Tagged: Exoplanets Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:28 am on December 23, 2020 Permalink | Reply
    Tags: "Space weather in Proxima’s vicinity dims hopes of habitable worlds", , , , , , Exoplanets, ,   

    From University of Sydney (AU) via EarthSky: “Space weather in Proxima’s vicinity dims hopes of habitable worlds” 

    U Sidney bloc

    From University of Sydney (AU)

    via

    1

    EarthSky

    December 23, 2020
    Paul Scott Anderson

    Astronomers used radio waves to study conditions in the vicinity of Proxima Centauri, the nearest star to our sun. The results suggest Proxima’s 2 known planets are likely bathed in intense radiation from this star, casting doubt on the planets’ potential for life.

    Centauris Alpha Beta Proxima, 27 February 2012. Skatebiker.

    1
    Artist’s concept of huge flares on Proxima Centauri, which unleash ionizing radiation. This radiation could be dangerous for any possible life on planets orbiting close to the star. Image via NASA/ ESA/ G. Bacon (STScI)/ Phys.org.

    This month, even as some astronomers are talking about a possible mystery radio signal from Proxima Centauri – a signal of interest to astronomers who search for intelligent life beyond Earth – other astronomers are talking about space weather in the vicinity of this star, which is the nearest star to our sun. Space weather in Proxima’s vicinity, they are saying, might make life on its planets difficult or even impossible.

    What is space weather?

    When we hear about weather, we might think of Earth – sun, clouds, rain, wind and so on – or we might think about conditions on other planets or moons that have atmospheres. Space weather isn’t about that. It’s a sort of “weather” that originates in stars, including our own sun, and that permeates the space near a star. Space weather consists of ionizing radiation released during flares on the sun, or other stars.

    Space weather. Credit: NASA.

    The radiation can be deadly for any life forms that may exist on distant planets. That’s especially true, astronomers say, for red dwarf stars, which have more frequent flares than our sun. Red dwarf stars can be very volatile. Proxima Centauri is a red dwarf star.

    Astronomers at the University of Sydney in Australia announced the new study on December 10, 2020. These researchers used radio waves to detect and probe the space weather in Proxima’s vicinity. Our sun’s nearest neighbor at only 4.2 light-years away, Proxima is known to have at least two planets orbiting it. One, Proxima Centauri b, is almost the same mass as Earth and the other, Proxima Centauri c, is about seven times more massive. Proxima Centauri b also orbits within its stars’ habitable zone, where temperatures might allow liquid water to exist on planet’s surface. Sounds promising, right? But the new findings about flares on stars like Proxima suggests a grim prospect for life on the planets in this system.

    The researchers published their peer-reviewed findings in The Astronomical Journal on December 9.

    These astronomers worked with CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP) telescope in Western Australia and the Zadko Telescope at the University of Western Australia, as well as other instruments. Tara Murphy of the University of Sydney helped lead the study.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    3
    The Zadko telescope is used by staff at the University of Western Australia and scientists in France. Credit: ABC Radio Perth: Emma Wynne.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Sydney (AU)
    Our founding principle as Australia’s first university, U Sydney was that we would be a modern and progressive institution. It’s an ideal we still hold dear today.

    When Charles William Wentworth proposed the idea of Australia’s first university in 1850, he imagined “the opportunity for the child of every class to become great and useful in the destinies of this country”.

    We’ve stayed true to that original value and purpose by promoting inclusion and diversity for the past 160 years.

    It’s the reason that, as early as 1881, we admitted women on an equal footing to male students. Oxford University didn’t follow suit until 30 years later, and Jesus College at Cambridge University did not begin admitting female students until 1974.

    It’s also why, from the very start, talented students of all backgrounds were given the chance to access further education through bursaries and scholarships.

    Today we offer hundreds of scholarships to support and encourage talented students, and a range of grants and bursaries to those who need a financial helping hand.

     
  • richardmitnick 8:36 am on September 14, 2020 Permalink | Reply
    Tags: , Exoplanets, ,   

    From Arizona State University via Science Alert: “Myriad Exoplanets in Our Galaxy Could Be Made of Diamond And Rock” 


    From Arizona State University

    via

    ScienceAlert

    Science Alert

    14 SEPTEMBER 2020
    MICHELLE STARR

    1
    (Shim/ASU/Vecteezy)

    Here in the Solar System, we have quite an interesting variety of planets, but they are limited by the composition of our Sun. Since the planets, moons, asteroids and other bodies are made out of what was left over after the Sun was finished forming, their chemistry is thought to be related to our host.

    But not all stars are made out of the same stuff as our Sun, which means that out there in the wide expanses of our galaxy, we can expect to find exoplanets wildly different from the offering in our little Solar System.

    For example, stars that are rich in carbon compared to our Sun – with more carbon than oxygen – could have exoplanets that are made primarily of diamond, with a little bit of silica, if the conditions are just right. And now, in a lab, scientists have squished and heated silicon carbide to find out what those conditions could be.

    “These exoplanets are unlike anything in our Solar System,” said geophysicist Harrison Allen-Sutter of Arizona State University’s School of Earth and Space Exploration.

    The idea that stars with a higher carbon-to-oxygen ratio than the Sun might produce diamond planets first emerged with the discovery of 55 Cancri e [The Astrophysical Journal Letters], a super-Earth exoplanet orbiting a star thought to be rich in carbon 41 light-years away.

    It was later discovered that this star wasn’t as carbon-rich as previously thought [The Astronomical Journal], which put paid to that idea – at least as far as 55 Cancri e is concerned.

    But between 12 and 17 percent of planetary systems could be located around carbon-rich stars – and with thousands of exoplanet-hosting stars identified to date, the diamond planet seems a distinct possibility.

    Scientists have already explored and confirmed the idea that such planets are likely to be composed primarily of carbides, compounds of carbon and other elements. If such a planet was rich in silicon carbide, the researchers hypothesised, and if water was present to oxidise the silicon carbide and convert it into silicon and carbon, then with sufficient heat and pressure, the carbon could become diamond.

    In order to confirm their hypothesis, they turned to a diamond anvil cell, a device used to squeeze small samples of material to very high pressures.

    They took minute samples of silicon carbide and immersed them in water. Then, the samples were placed in the diamond anvil cell, which squeezed them to pressures up to 50 gigapascals – about half a million times Earth’s atmospheric pressure at sea level. After the samples had been squeezed, the team heated them with lasers.

    In all, they conducted 18 runs of the experiment – and they found that, just as they had predicted, at high heat and high pressure, their silicon carbide samples reacted with water to convert into silica and diamond.

    Thus, the researchers concluded that at temperatures of up to 2,500 Kelvin, and pressures up to 50 gigapascals, in the presence of water, silicon carbide planets could become oxidised, and have their interior compositions dominated by silica and diamond.

    If we could identify these planets – perhaps by their density profiles, and the composition of their stars – we could therefore rule them out as planets that could host life.

    Their interiors, the researchers said, would be too hard for geological activity, and their composition would make their atmospheres inhospitable to life as we know it.

    “This is one additional step in helping us understand and characterise our ever-increasing and improving observations of exoplanets,” Allen-Sutter said.

    “The more we learn, the better we’ll be able to interpret new data from upcoming future missions like the James Webb Space Telescope and the Nancy Grace Roman Space Telescope to understand the worlds beyond on our own Solar System.”

    The research has been published in The Planetary Science Journal.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    ASU is the largest public university by enrollment in the United States. Founded in 1885 as the Territorial Normal School at Tempe, the school underwent a series of changes in name and curriculum. In 1945 it was placed under control of the Arizona Board of Regents and was renamed Arizona State College. A 1958 statewide ballot measure gave the university its present name.
    ASU is classified as a research university with very high research activity (RU/VH) by the Carnegie Classification of Institutions of Higher Education, one of 78 U.S. public universities with that designation. Since 2005 ASU has been ranked among the Top 50 research universities, public and private, in the U.S. based on research output, innovation, development, research expenditures, number of awarded patents and awarded research grant proposals. The Center for Measuring University Performance currently ranks ASU 31st among top U.S. public research universities.

    ASU awards bachelor’s, master’s and doctoral degrees in 16 colleges and schools on five locations: the original Tempe campus, the West campus in northwest Phoenix, the Polytechnic campus in eastern Mesa, the Downtown Phoenix campus and the Colleges at Lake Havasu City. ASU’s “Online campus” offers 41 undergraduate degrees, 37 graduate degrees and 14 graduate or undergraduate certificates, earning ASU a Top 10 rating for Best Online Programs. ASU also offers international academic program partnerships in Mexico, Europe and China. ASU is accredited as a single institution by The Higher Learning Commission.

     
  • richardmitnick 6:38 am on August 21, 2020 Permalink | Reply
    Tags: "The Impact of Land on an Ocean World’s Habitability", , , , , , Exoplanets,   

    From AAS NOVA: “The Impact of Land on an Ocean World’s Habitability” 

    AASNOVA

    From AAS NOVA

    19 August 2020
    Susanna Kohler

    1
    Artist’s illustration of the view from a water-covered exoplanet. [David A. Aguilar/CfA]

    Which habitable-zone planets can actually support life? A recent study uses a nearby planet — Proxima Centauri b — to examine how the presence and size of a land mass impacts the habitability of an ocean world.

    A Target for Potential Life

    In our galaxy, roughly 80% of stars are cool, dim M dwarfs — and one in six of these is thought to host an Earth-sized planet in its habitable zone. But being in a star’s habitable zone doesn’t guarantee a planet’s habitability! M-dwarf habitable-zone planets present valuable targets for observations and models to better understand which of these worlds can support life.

    Most habitable-zone planets around M dwarfs are likely tidally locked: one side of the planet experiences constant day; the other, constant night. Nominally, this would cause only one region of the planet to be heated — the point closest to the star — and the rest of the planet would be locked in darkness and ice. But if the planet is covered in a dynamic ocean, heat can be transported around the planet via ocean currents, affecting the potential habitability of the world.

    Do continents get in the way of this heat transport? And how do land masses affect the circulation of nutrients in the ocean, critical for sustaining ocean-based photosynthetic life? A new study explores the particular case of a tidally locked ocean planet with a continent — and it uses the nearby Proxima Centauri b as a model to do so.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Modeling a Nearby World

    At just 4.2 light-years away, Proxima b is the closest known exoplanet and presents an excellent target for future follow-up observations. This habitable-zone M-dwarf planet is probably tidally locked, and estimates of its density have led to speculation that the planet is covered in a large ocean.

    2
    Possible depiction of Proxima Centauri b. Credit: ESO M. Kornmesser

    3
    Ocean heat transport in the authors’ models for varying continent size; from top to bottom, continents (noted as the white rectangle in the figure) cover 0%, 4%, 22%, and 39% of the planet surface. Continents at the substellar point inhibit ocean heat transport. [Adapted from Salazar et al. 2020]

    In a recent publication led by Andrea Salazar, a team of scientists from the University of Chicago has used a general circulation model to explore how heat and nutrients are transported on an ocean-covered, tidally locked Proxima b — both with and without the presence of a land mass in the ocean.

    Salazar and collaborators placed a continent at the point on the planet closest to the star — because land masses are thought to migrate to the planet–star axis over time — and tested a range of continent sizes, covering from 0 to 40% of the total planet surface.

    Promising Outcomes

    The authors find that the presence of a continent decreases how efficiently heat and nutrients are transported from the dayside to the nightside of the planet — the larger the continent, the less efficient the transport. Nonetheless, in all cases, an ice-free ocean is maintained on the planetary dayside, and nutrients are circulated and delivered to the layer of the ocean where photosynthesis is viable, providing ideal conditions for photosynthetic marine life.

    This work suggests that the presence of both a dynamic ocean and continents won’t decrease the habitability prospects of tidally locked planets like Proxima b. This is good news as we prepare for future observations with the James Webb Space Telescope, which may provide further insight into this nearby, potentially habitable world and others like it.

    Citation

    “The Effect of Substellar Continent Size on Ocean Dynamics of Proxima Centauri b,” Andrea M. Salazar et al 2020 ApJL 896 L16.
    https://iopscience.iop.org/article/10.3847/2041-8213/ab94c1

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 8:56 am on July 4, 2020 Permalink | Reply
    Tags: , , , Exoplanets, , , TESS mission discovers massive ice giant", The exoplanet UCF-1.01, TOI-849 b is the most massive Neptune-sized planet discovered to date and the first to have a density that is comparable to Earth.   

    From MIT News: “TESS mission discovers massive ice giant” 

    MIT News

    From MIT News

    July 1, 2020
    Jennifer Chu

    1
    In our solar system, the “ice giants” Neptune and Uranus are far less dense than rocky Venus and Earth. But astrophysicists on NASA’s TESS mission have now found an exoplanet, TOI-849b, that appears to be 40 times more massive than Earth, yet just as dense. This illustration depicts the exoplanet, UCF-1.01. Like TOI-849b, this exoplanet also orbits close to a star and is like “hot Neptune.” Image credit: NASA/JPL-Caltech.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    The “ice giant” planets Neptune and Uranus are much less dense than rocky, terrestrial planets such as Venus and Earth. Beyond our solar system, many other Neptune-sized planets, orbiting distant stars, appear to be similarly low in density.

    Now, a new planet discovered by NASA’s Transiting Exoplanet Survey Satellite, TESS, seems to buck this trend. The planet, named TOI-849 b, is the 749th “TESS Object of Interest” identified to date. Scientists spotted the planet circling a star about 750 light years away every 18 hours, and estimate it is about 3.5 times larger than Earth, making it a Neptune-sized planet. Surprisingly, this far-flung Neptune appears to be 40 times more massive than Earth and just as dense.

    TOI-849 b is the most massive Neptune-sized planet discovered to date, and the first to have a density that is comparable to Earth.

    “This new planet is more than twice as massive as our own Neptune, which is really unusual,” says Chelsea Huang, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research, and a member of the TESS science team. “Imagine if you had a planet with Earth’s average density, built up to 40 times the Earth’s mass. It’s quite crazy to think what’s happening at the center of a planet with that kind of pressure.”

    The discovery is reported today in the journal Nature. The study’s authors include Huang and members of the TESS science team at MIT.

    A blasted Jupiter?

    Since its launch on April 18, 2018, the TESS satellite has been scanning the skies for planets beyond our solar system. The project is one of NASA’s Astrophysics Explorer missions and is led and operated by MIT. TESS is designed to survey almost the entire sky by pivoting its view every month to focus on a different patch of the sky as it orbits the Earth. As it scans the sky, TESS monitors the light from the brightest, nearest stars, and scientists look for periodic dips in starlight that may signal that a planet is crossing in front of a star.

    Data taken by TESS, in the form of a star’s light curve, or measurements of brightness, is first made available to the TESS science team, an international, multi-institute group of researchers led by scientists at MIT. These researchers get a first look at the data to identify promising planet candidates, or TESS Objects of Interest. These are shared publicly with the general scientific community along with the TESS data for further analysis.

    For the most part, astronomers focus their search for planets on the nearest, brightest stars that TESS has observed. Huang and her team at MIT, however, recently had some extra time to look over data during September and October of 2018, and wondered if anything could be found among the fainter stars. Sure enough, they discovered a significant number of transit-like dips from a star 750 light years away, and soon after, confirmed the existence of TOI-849 b.

    “Stars like this usually don’t get looked at carefully by our team, so this discovery was a happy coincidence,” Huang says.

    Follow-up observations of the faint star with a number of ground-based telescopes further confirmed the planet and also helped to determine its mass and density.

    Huang says that TOI-849 b’s curious proportions are challenging existing theories of planetary formation.

    “We’re really puzzled about how this planet formed,” Huang says. “All the current theories don’t fully explain why it’s so massive at its current location. We don’t expect planets to grow to 40 Earth masses and then just stop there. Instead, it should just keep growing, and end up being a gas giant, like a hot Jupiter, at several hundreds of Earth masses.”

    One hypothesis scientists have come up with to explain the new planet’s mass and density is that perhaps it was once a much larger gas giant, similar to Jupiter and Saturn — planets with more massive envelopes of gas that enshroud cores thought to be as dense as the Earth.

    As the TESS team proposes in the new study, over time, much of the planet’s gassy envelope may have been blasted away by the star’s radiation — not an unlikely scenario, as TOI-849 b orbits extremely close to its host star. Its orbital period is just 0.765 days, or just over 18 hours, which exposes the planet to about 2,000 times the solar radiation that Earth receives from the sun. According to this model, the Neptune-sized planet that TESS discovered may be the remnant core of a much more massive, Jupiter-sized giant.

    “If this scenario is true, TOI-849 b is the only remnant planet core, and the largest gas giant core known to exist,” says Huang. “This is something that gets scientists really excited, because previous theories can’t explain this planet.”

    This research was funded, in part, by NASA.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 3:58 pm on June 16, 2020 Permalink | Reply
    Tags: "As many as six billion Earth-like planets in our galaxy according to new estimates", , , , , Exoplanets, Kepler data continues to deliver.,   

    From University of British Columbia: “As many as six billion Earth-like planets in our galaxy, according to new estimates” 

    U British Columbia bloc

    From University of British Columbia

    via


    From phys.org

    June 16, 2020

    To be considered Earth-like, a planet must be rocky, roughly Earth-sized and orbiting Sun-like (G-type) stars. It also has to orbit in the habitable zones of its star—the range of distances from a star in which a rocky planet could host liquid water, and potentially life, on its surface.

    1
    Artist’s conception of Kepler telescope observing planets transiting a distant star. Credit: NASA Ames/W Stenzel.

    “My calculations place an upper limit of 0.18 Earth-like planets per G-type star,” says UBC researcher Michelle Kunimoto, co-author of the new study in The Astronomical Journal. “Estimating how common different kinds of planets are around different stars can provide important constraints on planet formation and evolution theories, and help optimize future missions dedicated to finding exoplanets.”

    According to UBC astronomer Jaymie Matthews: “Our Milky Way has as many as 400 billion stars, with seven percent of them being G-type. That means less than six billion stars may have Earth-like planets in our Galaxy.”

    Previous estimates of the frequency of Earth-like planets range from roughly 0.02 potentially habitable planets per Sun-like star, to more than one per Sun-like star.

    Typically, planets like Earth are more likely to be missed by a planet search than other types, as they are so small and orbit so far from their stars. That means that a planet catalog represents only a small subset of the planets that are actually in orbit around the stars searched. Kunimoto used a technique known as ‘forward modeling’ to overcome these challenges.

    “I started by simulating the full population of exoplanets around the stars Kepler searched,” she explained. “I marked each planet as ‘detected’ or ‘missed’ depending on how likely it was my planet search algorithm would have found them. Then, I compared the detected planets to my actual catalog of planets. If the simulation produced a close match, then the initial population was likely a good representation of the actual population of planets orbiting those stars.”

    Kunimoto’s research also shed more light on one of the most outstanding questions in exoplanet science today: the ‘radius gap’ of planets. The radius gap demonstrates that it is uncommon for planets with orbital periods less than 100 days to have a size between 1.5 and two times that of Earth. She found that the radius gap exists over a much narrower range of orbital periods than previously thought. Her observational results can provide constraints on planet evolution models that explain the radius gap’s characteristics.

    Previously, Kunimoto searched archival data from 200,000 stars of NASA’s Kepler mission. She discovered 17 new planets outside of the Solar System, or exoplanets, in addition to recovering thousands of already known planets.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U British Columbia Campus

    The University of British Columbiais a global centre for research and teaching, consistently ranked among the 40 best universities in the world. Since 1915, UBC’s West Coast spirit has embraced innovation and challenged the status quo. Its entrepreneurial perspective encourages students, staff and faculty to challenge convention, lead discovery and explore new ways of learning. At UBC, bold thinking is given a place to develop into ideas that can change the world.

     
  • richardmitnick 11:15 am on May 28, 2020 Permalink | Reply
    Tags: , , , , , Exoplanets, Possible disintegrating planet in the nearby planetary system DMPP-1.   

    From AAS NOVA: ” Are We Watching a Planet Disintegrate?” 

    AASNOVA

    From AAS NOVA

    27 May 2020
    Susanna Kohler

    1
    Artist’s illustration of the possible disintegrating planet in the nearby planetary system DMPP-1. [Mark A. Garlick/Haswell/ Barnes/Staab/Open University]

    Among the wealth of exoplanets we’ve discovered beyond our solar system, some are temperate, some less so. New observations have now revealed what may be a particularly inhospitable environment: a planet literally disintegrating as it orbits its host.

    2
    Artist’s illustration of another DMPP-discovered planetary system, DMPP-2. [Mark A. Garlick/Haswell/ Barnes/Staab/Open University]

    Peering Through the Shroud

    With initial observations in 2015, the Dispersed Matter Planet Project (DMPP) promised an innovative approach to hunting for exoplanets closely orbiting their hosts. Using high-cadence, high-precision radial velocity measurements, the project targets bright nearby stars that shows signatures of being shrouded in hot circumstellar gas. By looking for tiny radial-velocity wiggles in the star’s signal, the DMPP team hopes to detect small planets that are losing mass as they orbit close to their hot hosts.

    Radial Velocity Method-Las Cumbres Observatory

    In December 2019, DMPP announced its first discoveries: six planets orbiting around three different target stars. Now, in a new publication led by scientist Mark Jones (The Open University, UK), the team has revisited the first of these systems, DMPP-1, with follow-up photometry from the Transiting Exoplanet Survey Satellite (TESS).

    NASA/MIT TESS replaced Kepler in search for exoplanets

    Intriguingly, the radial-velocity-detected planets are not the only signals from this system.

    Missing the Expected, but Finding the Unexpected

    DMPP-1 is a 2-billion-year-old star located just over 200 light-years away. The radial-velocity observations of this system revealed the gravitational tugs of four planets all orbiting with periods of less than 19 days. The radial-velocity data suggest that this system is probably near edge-on and contains three super-Earths and one Neptune-like planet.

    Jones and collaborators began their photometric follow-up by searching TESS data for evidence of these four planets transiting across the host star’s face. Interestingly, they found no sign of transits at the predicted periods — indicating that the four radial-velocity planets are either smaller than expected, or that the system isn’t quite edge-on after all, so the planets don’t pass directly in front of the star.

    The authors did, however, find a new signal: a weak transit detection with a period of just ~3.3 days. This signal doesn’t match any of the known radial-velocity planets.

    A Disappearing Planet?

    What might this marginal detection be? Its variable transit depths, short period, and apparent small size are all consistent with a catastrophically disintegrating exoplanet — a close-in, small, rocky planet that is so irradiated by its host that its rocky surface is being sublimated. As time goes on, such a planet will eventually disintegrate into nothing.

    This transit signal still needs to be confirmed with additional follow-up photometric observations. Assuming it proves to be a true detection, however, such a disintegrating, rocky planet orbiting a bright nearby star would provide a veritable gold mine of information.

    By exploring the transit signals from DMPP-1 with future technology like the James Webb Space Telescope, we will be able to examine the composition of the ablated material, potentially revealing clues as to how hot, rocky inner planets form and evolve.

    Citation

    “A Possible Transit of a Disintegrating Exoplanet in the Nearby Multiplanet System DMPP-1,” Mark H. Jones et al 2020 ApJL 895 L17.
    https://iopscience.iop.org/article/10.3847/2041-8213/ab8f2b

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 1:28 pm on May 15, 2020 Permalink | Reply
    Tags: , , , Carole Haswell, , , , Exoplanets   

    From ESOblog: “Hunting hot exoplanets” 

    ESO 50 Large

    From ESOblog

    15 May 2020
    Science Snapshots

    1
    Carole Haswell

    In December 2019, astronomers announced that they had efficiently discovered and characterised planets outside the Solar System using an innovative technique. So far, the researchers have used the technique with ESO’s HARPS instrument to find six exoplanets, some of which hold the key to unlocking the geology of rocky planets. We spoke to lead researcher Carole Haswell from the Open University in the UK to find out more about the project and the implications of these discoveries.

    ESO 3.6m telescope & HARPS at Cerro LaSilla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    2
    Artist’s impression of the mass-losing giant planet DMPP-2b, which orbits the pulsating star DMPP-2 every five days. The star is viewed through a cloud of gas lost from the hot planet.
    Credit: Mark A. Garlick / markgarlick.com. Science credit: Haswell / Barnes / Staab

    Q. The Dispersed Matter Planet Project (DMPP) aims to find lots of new exoplanets. What motivated you to start this project?

    A. The project actually grew out of some research we did a decade ago using the Hubble Space Telescope. We were looking at giant exoplanets, and found that the chromosphere of one of the host stars was missing. It seemed extremely unlikely that this star would be structured differently to every other star we know of, so we had another idea: when planets orbit close to their host star, they are heated very vigorously which makes them lose mass. We figured that some of this mass could form a gas shroud that envelops the entire planetary system and absorbs the light from the star’s chromosphere, preventing us from seeing it.

    So, we had the idea that if we see a star with missing chromospheric emission, we know that there is a hot mass-losing planet present, and could actually deduce a lot of information about such a planet. In this way, we came up with a new and efficient technique to discover new low-mass planets orbiting close to their parent star.

    What makes the project really special is our target star selection. Astronomers are beginning to suspect that most stars have planets orbiting them, but when we know what kind of planet a star might host, we can tailor the observations to find out about the planet much more quickly. And this is exactly what we’ve been doing here.

    Q. Could you tell us a bit about how this new planet-searching technique works?

    A. We searched through existing data on 6000 stars to find any that were structured like the Sun but with missing emission from their chromospheres. Of these 6000, we found about 40 that we thought could host very hot mass-losing planets. As these were all nearby stars, we guessed that these planets would have been found already if they were large and massive, so we thought they must be small, light planets. Therefore we designed observations to find them using the very sensitive HARPS instrument on the ESO 3.6-metre telescope [below and above].

    Because we were expecting low-mass planets orbiting close to their host stars — and therefore orbiting very quickly — we needed to get frequent measurements of the same star to see the differences during the planet’s orbit. So we looked at each star several times a night, which is much more often than observations are usually designed.

    Visiting La Silla Observatory to use the ESO 3.6-metre telescope was one of the most amazing experiences of my life. I’d used the New Technology Telescope [below] some years ago, but because I believe that this research is the best idea I’ve had in my whole career, it was especially exciting to go this time round.

    Q. What makes HARPS so good at finding new planetary systems?

    A. For this project, we are using the radial velocity method to detect planets, which means we measure how quickly the star moves towards and away from us. When a planet orbits a star, it pulls the star towards itself slightly. This means that when the planet orbits the star, the star is also executing a much smaller orbit in response. The star moves towards us while the planet moves away from us and vice versa. We can detect these changes in the star’s velocity from Earth.


    The radial velocity method for finding exoplanets. Credit: ESO/L. Calçada.

    We chose to use HARPS because it is by far the best general user radial velocity instrument that we were allowed to propose for — it can measure the velocity of a star with a precision of less than one metre per second! It’s fantastic to be in an ESO Member State with the opportunity to use such an instrument.

    Q. So why do you think it is important for us to search for new exoplanets?

    A. One of the biggest human questions is about our place in the Universe; how special the Solar System is and how special Earth is. And one of the big pushes in exoplanet science is to extend discovery methods to be able to see planets like Earth orbiting their host stars at the same distance that Earth orbits the Sun. The idea is that these Earth-like planets could be good candidates for hosting life.

    But it’s also important to find a whole range of planetary systems to see how planets form and evolve and to determine how typical the Solar System is. The planets we are studying through this project aren’t similar to our neighbours in the Solar System, but it is nonetheless important to study them because it gives us the opportunity to better understand a different type of planet, which is important to generally understand the geology and geochemistry of planetary systems.

    With further study of the systems we’ve found to host exoplanets, we could work out the chemical composition of the gas shroud, which would reveal what type of rock the surfaces of these planets are made of. This will help us pin down how planets are built, and whether the Earth is normal.

    Q. How has the DMPP been going so far? Have you had any surprising discoveries?

    A. We started making observations in 2015, and we’ve already discovered six exoplanets using relatively little telescope time compared to more traditional methods. One of the most interesting stars we looked at so far actually turned out to be two stars! The tiny second star in the binary system is right at the lower limit of hydrogen burning, meaning it is just massive enough to be a proper star like the Sun. If it had slightly less material, it would be a brown dwarf. This star is faint and had therefore never been detected before. Finding this extremely low mass star was interesting in its own right, but we also found a planet in this system that is 2–3 times the mass of Earth and orbits the larger star in just seven days, which is unusually quick. The planet doesn’t fit with our theories of planet formation because the smaller star’s presence means there wouldn’t have been enough rocky material to form the planet where we see it. The second star must have affected the planet’s orbit, somehow pushing it closer to the larger star.

    We would really like to study this system in more detail; if we can get more radial velocity data, we could see if there are any other planets, pin down the properties of the planet we’ve already discovered, and look at the atmosphere of the smaller star to see how it changes as it gets close to the larger star.

    Q. Are there any challenges that you’ve had to overcome?

    A. For many of our target stars we have detected more than one orbiting planet, so it took us a while to disentangle the signals from each other to figure out the exact number of planets and their orbital periods. This meant it was longer than expected before we could publish our results, so the committee that allocates telescope time started becoming sceptical and we had to persuade them that our research really is worthwhile. We’ve now published several papers on our discoveries, and we were allocated more time to continue the project — both to look at more systems and to investigate the most interesting ones in more detail. Unfortunately these observations couldn’t take place because of the closure of the observatory due to COVID-19, but we are really keen to continue as soon as it is safe to do so!

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEXESO/MPIfR APEX high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft)at the Llano de Chajnantor Observatory in the Atacama desert.

    A novel gamma ray telescope under construction on Mount Hopkins, Arizona. a large project known as the Cherenkov Telescope Array, composed of hundreds of similar telescopes to be situated in the Canary Islands and Chile. The telescope on Mount Hopkins will be fitted with a prototype high-speed camera, assembled at the University of Wisconsin–Madison, and capable of taking pictures at a billion frames per second. Credit: Vladimir Vassiliev

     
  • richardmitnick 8:39 am on April 30, 2020 Permalink | Reply
    Tags: , , , , , , Exoplanets   

    From Arizona State University: “ASU scientists lead study of galaxy’s ‘water worlds'” 


    From Arizona State University

    April 20, 2020
    Karin Valentine

    1

    Astrophysical observations have shown that Neptune-like water-rich exoplanets are common in our galaxy. These “water worlds” are believed to be covered with a thick layer of water, hundreds to thousands of miles deep, above a rocky mantle.

    While water-rich exoplanets are common, their composition is very different from Earth, so there are many unknowns in terms of these planets’ structure, composition and geochemical cycles.

    In seeking to learn more about these planets, an international team of researchers, led by Arizona State University, has provided one of the first mineralogy lab studies for water-rich exoplanets. The results of their study have been recently published in the journal Proceedings of the National Academy of Sciences.

    “Studying the chemical reactions and processes is an essential step toward developing an understanding of these common planet types,” said co-author Dan Shim, of ASU’s School of Earth and Space Exploration.

    The general scientific conjecture is that water and rock form separate layers in the interiors of water worlds. Because water is lighter, underneath the water layer in water-rich planets, there should be a rocky layer. However, the extreme pressure and temperature at the boundary between water and rocky layers could fundamentally change the behaviors of these materials.

    To simulate this high pressure and temperature in the lab, lead author and research scientist Carole Nisr conducted experiments at Shim’s Lab for Earth and Planetary Materials at ASU using high pressure diamond-anvil cells.

    For their experiment, the team immersed silica in water, compressed the sample between diamonds to a very high pressure, then heated the sample with laser beams to over a few thousand degrees Fahrenheit.

    The team also conducted laser heating at the Argonne National Laboratory in Illinois. To monitor the reaction between silica and water, X-ray measurements were taken while the laser heated the sample at high pressures.

    What they found was an unexpected new solid phase with silicon, hydrogen and oxygen all together.

    “Originally, it was thought that water and rock layers in water-rich planets were well-separated,” Nisr said. “But we discovered through our experiments a previously unknown reaction between water and silica and stability of a solid phase roughly in an intermediate composition. The distinction between water and rock appeared to be surprisingly ‘fuzzy’ at high pressure and high temperature.”

    The researchers hope that these findings will advance our knowledge on the structure and composition of water-rich planets and their geochemical cycles.

    “Our study has important implications and raises new questions for the chemical composition and structure of the interiors of water-rich exoplanets,” Nisr said. “The geochemical cycle for water-rich planets could be very different from that of the rocky planets, such as Earth.”

    In addition to Nisr and Shim, co-authors from ASU include alumni Huawei Chen; Kurt Leinenweber of ASU’s Eyring Materials Center; and Andrew Chizmeshya of ASU’s School of Molecular Sciences. Additional researchers on the team represent the University of Chicago, University of Cologne (Germany), Argonne National Laboratory (Illinois) and George Washington University (Washington, D.C.).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    ASU is the largest public university by enrollment in the United States. Founded in 1885 as the Territorial Normal School at Tempe, the school underwent a series of changes in name and curriculum. In 1945 it was placed under control of the Arizona Board of Regents and was renamed Arizona State College. A 1958 statewide ballot measure gave the university its present name.
    ASU is classified as a research university with very high research activity (RU/VH) by the Carnegie Classification of Institutions of Higher Education, one of 78 U.S. public universities with that designation. Since 2005 ASU has been ranked among the Top 50 research universities, public and private, in the U.S. based on research output, innovation, development, research expenditures, number of awarded patents and awarded research grant proposals. The Center for Measuring University Performance currently ranks ASU 31st among top U.S. public research universities.

    ASU awards bachelor’s, master’s and doctoral degrees in 16 colleges and schools on five locations: the original Tempe campus, the West campus in northwest Phoenix, the Polytechnic campus in eastern Mesa, the Downtown Phoenix campus and the Colleges at Lake Havasu City. ASU’s “Online campus” offers 41 undergraduate degrees, 37 graduate degrees and 14 graduate or undergraduate certificates, earning ASU a Top 10 rating for Best Online Programs. ASU also offers international academic program partnerships in Mexico, Europe and China. ASU is accredited as a single institution by The Higher Learning Commission.

     
  • richardmitnick 9:58 am on April 29, 2020 Permalink | Reply
    Tags: , , , , Exoplanets, , Kepler-88 d - a planet three times the mass of Jupiter in a distant planetary system.   

    From Keck Observatory: “Newly Discovered Exoplanet Dethrones Former King of Kepler-88 Planetary System” 

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    From Keck Observatory

    Hawaii Astronomer Discovers Massive Extrasolar Planet with Maunakea Telescope.

    Our solar system has a king. The planet Jupiter, named for the most powerful god in the Greek pantheon, has bossed around the other planets through its gravitational influence. With twice the mass of Saturn, and 300 times that of Earth, Jupiter’s slightest movement is felt by all the other planets. Jupiter is thought to be responsible for the small size of Mars, the presence of the asteroid belt, and a cascade of comets that delivered water to young Earth.

    Do other planetary systems have gravitational gods like Jupiter?

    A team of astronomers led by the University of Hawaiʻi Institute for Astronomy (UH IfA) has discovered a planet three times the mass of Jupiter in a distant planetary system.

    The discovery is based on six years of data taken at W. M. Keck Observatory on Maunakea in Hawaiʻi. Using the High-Resolution Echelle Spectrometer (HIRES) instrument on the 10-meter Keck I telescope, the team confirmed that the planet, named Kepler-88 d, orbits its star every four years, and its orbit is not circular, but elliptical.

    Keck Keck High-Resolution Echelle Spectrometer (HIRES), at the Keck I telescope, Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft) above sea level

    At three times the mass of Jupiter, Kepler-88 d is the most massive planet in this system.

    The system, Kepler-88, was already famous among astronomers for two planets that orbit much closer to the star, Kepler-88 b and c (planets are typically named alphabetically in the order of their discovery).

    Those two planets have a bizarre and striking dynamic called mean motion resonance. The sub-Neptune sized planet b orbits the star in just 11 days, which is almost exactly half the 22-day orbital period of planet c, a Jupiter-mass planet. The clockwork-like nature of their orbits is energetically efficient, like a parent pushing a child on a swing. Every two laps planet b makes around the star, it gets pumped. The outer planet, Kepler-88 c, is twenty times more massive than planet b, and so its force results in dramatic changes in the orbital timing of the inner planet.

    Kepler-88 Planetary System from Keck Observatory on Vimeo.
    Kepler-88 d has three times the mass of Kepler-88 c, making the newly found planet the most massive one known in this system. ANIMATION CREDIT: W. M. KECK OBSERVATORY/ADAM MAKARENKO

    Astronomers observed these changes, called transit timing variations, with the NASA Kepler space telescope, which detected the precise times when Kepler-88 b crossed (or transited) between the star and the telescope. Although transit timing variations (TTVs for short) have been detected in a few dozen planetary systems, Kepler-88 b has some of the largest timing variations. With transits arriving up to half a day early or late, the system is known as “the King of TTVs.”

    The newly discovered planet adds another dimension to astronomers’ understanding of the system.

    “At three times the mass of Jupiter, Kepler-88 d has likely been even more influential in the history of the Kepler-88 system than the so-called King, Kepler-88 c, which is only one Jupiter mass,” says Dr. Lauren Weiss, Beatrice Watson Parrent Postdoctoral Fellow at UH IfA and lead author on the discovery team. “So maybe Kepler-88 d is the new supreme monarch of this planetary empire – the empress.”

    Perhaps these extrasolar sovereign leaders have had as much influence as Jupiter did for our solar system. Such planets might have promoted the development of rocky planets and directed water-bearing comets toward them. Dr. Weiss and colleagues are searching for similar royal planets in other planetary systems with small planets.

    Their paper announcing the discovery of Kepler-88 d is published in today’s issue of The Astronomical Journal.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 11:34 am on January 3, 2020 Permalink | Reply
    Tags: "Alien life is out there, , , , Biological signatures, but our theories are probably steering us away from it", , Exoplanets, ,   

    From phys.org: “Alien life is out there, but our theories are probably steering us away from it” 


    From phys.org

    January 3, 2020
    Peter Vickers

    1
    Credit: sdecoret/Shutterstock

    If we discovered evidence of alien life, would we even realize it? Life on other planets could be so different from what we’re used to that we might not recognize any biological signatures that it produces.

    Recent years have seen changes to our theories about what counts as a biosignature and which planets might be habitable, and further turnarounds are inevitable. But the best we can really do is interpret the data we have with our current best theory, not with some future idea we haven’t had yet.

    This is a big issue for those involved in the search for extraterrestrial life. As Scott Gaudi of Nasa’s Advisory Council has said: “One thing I am quite sure of, now having spent more than 20 years in this field of exoplanets … expect the unexpected.”

    But is it really possible to “expect the unexpected”? Plenty of breakthroughs happen by accident, from the discovery of penicillin to the discovery of the cosmic microwave background radiation left over from the Big Bang. These often reflect a degree of luck on behalf of the researchers involved. When it comes to alien life, is it enough for scientists to assume “we’ll know it when we see it”?

    Many results seem to tell us that expecting the unexpected is extraordinarily difficult. “We often miss what we don’t expect to see,” according to cognitive psychologist Daniel Simons, famous for his work on inattentional blindness. His experiments have shown how people can miss a gorilla banging its chest in front of their eyes. Similar experiments also show how blind we are to non-standard playing cards such as a black four of hearts. In the former case, we miss the gorilla if our attention is sufficiently occupied. In the latter, we miss the anomaly because we have strong prior expectations.

    There are also plenty of relevant examples in the history of science. Philosophers describe this sort of phenomenon as “theory-ladenness of observation”. What we notice depends, quite heavily sometimes, on our theories, concepts, background beliefs and prior expectations. Even more commonly, what we take to be significant can be biased in this way.

    For example, when scientists first found evidence of low amounts of ozone in the atmosphere above Antarctica, they initially dismissed it as bad data. With no prior theoretical reason to expect a hole, the scientists ruled it out in advance. Thankfully, they were minded to double check, and the discovery was made.

    Could a similar thing happen in the search for extraterrestrial life? Scientists studying planets in other solar systems (exoplanets) are overwhelmed by the abundance of possible observation targets competing for their attention. In the last 10 years scientists have identified more than 3,650 planets—more than one a day. And with missions such as NASA’s TESS exoplanet hunter this trend will continue.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    Each and every new exoplanet is rich in physical and chemical complexity. It is all too easy to imagine a case where scientists do not double check a target that is flagged as “lacking significance,” but whose great significance would be recognized on closer analysis or with a non-standard theoretical approach.

    2
    More than 200,000 stars captured in one small section of the sky by Nasa’s TESS mission. Credit: NASA

    However, we shouldn’t exaggerate the theory-ladenness of observation. In the Müller-Lyer illusion, a line ending in arrowheads pointing outwards appears shorter than an equally long line with arrowheads pointing inwards. Yet even when we know for sure that the two lines are the same length, our perception is unaffected and the illusion remains. Similarly, a sharp-eyed scientist might notice something in her data that her theory tells her she should not be seeing. And if just one scientist sees something important, pretty soon every scientist in the field will know about it.

    History also shows that scientists are able to notice surprising phenomena, even biased scientists who have a pet theory that doesn’t fit the phenomena. The 19th-century physicist David Brewster incorrectly believed that light is made up of particles traveling in a straight line. But this didn’t affect his observations of numerous phenomena related to light, such as what’s known as birefringence in bodies under stress. Sometimes observation is definitely not theory-laden, at least not in a way that seriously affects scientific discovery.

    We need to be open-minded

    Certainly, scientists can’t proceed by just observing. Scientific observation needs to be directed somehow. But at the same time, if we are to “expect the unexpected,” we can’t allow theory to heavily influence what we observe, and what counts as significant. We need to remain open-minded, encouraging exploration of the phenomena in the style of Brewster and similar scholars of the past.

    3
    The Müller-Lyer optical illusion. Credit: Fibonacci/Wikipedia, CC BY-SA

    Studying the universe largely unshackled from theory is not only a legitimate scientific endeavor—it’s a crucial one. The tendency to describe exploratory science disparagingly as “fishing expeditions” is likely to harm scientific progress. Under-explored areas need exploring, and we can’t know in advance what we will find.

    In the search for extraterrestrial life, scientists must be thoroughly open-minded. And this means a certain amount of encouragement for non-mainstream ideas and techniques. Examples from past science (including very recent ones) show that non-mainstream ideas can sometimes be strongly held back. Space agencies such as NASA must learn from such cases if they truly believe that, in the search for alien life, we should “expect the unexpected.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: