

    5
    Russian billionaire Yuri Milner announces Breakthrough Listen last July alongside Stephen Hawking, Martin Rees, Frank Drake, and Ann Druyan. (Breakthrough Initiatives)

    One of Green Bank’s advantages is that it’s cocooned in the 13,000-square-mile National Radio Quiet Zone, where radio transmitters, cellphone towers, wifi networks, and other technology are limited by state and federal regulations. Scientists there would have an easier time determining if a signal in their observations is a message from another planet rather than a local teenager’s text. “One of the hardest things to do is tease out a signal from another civilization in the radio observations,” says Karen O’Neil, the Green Bank Observatory site director. “There are a lot of repeating patterns, but they’re all man-made.”

    Green Bank’s receivers are so sensitive they can detect the crackle of spark plugs in a gasoline-powered engine, so only diesel vehicles are allowed within a mile of the dish. The microwave oven in the observatory’s cafeteria sits inside a shielded box, and once the telescope even picked up interference from a small current generated by a wet dog lying down on an old heating pad. Staff members drive around in a pickup truck equipped with scanning equipment to track down stray electromagnetic signals, and sometimes lend a hand to help repair or replace offending devices in nearby businesses and homes.

    SETI is using some of the project funding to expand Green Bank’s computer capabilities far beyond those of any previous radio SETI project. The system will be able to process and store as much data in a single day as existing projects do in a year or more. Then it’s sent out to the SETI team at Berkeley and SETI@Home volunteers for analysis. The extra processing and storage capabilities are necessary because Breakthrough Listen will scan billions of radio channels between 1 and 10 gigahertz. Earlier surveys have been able to scan no more than a few hundred million channels at a time, with about half the spectral range. “We probably have a trillion times better capabilities today than when I started 40 years ago,” says Werthimer.

    That sensitivity should allow the telescopes to pick up intelligent signals not meant for us, something that couldn’t have been done before the Kepler mission provided astronomers with exoplanet locations. “There’s speculation that an advanced civilization might colonize another planet in its own solar system, like we might do with Mars,” says Werthimer. “They might send messages back and forth between planets, and we could pick up the signals when they line up with Earth.” In addition to the nearest million stars to Earth, the SETI group will monitor the densely packed center of the Milky Way galaxy, about 27,000 light-years away. “Our solar system is about five billion years old,” says Werthimer. “Some stars are 10 billion years old, so there could be some very advanced civilizations out there.” And finally, Breakthrough Listen will stretch its search out even farther, to 100 nearby galaxies where super-civilizations might be blasting messages between solar systems.

    7
    SETI will tune into Planet -452b (concept opposite) and other exoplanets found by NASA’s Kepler. (NASA/JPL-Caltech/T. Pyle)

    While the Green Bank Telescope searches in the northern hemisphere, Breakthrough Listen will use the Parkes Telescope near Sydney, Australia, to search the southern sky. The 210-foot movable dish is best known for transmitting most of the Apollo 11 moon landing video for the worldwide television broadcast (the event was fictionalized in the 2000 movie The Dish). The project will use about 20 percent of the observing time on each telescope, a jump from the few dozen cumulative hours SETI usually gets annually to thousands of hours.

    The third facility SETI is using will look instead of listen. The Automated Planet Finder, a 96-inch optical telescope at Lick Observatory, outside San Jose, California, will devote 10 percent of its time to searching for interstellar lasers.

    Lick Automated Planet Finder telescope
    Lick Automated Planet Finder telescope

    “If we took our own highest-powered lasers and paired them with our largest telescopes, we could send a beam that would outshine the sun by a factor of 10 at a distance of 1,000 light-years,” says Siemion. “Perhaps other civilizations are doing that to contact other civilizations, or to transmit a large amount of information.” It would be the equivalent of a Galaxy Wide Web.

    8
    The Parkes Observatory in Australia (opposite) is Breakthrough Listen’s outpost to eavesdrop on alien communication between star systems. (Daniel Sallai)

    Of course, not everyone is optimistic about the chances of Breakthrough Listen or any other SETI project finding evidence of neighboring civilizations, but not necessarily because they don’t believe in aliens. “Listening for intentional messages seems like a lost cause,” says Paul Davies, a researcher at Arizona State University and author of The Eerie Silence, a book that posits that current searches for intelligent life are flawed. “I’ve argued that we should be looking for other things: beacons, or probes, or alien artifacts in our own solar system. We have no idea how a super-civilization would manifest itself. It could be genetic—we could find signs in terrestrial biology…. There’s a good chance we might be alone in the universe. So we should search, but we shouldn’t spend a lot of money on it.”

    Even Werthimer doesn’t expect to hear from extraterrestrials anytime soon. “I’m optimistic in the long run,” he says. “We Earthlings are a young, emerging civilization. We’re just getting in the game, so a thorough search will take a while…. We probably won’t see anything in the next 10 years, so we’ll have to devise a new plan after that. Maybe, if the trend in computing power keeps going, we’ll find ET in 30 years.”

    In the meantime, let the eavesdropping begin.

    See the full article here.

    Prelude to the Breakthrough Project

    UC Santa Cruz
    From UCO Lick
    March 23, 2015

    Hilary Lebow

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    8
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch)

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    4
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:45 pm on May 26, 2016 Permalink | Reply
    Tags: AIR & Space, , , Extraterrestrial life, , , , ,   

    From Air & Space: “SETI Gets an Upgrade” 

    1

    Air & Space

    June 2016
    Damond Benningfield

    2
    The Green Bank radio telescope in West Virginia may pull in an alien signal. (Jiuguang Wang)

    Dan Werthimer doesn’t mean to be rude, but he’s getting ready to eavesdrop on the neighbors.

    For decades, astronomers have been listening for messages sent to us—a “Hello, is anyone out there?” signal from intelligent aliens. But now Werthimer is about to get nosier; his team at the University of California at Berkeley is conducting the first search for communities on other worlds that are speaking to one another—between planets and even across star systems. And to do it, he has two of the world’s largest radio telescopes and support from a planet‑hunting optical telescope.

    Thanks to a new initiative announced last July, Werthimer’s team will begin searching for extraterrestrial civilizations, using instruments with greater sensitivity and scanning across a wider range of frequencies than any SETI (search for extraterrestrial intelligence) project to date. Called Breakthrough Listen, it began earlier this year and will continue for a decade at a price tag of $100 million. “It’s a lot of money, a lot of telescope time,” says Werthimer. “We’ll be able to look at a hundred billion radio channels simultaneously. A big problem in SETI is we don’t know on what frequency ET might be transmitting, so the more channels you can listen to, the better chance you have of finding” a communication.

    It’s an incredibly exciting time scientifically,” adds Werthimer’s colleague Andrew Siemion, director of Berkeley’s SETI Research Center and another Breakthrough Listen leader. “Something like one in five stars has an Earth-like planet…. And our ability to look for different kinds of signals from intelligent civilizations on those planets is growing by leaps and bounds.”

    3
    Andrew Siemion eyed the Green Bank Telescope, in the 13,000 square-mile National Radio Quiet Zone, as ideal for SETI research in 2010. (Dr. Andrew P.V. Siemion)

    Even with improvements in technology, though, SETI has remained a tiny area within the field of radio astronomy. “In the entire world, there are probably fewer than 12 people who do full-time SETI research,” according to Seth Shostak, a senior astronomer for the SETI Institute in nearby Mountain View.

    But that small cadre of researchers, with the help of a few dozen part-time SETI dabblers, has plowed through an impressive number of projects. They have scanned the skies at radio and optical wavelengths for intentional messages from other civilizations. Researchers have picked through data from NASA’s planet-hunting Kepler space telescope for evidence of vast architecture eclipsing part of a star’s light. (The public release of one star’s odd light curve last year generated a round of speculation about alien mega-structures. Sadly, followup observations have suggested that the more likely explanation is a swarm of comets.) And they’ve looked for super-civilizations producing copious amounts of waste heat in the form of infrared energy. And the ideas never stop coming: There is a proposal to search for alien probes and artifacts in the solar system (possible payoffs but expensive) and another to listen for signals in beams of neutrinos or the recently discovered gravitational waves (far beyond current technology).

    The bottleneck is never a lack of ideas,” says Shostak. “The problem has always been funding.”

    From the first search for extraterrestrial signals—Frank Drake’s Project Ozma in 1960—SETI has struggled to be taken seriously by traditional funding agencies. Modest NASA studies in the 1970s and 1980s were criticized by the U.S. Congress; in 1993, legislators axed what was meant to be NASA’s long-term sky survey after just a year. Since then the field has survived, barely, primarily on private funding sources.

    Then last summer, Russian billionaire Yuri Milner announced he would foot the bill for the biggest alien hunt in history. “In the 20th century, we stepped out from our planet—to space, to the moon, to the solar system,” Milner said at a press conference for Breakthrough Listen last summer. “In the 21st century, we will find out about life on a galactic scale…. It is time to open our eyes, our ears, and our minds to the cosmos.” Among the luminaries endorsing Milner’s project that day was astrophysicist Stephen Hawking.

    Milner, named after first-human-in-space Yuri Gagarin, was studying physics at Moscow University in the 1980s when the entrepreneurial spirit first hit him. He started buying American-made personal computers and reselling them in local shops, then ventured to the United States to get an MBA. After briefly working at the World Bank, he returned to Russia and began investing in businesses, parlaying the purchase of a small factory into the takeover of the country’s largest Internet company. With that move as an entry to the world of technology, Milner organized a venture capital fund, DST Global, which became an early investor in Facebook, then Twitter, Groupon, and Airbnb, along with major companies in India and China. According to Forbes, by the end of 2015 Milner amassed a net worth of $3.3 billion. In happy news for non-billionaire scientists, Milner started a foundation in 2012 that awards three $3 million prizes annually—the largest academic prize in the world—for achievements in fundamental physics, life sciences, and mathematics.

    He also refuses to give interviews about his latest investment, so we can get a sense of his intentions only from the people now running the Breakthrough Listen project. “He studied physics, he studied the same kind of books in school that I did, so he knows a lot about SETI,” says Werthimer. “He really appreciates all the subtle nuances, and he asks a lot of great questions. He knows the chances that we might find something are slim. But he speaks about this in the long term. He’s in it for the long haul.”

    4
    The Nickel Telescope at California’s Lick Observatory (with SETI’s Dan Werthimer, second from left) will look for lasers. Being used in the Niroseti project (Laurie Hatch)

    Werthimer was already in it for the long haul—he’s been working on SETI for decades, although his original love was the hardware, rather than the research. He’s been a tech junkie since his school days, when he joined the Homebrew Computer Club in California, where his fellow members included Apple founders Steve Jobs and Steve Wozniak. “We were kind of messing around in our basements, and we made the very first desktop,” Werthimer says. “Everybody in that club got filthy rich except for me, because I wanted to use the computers to do astronomy. But I got really good at computing. I built a lot of cool machines that were in some ways better than the Apple, but I never thought about selling them.”

    Werthimer began to build instruments that collect and analyze radio signals from space, and eventually started SETI@Home in 1999, a program that harnesses the background processing power of any computer it’s installed on to help sift through portions of the massive amounts of data from the Arecibo Observatory in Puerto Rico.

    SETI@home, BOINC project at UC Berkeley Space Science Lab
    SETI@home, BOINC project at UC Berkeley Space Science Lab

    NAIC/Arecibo Observatory, Puerto Rico, USA
    NAIC/Arecibo Observatory, Puerto Rico, USA

    And although his work hasn’t revealed any alien civilizations, Werthimer isn’t bothered by the silence. “I wouldn’t be in this field if I were not an optimist,” he says. “We’ve covered maybe a billionth of the parameter space. We can rule out super-civilizations that want to conquer the galaxy”—whew—“but we can’t rule out civilizations like ours.”

    Siemion too developed an early interest in science and technology. “I did a report when I was in third grade on a book by Stephen Hawking, A Brief History of Time,” he says. “When I got to Berkeley I was looking over possible research opportunities, and I discovered that there was a SETI group. I had an ‘aha’ moment—I knew immediately that that’s what I would do.”

    Siemion led his first SETI project while he was still a graduate student. He got the idea in 2010, while he was attending a meeting at the Robert C. Byrd Green Bank Telescope in West Virginia to commemorate the 50th anniversary of Project Ozma. Attendees were re-creating Ozma, which originally used a small radio antenna at the Green Bank location, with the observatory’s new 300-foot-diameter Green Bank Telescope, the largest fully steerable radio telescope in the world. While Ozma took about 150 hours of telescope time, the re-creation required only a few seconds to scan the same amount of sky.

    “I started thinking: Why not do some real SETI with the telescope,” Siemion says. “On the plane back to San Francisco, I met in the aisle with a few other people, and we decided to write a proposal.” The idea was to look at star systems in which the Kepler space telescope had discovered planets. “We actually received not the best grade from the time allocation committee at Green Bank,” he says. “They gave us a C, because I think they were a little bit suspicious about whether we would actually be able to do it, but luckily, even though it wasn’t highly ranked, we still got the time.”

    Breakthrough Listen will take advantage of the data from Siemion’s work with Green Bank, but more importantly, it comes at a crucial time for the observatory. Constructed in a valley in the West Virginia mountains, the Green Bank Telescope opened in 2000 as part of the National Radio Astronomy Observatory. NRAO is funded by the National Science Foundation and runs several facilities, including the Very Large Array in New Mexico and the Atacama Large Millimeter/Submillimeter Array, or ALMA, in Chile (“The Universe’s Baby Boom,” Aug. 2013).

    NRAO/VLA, on the Plains of San Agustin fifty miles west of Socorro, New Mexico.
    NRAO/VLA, on the Plains of San Agustin fifty miles west of Socorro, New Mexico

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array

    But in 2012, NSF issued a report on the next 10 years of astronomy research that recommended pulling Green Bank’s funding by 2017, because some of its research abilities are duplicated at larger facilities like the VLA and Arecibo Observatory. Now SETI—usually the research area struggling for funding—has come along with Breakthrough Listen at just the right moment, providing a reason and the means to keep the telescope operating while its staff looks for additional funding.

    5
    Russian billionaire Yuri Milner announces Breakthrough Listen last July alongside Stephen Hawking, Martin Rees, Frank Drake, and Ann Druyan. (Breakthrough Initiatives)

    One of Green Bank’s advantages is that it’s cocooned in the 13,000-square-mile National Radio Quiet Zone, where radio transmitters, cellphone towers, wifi networks, and other technology are limited by state and federal regulations. Scientists there would have an easier time determining if a signal in their observations is a message from another planet rather than a local teenager’s text. “One of the hardest things to do is tease out a signal from another civilization in the radio observations,” says Karen O’Neil, the Green Bank Observatory site director. “There are a lot of repeating patterns, but they’re all man-made.”

    Green Bank’s receivers are so sensitive they can detect the crackle of spark plugs in a gasoline-powered engine, so only diesel vehicles are allowed within a mile of the dish. The microwave oven in the observatory’s cafeteria sits inside a shielded box, and once the telescope even picked up interference from a small current generated by a wet dog lying down on an old heating pad. Staff members drive around in a pickup truck equipped with scanning equipment to track down stray electromagnetic signals, and sometimes lend a hand to help repair or replace offending devices in nearby businesses and homes.

    SETI is using some of the project funding to expand Green Bank’s computer capabilities far beyond those of any previous radio SETI project. The system will be able to process and store as much data in a single day as existing projects do in a year or more. Then it’s sent out to the SETI team at Berkeley and SETI@Home volunteers for analysis. The extra processing and storage capabilities are necessary because Breakthrough Listen will scan billions of radio channels between 1 and 10 gigahertz. Earlier surveys have been able to scan no more than a few hundred million channels at a time, with about half the spectral range. “We probably have a trillion times better capabilities today than when I started 40 years ago,” says Werthimer.

    That sensitivity should allow the telescopes to pick up intelligent signals not meant for us, something that couldn’t have been done before the Kepler mission provided astronomers with exoplanet locations. “There’s speculation that an advanced civilization might colonize another planet in its own solar system, like we might do with Mars,” says Werthimer. “They might send messages back and forth between planets, and we could pick up the signals when they line up with Earth.” In addition to the nearest million stars to Earth, the SETI group will monitor the densely packed center of the Milky Way galaxy, about 27,000 light-years away. “Our solar system is about five billion years old,” says Werthimer. “Some stars are 10 billion years old, so there could be some very advanced civilizations out there.” And finally, Breakthrough Listen will stretch its search out even farther, to 100 nearby galaxies where super-civilizations might be blasting messages between solar systems.

    7
    SETI will tune into Planet -452b (concept opposite) and other exoplanets found by NASA’s Kepler. (NASA/JPL-Caltech/T. Pyle)

    While the Green Bank Telescope searches in the northern hemisphere, Breakthrough Listen will use the Parkes Telescope near Sydney, Australia, to search the southern sky. The 210-foot movable dish is best known for transmitting most of the Apollo 11 moon landing video for the worldwide television broadcast (the event was fictionalized in the 2000 movie The Dish). The project will use about 20 percent of the observing time on each telescope, a jump from the few dozen cumulative hours SETI usually gets annually to thousands of hours.

    The third facility SETI is using will look instead of listen. The Automated Planet Finder, a 96-inch optical telescope at Lick Observatory, outside San Jose, California, will devote 10 percent of its time to searching for interstellar lasers.

    Lick Automated Planet Finder telescope
    Lick Automated Planet Finder telescope

    “If we took our own highest-powered lasers and paired them with our largest telescopes, we could send a beam that would outshine the sun by a factor of 10 at a distance of 1,000 light-years,” says Siemion. “Perhaps other civilizations are doing that to contact other civilizations, or to transmit a large amount of information.” It would be the equivalent of a Galaxy Wide Web.

    8
    The Parkes Observatory in Australia (opposite) is Breakthrough Listen’s outpost to eavesdrop on alien communication between star systems. (Daniel Sallai)

    Of course, not everyone is optimistic about the chances of Breakthrough Listen or any other SETI project finding evidence of neighboring civilizations, but not necessarily because they don’t believe in aliens. “Listening for intentional messages seems like a lost cause,” says Paul Davies, a researcher at Arizona State University and author of The Eerie Silence, a book that posits that current searches for intelligent life are flawed. “I’ve argued that we should be looking for other things: beacons, or probes, or alien artifacts in our own solar system. We have no idea how a super-civilization would manifest itself. It could be genetic—we could find signs in terrestrial biology…. There’s a good chance we might be alone in the universe. So we should search, but we shouldn’t spend a lot of money on it.”

    Even Werthimer doesn’t expect to hear from extraterrestrials anytime soon. “I’m optimistic in the long run,” he says. “We Earthlings are a young, emerging civilization. We’re just getting in the game, so a thorough search will take a while…. We probably won’t see anything in the next 10 years, so we’ll have to devise a new plan after that. Maybe, if the trend in computing power keeps going, we’ll find ET in 30 years.”

    In the meantime, let the eavesdropping begin.

    See the full article here.

    Prelude to the Breakthrough Project

    UC Santa Cruz
    From UCO Lick
    March 23, 2015

    Hilary Lebow

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    8
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch)

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    4
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:21 am on May 9, 2016 Permalink | Reply
    Tags: Extraterrestrial life, , ,   

    From INVERSE: “The Search for Extraterrestrial Life Puts Astronomers at Odds, Not in Conflict” 

    INVERSE

    INVERSE

    May 3, 2016
    Neel V. Patel

    Researchers can’t agree on when we’ll find alien life or how we’ll find it. But they are talking it out.

    Seth Shostak, director for the Center of SETI Research at the SETI Institute, once told an audience he was speaking to that he bet humans would find signs of extraterrestrial life within two-dozen years. At a panel entitled “When Will We Find Life Beyond Earth? hosted by the SETI Institute today, he doubled-down on that bet. Based on what exoplanet researchers have been discovering these days, he explained, “current wisdom is that one in five stars may be a locale for life.” The reasonable conclusions based on reasonable extrapolation? We’re going to find life soon.

    But reason sometimes splinters. What was most remarkable out the panel — other than that it was attended by a murderer’s row of astronomical minds — was how much well reasoned disagreement there was. Even the éminence grises of the SETI community, people who have worked together and seem to respect each other, agree on shockingly little. . The event, however, underscored a truth about extraterrestrial, exoplanet, and astrobiology research that isn’t always expressed well to the public: Scientists in the field agree on fact, but not their significance.


    Access mp4 video here . 1 hour 13 minutes

    Shostak, in case you haven’t already discerned, is avowedly optimistic about the finding extraterrestrials — especially intelligent extraterrestrials. His life’s work is dedicated to listening in for radio signals originating from an intelligent source, and he’s very encouraged by the direction the research is going.

    He analogizes SETI research to looking for a needle in a haystack a daunting task, yes, but only if you dont know what you’re. In his mind, there are three major questions: how big is the haystack, how fast we’re able to look through the haystack, and how many needles there are in the damn thing. Shostak thinks we already have answers to the first two — we know relatively how big the universe is and how many stars there are, and we’re able to scan outer space like never before.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey
    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    Our speed at conducting SETI experiments doubles every five years — “and they keep getting faster. We will go through a mission star systems,” within the next two-dozen years, so hes holding tight to his bet.

    So the only question is, how many needles are there anyway — i.e. how many alien civilizations are out there?

    That’s a question better suited for the the other three panelists. Up next: Fergal Mullally, a scientist working with the Kepler Space Telescope at NASA’s Ames Research Center.

    NASA/Kepler Telescope
    NASA/Kepler Telescope

    Given his role, Mullally is primarily interested in exoplanets. He thinks the data from Kepler has created two major effects.

    The first: “In our galaxy, we now know there are more planets than stars out there,” he says.

    Milky Way NASA/JPL-Caltech /ESO R. Hurt
    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Whereas we previously thought of planets as a rare phenomenon, “we now know [planets] are very common.” And the data shows that an estimated two to 25 percent of those star systems are thought to have an Earth-like planet.

    That’s incredible, but lets remember that’s a huge range. Plus, the definition of “Earth-like” encompasses a lot. When scientists use that phrase, they aren’t talking about blue oceans, rolling green hills, and amber waves of grain. They might simply be talking about the bare-bone things that make Earth, well, Earth — liquid water, an atmosphere with some trace amounts of oxygen, a rocky surface, and temperatures that aren’t boiling or causing water to instantly freeze. It’s not a settled science, said Mullally.

    Meanwhile, you have Nathalie Cabrol, an astrobiologist and the director for the Carl Sagan Center at the SETI Institute, specializes in an understanding of what we might find in the solar system.

    Our Solar system, NASA/Chandra
    Our Solar system, NASA/Chandra

    And for her, the key potential demographic of alien life is microbes. “You do have to think of life as a continuum,” says Cabrol — and that means remembering that life starts out as primitive, single-celled organisms.

    Cabrol may be the most vocal enthusiast about astrobiological research on Mars than any other scientists. “This is the first place where we have started to look at habitability,” said Cabrol. “And were going to start to look for life [there] soon, actually.

    Last but not least, the panel feature Mark Showalter, the senior research scientists at the SETI Institute, in the role of skeptic. According to him, life on other planets might be extremely common, or extremely rare. “We don’t know” he said. He emphasizes that it took two billion years to go from single-celled bacterial to multi-cellular humans. And he questions the logic that intelligence is foreordained. When you take into account energy and metabolism, “big brains are not the natural end state of evolution, he said.

    Overall, Showalter thinks we need to take into account the mathematical biases that run contrary to the optimism espoused by the other three panelists. In a tongue-in-cheek compromise, he expressed his belief the odds of finding E.T. were 50-50.

    Nevertheless, the search for alien life will continue with unbridled excitement. And how could it not? We’re finding more and more exoplanets that look that might be habitable in some capacity.

    Habitable planets Current Potential Planetary Habitability Laboratory U Puerto Rico Arecibo
    Habitable planets Current Potential Planetary Habitability Laboratory U Puerto Rico Arecibo

    Even private citizens are gearing up to get in on the search, such as in the recent launch of the Breakthrough Starshot initiative.

    What’s perhaps most exciting, however, is that we don’t know what might stumble upon. The possibilities are nearly endless. “We are searching for something we don’t know,” Cabrol told the audience Tuesday. And, in a sense, that’s always been true.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:36 pm on March 31, 2016 Permalink | Reply
    Tags: , , , Extraterrestrial life, ,   

    From SETI: “New Search for Signals from 20,000 Star Systems Begins” 


    SETI Institute

    March 30 2016
    No writer credit found

    The SETI Institute has inaugurated a greatly expanded hunt for deliberately produced radio signals that would indicate the presence of extraterrestrial intelligence. Over the course of the next two years, it will scrutinize the vicinities of 20,000 so-called red dwarf stars.

    SETI/Allen Telescope Array
    SETI/Allen Telescope Array

    “Red dwarfs – the dim bulbs of the cosmos – have received scant attention by SETI scientists in the past,” notes Institute engineer Jon Richards. “That’s because researchers made the seemingly reasonable assumption that other intelligent species would be on planets orbiting stars similar to the Sun.”

    This conservative assessment was bolstered by the argument that few planets were likely to be found in the habitable zone of a red dwarf star, simply because that zone is far narrower than for brighter stars like the Sun. Additionally, any worlds that were in this zone would be orbiting so close to their suns that they would quickly become tidally locked – with one hemisphere perpetually facing the star. It was assumed that this would produce a planet that was intolerably hot on one side, and brutally cold on the other, ruling it out as an abode for life.

    However, more recent research has indicated that, if these worlds have oceans and atmospheres, heat would be transported from the lit side to the dark, and a significant fraction of the planet would be habitable. In addition, exoplanet data have suggested that somewhere between one sixth and one half of red dwarf stars have planets in their habitable zones, a percentage comparable to, and possibly greater, than for Sun-like stars.

    “Significantly, three-fourths of all stars are red dwarfs,” notes SETI Institute astronomer Seth Shostak. “That means that if you observe a finite set of them – say the nearest twenty thousand – then on average they will be at only half the distance of the nearest twenty thousand Sun-like stars.”

    Closer stars mean that any signals would be stronger.

    Also, red dwarfs burn for a period of time that’s greater than the current age of the universe: every red dwarf ever born is still shining today. They are, on average, billions of years older than stars than Sun-like stars.

    “This may be one instance in which older is better,” Shostak says. “Older solar systems have had more time to produce intelligent species.”

    The search is being conducted on the SETI Institute’s Allen Telescope Array, located in the Cascade Mountains of northern California. This grouping of 42 antennas can currently observe three stars simultaneously.

    “We’ll scrutinize targeted systems over several frequency bands between 1 and 10 GHz,” says Institute scientist Gerry Harp. “Roughly half of those bands will be at so-called ‘magic frequencies’ – places on the radio dial that are directly related to basic mathematical constants. It’s reasonable to speculate that extraterrestrials trying to attract attention might generate signals at such special frequencies.”

    The new red dwarf survey is planned to take two years. Targets are being chosen from a list of approximately 70,000 red dwarfs compiled by Boston University astronomer Andrew West. The search will also incorporate relevant new data as generated by NASA’s TESS (Transiting Exoplanet Survey Satellite) project, which will examine nearby stars, including red dwarfs, for planets.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: