Tagged: EurekaAlert Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:49 am on October 27, 2018 Permalink | Reply
    Tags: , Bose star, , , EurekaAlert, Institute for Nuclear Physics of the Russian Academy of Sciences, , Russian physicists observe dark matter forming droplets   

    From EurekaAlert: “Russian physicists observe dark matter forming droplets” 

    eurekaalert-bloc

    From EurekaAlert

    22-Oct-2018

    Dmitry Levkov
    levkov@ms2.inr.ac.ru

    Researchers developed a mathematical model describing motion of dark matter particles inside the smallest galaxy halos.

    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016

    They observed that over time, the dark matter may form spherical droplets of quantum condensate. Previously this was considered impossible, as fluctuations of the gravity field produced by dark matter particles were ignored. The study is published in Physical Review Letters.

    Dark matter is a hypothetical form of matter that does not emit electromagnetic radiation.

    Women in STEM – Vera Rubin

    Fritz Zwicky discovered Dark Matter when observing the movement of the Coma Cluster

    Coma cluster via NASA/ESA Hubble

    But most of the real work was done by Vera Rubin

    Fritz Zwicky from http:// palomarskies.blogspot.com

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)

    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL)

    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu

    This property hinders dark matter searches and makes it hard even to prove its existence. The speed of dark matter particles is low, which is why they are retained by galaxies. They interact with each other and with the ordinary matter so weakly that only their gravity field can be sensed, otherwise the dark matter does not manifest itself in any way. Each galaxy is surrounded by a dark matter shell (halo) of much larger size and mass.

    1
    Left image: initial moment, when the gas is mixed; right image: the moment shortly after the formation of a Bose star. The colour indicates density: white-blue-green-yellow, from sparse to dense. Credit Dmitry Levkov

    Most cosmologists believe that dark matter particles have large mass, hence their speed is high. Yet, back in the 1980s it was realized that under special conditions these particles may be produced in the early Universe with almost zero speed, regardless of their mass. They might also be very light. As a consequence, the distances at which the quantum nature of these particles becomes apparent can be huge. Instead of the nanometer scales that are usually required to observe quantum phenomena in laboratories, the “quantum” scale for such particles may be comparable to the size of the central part of our galaxy.

    The researchers observed that the dark matter particles, if they are bosons with sufficiently small mass, may form a Bose-Einstein condensate in the small galaxy halos or in even smaller substructures due to their gravitational interactions. Such substructures include halos of dwarf galaxies – systems of several billion stars bound together by gravitational forces, and miniclusters – very small systems formed only by dark matter. The Bose-Einstein condensate is a state of quantum particles in which they all occupy the lowest energy level, having the smallest energy. The Bose-Einstein condensate can be produced in the lab at low temperatures from ordinary atoms. This state of matter exhibits unique properties, such as superfluidity: the ability to pass through tiny cracks or capillaries without friction. Light dark matter in the galaxy has low speed and huge concentration. Under these conditions, it should eventually form a Bose-Einstein condensate. But in order for this to happen, dark matter particles must interact with each other, while as far as we know, they interact only gravitationally.

    “In our work, we simulated motion of a quantum gas of light gravitationally interacting dark matter particles. We started from a virialized state with maximal mixing, which is kind of opposite to the Bose-Einstein condensate. After a very long period, 100,000 times longer than the time needed for a particle to cross the simulation volume, the particles spontaneously formed a condensate, which immediately shaped itself into a spherical droplet, a Bose star, under the effect of gravity,” said one of the authors, Dmitry Levkov, Ph.D. in Physics, Senior Researcher at the Institute for Nuclear Research of the Russian Academy of Sciences.

    Dr. Levkov and his colleagues, Alexander Panin and Igor Tkachov from the Institute for Nuclear Physics of the Russian Academy of Sciences, concluded that Bose-Einstein condensate may form in the centres of halos of dwarf galaxies in a time smaller than the lifetime of the Universe. This means that Bose stars could populate them now.

    The authors were the first who saw the formation of the Bose-Einstein condensate from light dark matter in computer simulations. In previous numerical studies, the condensate was already present in the initial state, and Bose stars arose from it. According to one hypothesis, the Bose condensate could have formed in the early Universe long before the formation of galaxies or miniclusters, but reliable evidence for that is currently lacking. The authors demonstrated that the condensate is formed in the centres of small halos, and they plan to investigate condensation in the early Universe in further studies.

    The scientists pointed out that the Bose stars may produce Fast Radio Bursts that currently have no quantitative explanation. Light dark matter particles called “axions” interact with electromagnetic field very weakly and can decay into radiophotons. This effect is vanishingly small, but inside the Bose star it may be resonantly amplified like in a laser and could lead to giant radio bursts.

    “The next obvious step is to predict the number of the Bose stars in the Universe and calculate their mass in models with light dark matter,” concluded Dmitry Levkov.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EurekAlert!, the premier online news source focusing on science, health, medicine and technology, is a free service for reporters worldwide.

    Since 1996, EurekAlert! has served as the leading destination for scientific organizations seeking to disseminate news to reporters and the public. Today, thousands of reporters around the globe rely on EurekAlert! as a source of ideas, background information, and advance word on breaking news stories.

    More than 1,000 peer-reviewed journals, universities, medical centers, government agencies and public relations firms have used EurekAlert! to distribute their news. EurekAlert! is an authoritative and comprehensive research news source for journalists all over the world.

     
  • richardmitnick 1:13 pm on July 14, 2018 Permalink | Reply
    Tags: , , EurekaAlert, ,   

    From U Hawaii via Eureka Alert: Late to the Party, but “Hawaii telescopes help unravel long-standing cosmic mystery” 

    U Hawaii

    From University of Hawaii Manoa

    via

    EurekAlert!

    12-Jul-2018

    Astronomers and physicists around the world, including in Hawaii, have begun to unravel a long-standing cosmic mystery. Using a vast array of telescopes in space and on Earth, they have identified a source of cosmic rays.

    Artist’s impression of a blazar emitting neutrinos and gamma rays via IceCube and NASA

    Blazar. NASA Fermi Gamma ray Space Telescope. Credits M. Weiss/ CfA

    NASA/Fermi LAT

    NASA/Fermi Gamma Ray Space Telescope

    Astronomers and physicists around the world, including in Hawaii, have begun to unravel a long-standing cosmic mystery. Using a vast array of telescopes in space and on Earth, they have identified a source of cosmic rays–highly energetic particles that continuously rain down on Earth from space.

    In a paper published this week in the journal Science, scientists have, for the first time, provided evidence for a known blazar, designated TXS 0506+056, as a source of high-energy neutrinos. At 8:54 p.m. on September 22, 2017, the National Science Foundation-supported IceCube neutrino observatory at the South Pole detected a high energy neutrino from a direction near the constellation Orion. Just 44 seconds later an alert went out to the entire astronomical community.

    U Wisconsin ICECUBE neutrino detector at the South Pole

    IceCube employs more than 5000 detectors lowered on 86 strings into almost 100 holes in the Antarctic ice NSF B. Gudbjartsson, IceCube Collaboration

    Lunar Icecube

    IceCube DeepCore annotated

    IceCube PINGU annotated


    DM-Ice II at IceCube annotated

    The All Sky Automated Survey for SuperNovae team (ASAS-SN), an international collaboration headquartered at Ohio State University, immediately jumped into action. ASAS-SN uses a network of 20 small, 14-centimeter telescopes in Hawaii, Texas, Chile and South Africa to scan the visible sky every 20 hours looking for very bright supernovae. It is the only all-sky, real-time variability survey in existence.

    ASAS-SN Brutus at lcogt site Hawaii

    LCOGT Las Cumbres Observatory Global Telescope Network, Haleakala Hawaii, USA, Elevation 10,023 ft (3,055 m)

    “When ASAS-SN receives an alert from IceCube, we automatically find the first available ASAS-SN telescope that can see that area of the sky and observe it as quickly as possible,” said Benjamin Shappee, an astronomer at the University of Hawaii’s Institute for Astronomy and an ASAS-SN core member.

    On September 23, only 13 hours after the initial alert, the recently commissioned ASAS-SN unit at McDonald Observatory in Texas [image of exas unit N/A] mapped the sky in the area of the neutrino detection. Those observations and the more than 800 images of the same part of the sky taken since October 2012 by the first ASAS-SN unit, located on Maui’s Haleakala, showed that TXS 0506+056 had entered its highest state since 2012.

    “The IceCube detection and the ASAS-SN detection combined with gamma-ray detections from NASA’s Fermi gamma-ray space telescope and the MAGIC telescopes that show TXS 0506+056 was undergoing the strongest gamma-ray flare in a decade, indicate that this could be the first identified source of high-energy neutrinos, and thus a cosmic-ray source,” said Anna Franckowiak, ASAS-SN and IceCube team member, Helmholtz Young Investigator, and staff scientist at DESY in Germany.

    MAGIC Cherenkov telescope array at the Roque de los Muchachos Observatory on the island of La Palma, in the Canaries, Spain, sited on a volcanic peak 2,267 metres (7,438 ft) above sea level

    Since they were first detected more than one hundred years ago, cosmic rays have posed an enduring mystery: What creates and launches these particles across such vast distances? Where do they come from?

    One of the best suspects have been quasars, supermassive black holes at the centers of galaxies that are actively consuming gas and dust.

    Quasar. ESO/M. Kornmesser

    Quasars are among the most energetic phenomena in the universe and can form relativistic jets where elementary particles are accelerate and launched at nearly the speed of light. If that jet happens to be pointed toward Earth, the light from the jet outshines all other emission from the host galaxy and the highly accelerated particles are launched toward the Milky Way. This specific type of quasar is called a blazar [above].

    However, because cosmic rays are charged particles, their paths cannot be traced directly back to their places of origin. Due to the powerful magnetic fields that fill space, they don’t travel along a straight path. Luckily, the powerful cosmic accelerators that produce them also emit neutrinos, which are uncharged and unaffected by even the most powerful magnetic fields. Because they rarely interact with matter and have almost no mass, these “ghost particles” travel nearly undisturbed from their cosmic accelerators, giving scientists an almost direct pointer to their source.

    “Crucially, the presence of neutrinos also differentiates between two types of gamma-ray sources: those that accelerate only cosmic-ray electrons, which do not produce neutrinos, and those that accelerate cosmic-ray protons, which do,” said John Beacom, an astrophysicist at the Ohio State University and an ASAS-SN member.

    Detecting the highest energy neutrinos requires a massive particle detector, and the National Science Foundation-supported IceCube observatory [above] is the world’s largest. The detector is composed of more than 5,000 light sensors arranged in a grid, buried in a cubic kilometer of deep, pristine ice a mile beneath the surface at the South Pole. When a neutrino interacts with an atomic nucleus, it creates a secondary charged particle, which, in turn, produces a characteristic cone of blue light that is detected by IceCube’s grid of photomultiplier tubes. Because the charged particle and the light it creates stay essentially true to the neutrino’s original direction, they give scientists a path to follow back to the source.

    About 20 observatories on Earth and in space have also participated in this discovery. This includes the 8.4-meter Subaru Telescope on Maunakea, which was used to observe the host galaxy of TXS 0506+056 in an attempt to measure its distance, and thus determine the intrinsic luminosity, or energy output, of the blazar.


    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA,4,207 m (13,802 ft) above sea level

    These observations are difficult, because the blazar jet is much brighter than the host galaxy. Disentangling the jet and the host requires the largest telescopes in the world, like those on Maunakea.

    “This discovery demonstrates how the many different telescopes and detectors around and above the world can come together to tell us something amazing about our Universe. This also emphasizes the critical role that telescopes in Hawaii play in that community,” said Shappee.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    System Overview

    The University of Hawai‘i System includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

    The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

    UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

     
  • richardmitnick 12:13 pm on July 15, 2017 Permalink | Reply
    Tags: , Angular momentum, , , , , Elliptical galaxies, , EurekaAlert, Shedding light on galaxies' rotation secrets,   

    From EurekaAlert: “Shedding light on galaxies’ rotation secrets” 

    eurekaalert-bloc

    EurekaAlert

    13-Jul-2017

    Media Contact
    Donato Ramani
    ramani@sissa.it
    39-342-802-2237
    http://www.sissa.it/

    Spiral galaxies are strongly rotating whereas the rotation velocity of ellipticals is much lower. A new study investigates the reasons of such a dichotomy revealing that it is imprinted at formation.

    Scuola Internazionale Superiore di Studi Avanzati

    1
    Spiral galaxies are found to be strongly rotating, with an angular momentum higher by a factor of about 5 than ellipticals. What is the origin of such a difference?
    Credit Wikimedia Common.

    The dichotomy concerns the so-called angular momentum (per unit mass), that in physics is a measure of size and rotation velocity. Spiral galaxies are found to be strongly rotating, with an angular momentum higher by a factor of about 5 than ellipticals. What is the origin of such a difference? An international research team investigated the issue in a study just published in the Astrophysical Journal. The team was led by SISSA Ph.D. student JingJing Shi under the supervision of Prof. Andrea Lapi and Luigi Danese, and in collaboration with Prof. Huiyuan Wang from USTC (Hefei) and Dr. Claudia Mancuso from IRA-INAF (Bologna). The researchers inferred from observations the amount of gas fallen into the central region of a developing galaxy, where most of the star formation takes places.

    The outcome is that in elliptical galaxies only about 40% of the available gas fell into that central region. More relevantly, this gas fueling star formation was characterized by a rather low angular momentum since the very beginning. This is in stark contrast with the conditions found in spirals, where most of the gas ending up in stars had an angular momentum appreciably higher. In this vein, the researchers have traced back the dichotomy in the angular momentum of spiral and elliptical galaxies to their different formation history. Elliptical galaxies formed most of their stars in a fast collapse where angular momentum is dissipated. This process is likely stopped early on by powerful gas outflows from supernova explosions, stellar winds and possibly even from the central supermassive black hole. For spirals, on the other hand, the gas infelt slowly conserving its angular momentum and stars formed steadily along a timescale comparable to the age of the Universe.

    “Till recent years, in the paradigm of galaxy formation and evolution, elliptical galaxies were thought to have formed by the merging of stellar disks in the distant Universe. Along this line, their angular momentum was thought to be the result of dissipative processes during such merging events” say the researchers. Recently, this paradigm had been challenged by far-infrared/sub-millimeter observations brought about by the advent of space observatories like Herschel and ground based interferometers like the Atacama Large Millimeter Array (ALMA).

    ESA/Herschel spacecraft

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    These observations have the power of penetrating through interstellar dust and so to unveil the star formation processes in the very distant, dusty galaxies, that constituted the progenitors of local ellipticals. “The net outcome from these observations is that the stars populating present-day ellipticals are mainly formed in a fast dissipative collapse in the central regions of dusty starforming galaxies. After a short timescale of less than 1 billion years the star formation has been quenched by powerful gas outflows”. Despite this change of perspective, the origin of the low angular momentum observed in local ellipticals still remained unclear.

    “This study reconciles the low angular momentum observed in present-day ellipticals with the new paradigm emerging from Herschel and ALMA observations of their progenitors” conclude the scientists. “We demonstrated that the low angular momentum of ellipticals is mainly originated by nature in the central regions during the early galaxy formation process, and not nurtured substantially by the environment via merging events, as envisaged in previous theories”.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EurekAlert!, the premier online news source focusing on science, health, medicine and technology, is a free service for reporters worldwide.

    Since 1996, EurekAlert! has served as the leading destination for scientific organizations seeking to disseminate news to reporters and the public. Today, thousands of reporters around the globe rely on EurekAlert! as a source of ideas, background information, and advance word on breaking news stories.

    More than 1,000 peer-reviewed journals, universities, medical centers, government agencies and public relations firms have used EurekAlert! to distribute their news. EurekAlert! is an authoritative and comprehensive research news source for journalists all over the world.

     
  • richardmitnick 6:07 pm on February 21, 2017 Permalink | Reply
    Tags: , , EurekaAlert, , MASTER Global Robotic Network, Supermassive black hole in the center of a galaxy known to astronomers as NGC 2617   

    From EurekaAlert: “Changes of supermassive black hole in the center of NGC 2617 galaxy” 

    eurekaalert-bloc

    EurekaAlert

    20-Feb-2017
    Lomonosov Moscow State University

    Astrophysicists study surprising changes in the appearance of a supermassive black hole.

    1
    Members of the Sternberg Astronomical Institute of the Lomonosov Moscow State University have been studying changes in the appearance of emission from around the supermassive black hole in the center of a galaxy known to astronomers as NGC 2617. The center of this galaxy, underwent dramatic changes in its appearance several years ago: it became much brighter and things that had not been seen before were seen. This sort of dramatic change can give us valuable information for understanding what the surroundings of a giant black hole are like and what is going on near the black hole. The results of these investigations have been published in the Monthly Notices of the Royal Astronomical Society, one of the world’s top-rated astronomical journals.

    Most galaxies such as our own have a giant black hole in their central nuclei. These monstrous holes have masses ranging from a million to a billion times the mass of our sun. The black hole in our galaxy is inactive, but in some galaxies, the black hole is swallowing gas that is spiraling into it and emitting enormous amounts of radiation. These galaxies are called “active galactic nuclei” or AGNs for short. The energy output from around the black holes of these AGNs can exceed that of the hundreds of billions of stars in the rest of the galaxy. Just how these galaxies get their supermassive black holes is a major mystery.

    The nuclei of galaxies where the supermassive black holes are vigorously swallowing gas are classified into two types: those where we get a direct view of the matter spiraling into the black hole at a speed that is thousands of times faster than the speed of sound, and those where the inner regions are obscured by dust and we only see more slowly moving gas much further from the black hole.

    For decades astronomers have wondered why we see the innermost regions of some active galactic nuclei but not others. A popular explanation of the two types of active galactic nuclei is that they are really the same but they appear to be different to us because we are viewing them from different angles. If they are face-on we can see the hot gas spiraling into the black hole directly. If the active galactic nucleus is tilted, then dust around the nucleus blocks our view and we can only see the more slowly moving gas a light year or more away.

    The leader of the international research team involved in the investigation, Viktor Oknyansky, a Senior Researcher at the Sternberg Astronomical Institute of the Lomonosov Moscow State University says: “Cases of object transition from one type to the other turn out to be a definite problem for this orientation model. In 1984 we found a change in the appearance of another active galactic nucleus known as NGC 4151. It was one of few known cases of this kind in the past. We now know of several dozen active galactic nuclei that have changed their type. In our recent study we have focused on one of the best cases — NGC 2617.”

    Oknyansky continues: “In 2013 a team of researchers in the US found that NGC 2617 had changed being an active galaxy where the inner regions were hidden to one where the inner regions were now exposed. We didn’t not know how long it would remain in this new unveiled state. It could last for only a short period of time or, on the other hand, for dozens of years. The title of the paper by the US astronomers was “The man behind the curtain…” When we began our study we didn’t know how long the curtain would remain open, but we’ve titled our paper “The curtain remains open…”, because we are continuing to see into the inner regions of NGC 2617.

    According to the authors there is no accepted explanation so far of what could cause us to start seeing down to the inner regions of an active galactic nucleus when it was previously hidden.

    Viktor Oknyansky comments: “It’s clear that this phenomenon isn’t very rare, on the contrary, we think it’s quite typical. We consider various possible explanations. One is that perhaps a star has come too close to the black hole and has been torn apart. However, the disruption of a star by a black hole is very rare and we don’t think that such events can explain the observed frequency of type changes of active galactic nuclei. Instead we favour a model where the black hole has started swallowing gas more rapidly. As the material spirals in towards the black holes it emits strong radiation. We speculate that this intense radiation destroys some of the dust surrounding the nucleus and permits us to see the inner regions.”

    Oknyansky continues: “Study of these rapid changes of type is very important for understanding what is going on around supermassive black holes that are rapidly swallowing gas. So, what we have concentrated on is getting observations of the various types of radiation emitted by NGC 2617. This has involved a large-scale effort.”

    The observational data for the project were obtained using the MASTER Global Robotic Network operated by Professor Vladimir Lipunov and his team, the new 2.5-m telescope located near Kislovodsk, a 2-m telescope of the observatory in Azerbajan, the Swift X-ray satellite, and some other telescopes. This research has been conducted in cooperation with colleagues from Azerbaijan, the USA, Finland, Chili, Israel and the South Africa.

    1
    MASTER GLOBAL Robotic Net

    NASA/SWIFT Telescope
    NASA/SWIFT Telescope

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EurekAlert!, the premier online news source focusing on science, health, medicine and technology, is a free service for reporters worldwide.

    Since 1996, EurekAlert! has served as the leading destination for scientific organizations seeking to disseminate news to reporters and the public. Today, thousands of reporters around the globe rely on EurekAlert! as a source of ideas, background information, and advance word on breaking news stories.

    More than 1,000 peer-reviewed journals, universities, medical centers, government agencies and public relations firms have used EurekAlert! to distribute their news. EurekAlert! is an authoritative and comprehensive research news source for journalists all over the world.

     
  • richardmitnick 11:35 am on February 11, 2017 Permalink | Reply
    Tags: , , Big data for the universe, EurekaAlert, , The Reference Catalog of galaxy SEDs   

    From EurekaAlert: “Big data for the universe” 

    eurekaalert-bloc

    EurekaAlert

    9-Feb-2017
    Lomonosov Moscow State University

    1
    IMAGE: RCSED design. Credit: Ivan Zolotukhin

    Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released «The Reference Catalog of galaxy SEDs» (RCSED), which contains value-added information about 800,000 galaxies. The catalog is accessible on the web and its description has been published in the Astrophysical Journal Supplement (impact factor — 11.257). Two co-authors of the research paper are undergraduate students at the Faculty of Physics, Lomonosov Moscow State University. While still working on the catalog, the team has published a few research papers based on the data from it, including a study published by the prestigious interdisciplinary journal Science.

    What can one learn using RCSED and why is it unique?

    RCSED describes properties of 800,000 galaxies derived from the elaborated data analysis. For every galaxy, it presents its stellar composition, brightness at ultraviolet, optical, and near-infrared wavelengths. From RCSED, one can also access galaxy spectra obtained by the Sloan Digital Sky Survey, measurements of spectral lines, and properties determined from them, such as the chemical composition of stars and gas, contained in those galaxies. This makes RCSED the first catalog of its kind, which contains results of detailed homogeneous analysis for such large number of objects. Dr. Igor Chilingarian, an astronomer at Smithsonian Astrophysical Observatory, USA and a Lead Researcher at Sternberg Astronomical Institute, Lomonosov Moscow State University says: “For every galaxy we also provide a small cutout image from three sky surveys, which show how the galaxy looks at different wavelengths. This provides us with the data for further investigations.” Dr. Ivan Katkov, a Senior Researcher at Sternberg Astronomical Institute adds: “The analysis of emission line profiles presented in RCSED is substantially more detailed and accurate then the data published in other catalogs”

    RCSED is really flexible and very easy to use. By simply entering the object name or its coordinates in the search field, the web site will provide in a single page all the information referring to that object contained in the catalog. One can also use the catalog through Virtual Observatory applications such as TOPCAT. The RCSED web site also provides tutorials including the one, which describes a technique that Igor Chilingarian and Ivan Zolotukhin exploited to discover new compact elliptical galaxies, which were later published in the research paper «Isolated compact elliptical galaxies: Stellar systems that ran away».

    Another interesting detail about RCSED is that the team actively used the help of citizen scientists to develop the project web site. And among them there were high-level experts in software development and web design, who have daytime jobs in the largest Russian IT-companies. Dr. Ivan Zolotukhin, a Researcher at Sternberg Astronomical Institute, explains: “Programmers sometimes get burnt out by their routine work, and they would like to do something interesting and pleasant in their spare time, for instance, to help scientists. We are very grateful to them, they have become important members of our team and significantly strengthened our project. It’s been always interesting for us to cooperate with IT specialists and we have a lot more projects where they can contribute. So if you use git, program in Python or know HTML/CSS, love stars, have a bit of spare time and are willing to help an international research team – please, contact us using the address published on the web page.

    Dr. Ivan Katkov adds: “The RCSED catalog became possible thanks to the application of an interdisciplinary Big Data approach as we had to apply very complex scientific algorithms to a large dataset in a massively parallel way. Eventually, the expertise and resources available at large IT companies would undoubtedly allow researchers to significantly increase the quality and the quantity of research results and to make many important discoveries in astrophysics”.

    The fact that the RCSED catalog has attracted serious interest in the scientific community even during its assembly phase proves its great potential. During the last three years several external researchers were given the access to the catalog on request and, using RCSED data, published over a dozen of articles in professional peer-reviewed journals (Astrophysical Journal, Astronomy & Astrophysics, MNRAS). The catalog is the world largest homogeneous value-added dataset for nearby galaxies, containing information collected with ground-based and space telescopes. The unique research material for extragalactic astrophysics contained in RCSED will certainly help astrophysicists to achieve new interesting scientific results, some of which would probably qualify for publication in the interdisciplinary journals Science and Nature.

    RCSED expansion prospects: one million galaxies will be there soon.

    The current release of the RCSED catalog could have comprised a larger number of galaxies or contained extra bits of information about the currently included objects, but at this moment the scientists have decided to focus on well-characterized datasets, which are described in detail and have known advantages and disadvantages. However, taking into account the project importance for extragalactic astronomy and observational cosmology, the RCSED team is going to move forward and expand the catalog in the near future.

    There are two principal directions of further RCSED development: the galaxy sample expansion and incorporating new data for existing objects. The team considers a possibility to include near- and mid-infrared data from the WIS? satellite all-sky survey for the entire galaxy sample. However, this requires some additional methodical work in order to homogenize the data for galaxies at different redshifts.

    Moreover, it is possible to expand the principal galaxy sample by including spectra from the latest data release of the SDSS-III survey. This will turn 800,000 to 1.5 million objects.

    Incorporating the publicly available spectral data from the Hectospec archive (Igor Chilingarian has played a major role in the Hectospec archive project) will add 300-400 thousand objects at larger distances, whose spectra were collected with the 6.5-meter MMT telescope in Arizona. The current RCSED release comprises mostly nearby galaxies (by cosmological measures), whose redshifts are smaller than 0.4, because SDSS did not include faint objects. Therefore, the early Universe is not represented in the catalog at all. The Hectospec archive will allow the team to move a little bit further in the cosmological distance scale until the redshift of 0.7. If they add several thousand galaxies from the DEEP2 survey conducted with the 10-meter Keck telescope in early 2000s, they could get insights into objects at redshift up-to 1.0, when the Universe was less than half of its present age.

    Igor Chilingarian concludes: “We shall be able to see the global picture in about ten years from now, when large surveys like DESI have collected 25-30 million galaxy spectra out to intermediate redshifts.”

    The RCSED project has been supported by the collaborative grant, provided by the Russian Foundation for Basic Research (RFBR) and The French National Center for Scientific Research (Centre National de la Recherche Scientifique, CNRS). On earlier stages the project was supported by the grants from the Russian Science Foundation (RScF), the President of the Russian Federation, along with French resources, available in the framework of the VO-Paris Data Center at the Paris Observatory.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EurekAlert!, the premier online news source focusing on science, health, medicine and technology, is a free service for reporters worldwide.

    Since 1996, EurekAlert! has served as the leading destination for scientific organizations seeking to disseminate news to reporters and the public. Today, thousands of reporters around the globe rely on EurekAlert! as a source of ideas, background information, and advance word on breaking news stories.

    More than 1,000 peer-reviewed journals, universities, medical centers, government agencies and public relations firms have used EurekAlert! to distribute their news. EurekAlert! is an authoritative and comprehensive research news source for journalists all over the world.

     
  • richardmitnick 12:20 pm on February 7, 2017 Permalink | Reply
    Tags: , , EurekaAlert, First-principles evolutionary algorithm called USPEX, Na2He electride, , Scientists discover helium chemistry   

    From EurekaAlert: “Scientists discover helium chemistry” 

    eurekaalert-bloc

    EurekaAlert

    1
    Crystal structure of Na2He, resembling a three-dimensional checkerboard. The purple spheres represent sodium atoms, which are inside the green cubes that represent helium atoms. The red regions inside voids of the structure show areas where localized electron pairs reside. Credit: Illustration is provided courtesy of Artem R. Oganov.

    6-Feb-2017
    Media Contact
    Asya Shepunova
    shepunova@phystech.edu
    7-916-813-0267

    Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness — they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions.

    Now, an international team of researchers led by Skoltech’s Prof. Artem R. Oganov (also a professor at Stony Brook University and head of Computational Materials Discovery laboratory at Moscow Institute of Physics and Technology) has predicted two stable helium compounds — Na2He and Na2HeO. The scientists experimentally confirmed and theoretically explained the stability of Na2He. This work could hold clues about the chemistry occurring inside gas giant planets and possibly even stars, where helium is a major component. The work is published by Nature Chemistry.

    The authors of the study used a crystal structure-predicting tool, the first-principles evolutionary algorithm called USPEX, to conduct a systematic search for stable helium compounds. They predicted the existence of Na2He, which was then successfully synthesized in a diamond anvil cell (DAC) experiment performed at the Carnegie Institution for Science in Washington by Prof. Alexander F. Goncharov and his colleagues. The compound appeared at pressures of about 1.1 million times Earth’s atmospheric pressure and is predicted to be stable at least up to 10 million times that.

    “The compound that we discovered is very peculiar: helium atoms do not actually form any chemical bonds, yet their presence fundamentally changes chemical interactions between sodium atoms, forces electrons to localize inside cubic voids of the structure and makes this material insulating,” says Xiao Dong, the first author of this work, who was a long-term visiting student in Oganov’s laboratory at the time when this work was done.

    Na2He is what’s called an electride, which is a special type of an ionic salt-like crystal. It has a positively charged sublattice of sodium ions and another negatively charged sublattice formed of localized electron pairs. Because electrons are strongly localized, this material is an insulator, meaning that it cannot conduct the free-flowing electrons that make up an electric current.

    The other predicted helium compound, Na2HeO, was found to be stable in the pressure range from 0.15 to 1.1 million atmospheres. It is also an ionic crystal with a structure similar to that of Na2He. However, in place of electron pairs, it has negatively charged oxygen in the form of O²?.

    “This study shows how new surprising phenomena can be discovered by combination of powerful theoretical methods and state-of-the-art experiments. It shows that very weird chemical phenomena and compounds can emerge at extreme conditions, and the role of such phenomena inside planets needs to be explored,” says Oganov.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EurekAlert!, the premier online news source focusing on science, health, medicine and technology, is a free service for reporters worldwide.

    Since 1996, EurekAlert! has served as the leading destination for scientific organizations seeking to disseminate news to reporters and the public. Today, thousands of reporters around the globe rely on EurekAlert! as a source of ideas, background information, and advance word on breaking news stories.

    More than 1,000 peer-reviewed journals, universities, medical centers, government agencies and public relations firms have used EurekAlert! to distribute their news. EurekAlert! is an authoritative and comprehensive research news source for journalists all over the world.

     
  • richardmitnick 3:07 pm on January 14, 2017 Permalink | Reply
    Tags: , , , , , EurekaAlert,   

    From Caltech via EurekaAlert: “New Caltech instrument poised to image the cosmic web” 

    Caltech Logo
    Caltech

    1

    EurekaAlert

    12-Jan-2017
    Whitney Clavin
    wclavin@caltech.edu
    626-395-1856

    Keck Cosmic Web Imager ships from Caltech to Keck Observatory

    2
    Hector Rodriguez, senior mechanical technician, works on the Keck Cosmic Web Imager in a clean room at Caltech. Caltech

    An instrument designed to image the vast web of gas that connects galaxies in the universe has been shipped from Los Angeles to Hawaii, where it will be integrated into the W. M. Keck Observatory.

    Keck Observatory, Mauna Kea, Hawaii, USA
    Keck Observatory, Mauna Kea, Hawaii, USA

    The instrument, called the Keck Cosmic Web Imager, or KCWI, was designed and built by a team at Caltech led by Professor of Physics Christopher Martin. It will be one of the best instruments in the world for taking spectral images of cosmic objects–detailed images where each pixel can be viewed in all wavelengths of visible light. Such high-resolution spectral information will enable astronomers to study the compositions, velocities, and masses of many objects, such as stars and galaxies, in ways that were not possible before.

    One of KCWI’s main goals, and a passion of Martin’s for the past 30 years, is to answer the question: What is the gas around galaxies doing?

    “For decades, astronomers have demonstrated that galaxies evolve. Now we’re trying to figure out how and why,” says Martin. “We know the gas around galaxies is ultimately fueling them, but it is so faint–we still haven’t been able to get a close look at it and understand how this process works.”

    Martin and his team study what is called the cosmic web–a vast network of streams of gas between galaxies. Recently, the scientists have found evidence supporting what is called the cold flow model, in which this gas funnels into the cores of galaxies, where it condenses and forms new stars.

    3
    The forming galaxy with binary quasars as it fits into the timeline of the Universe. We’re seeing it 10 billion years ago, during the epoch of galaxy formation. Credit: Caltech Academic Media Technologies

    Researchers had predicted that the gas filaments would first flow into a large ring-like structure around the galaxy before spiraling into it–exactly what Martin and his team found using the Palomar Cosmic Web Imager, a precursor to KCWI, at Caltech’s Palomar Observatory near San Diego.

    Caltech Palomar Cosmic Web Imager
    Caltech Palomar Cosmic Web Imager

    “We measured the kinematics, or motion, of the gas around a galaxy and found a very large rotating disk connected to a gas filament,” says Martin. “It was the smoking gun for the cold flow model.”

    With KCWI, the researchers will get a closer look at the gas filaments and ring-like structures around galaxies that range from 10 to 12 billion light-years away, an era when our universe was roughly 2 to 4 billion years old. Not only can KCWI take more detailed pictures than the Palomar Cosmic Web Imager, it has other advances such as better mirror coatings. The combination of these improvements with the fact that KCWI is being installed at one of the twin 10-meter Keck telescopes–the world’s largest observatory with some of the darkest known skies on Earth–means that KCWI will have an improved performance by more than an order of magnitude over the Palomar Cosmic Web Imager.

    KCWI will map the gas flowing from the intergalactic medium–the space between galaxies–into many young galaxies, revealing, for the first time, the dominant mode of galaxy formation in the early universe. The instrument will also search for supergalactic winds from galaxies that drive gas back into the intergalactic medium. How gas flows into and out of forming galaxies is the central open question in the formation of cosmic structures.

    “We designed KCWI to study very dim and diffuse objects, our main emphasis being on the wispy cosmic web and the interactions of galaxies with their surroundings,” says Mateusz (Matt) Matuszewski, the instrument scientist for the project.

    KCWI is also designed to be more a general-purpose instrument than the Palomar’s Cosmic Web Imager, which is mainly for studies of the cosmic web. It will study everything from gas jets around young stars to the winds of dead stars and supermassive black holes and more. “The instrument is really versatile,” says Matuszewski. “Observers can configure the optics to adjust the spatial and spectral scales and resolutions to suit their interests.”

    The nuts and bolts of KCWI

    Scientists and engineers have been busy assembling the highly complex elements of the KCWI instrument at Caltech since 2012. The instrument is about the size of an ice cream truck and weighs over 4,000 kilograms. The core feature of KCWI is its ability to capture spectral information about objects, such as galaxies, across a wide image. Typically, astronomers capture spectra using instruments called spectrographs, which have narrow slit-shaped windows. The spectrograph breaks apart light from the slit into each of the colors making up the target object, just like a prism that spreads light into a rainbow. But traditional spectrographs cannot be used to capture spectral information across an entire image.

    “Traditional spectrographs use multiple small slits to capture many stars or the cores of many galaxies,” says Martin. “Now, we want to look at features that are extended across the sky, such as stellar jets and galaxies, which have complex structures, velocities, and gas flows. If you can only look through a slit, you can only see a small part of what is going on. But we want to see the whole picture. That’s why we need an imaging spectrograph, a device that gives you an image for every single wavelength across a wide view.”

    To create a spectrograph that can image more extended objects like galaxies, KCWI uses what is called an integral field design, which basically divides an image up into 24 slits, and gathers all the spectral information at once.

    “If you’re looking at something big in the sky, it’s inefficient to just have one slit and step your way across that object, so an integral field spectrograph combines a number of slit-shaped mirrors together across a continuous field of view,” says Patrick Morrissey, the project scientist for KCWI who now works at JPL. “Imagine looking into a broken mirror–the reflected image is shifted around depending on the angles of the pieces. This is how the integral field spectrograph works. A series of mirrors works together to make a square-shaped stack of slits across an image appear as a single traditional vertical slit.”

    KCWI has the highest spectral resolution of any integral field spectrograph, which means it can better break apart the rainbow of light to see more colors, or wavelengths. The first phase of the instrument, now on its way to Keck, covers the blue side of the visible spectrum, spanning wavelength ranges from 3500 to 5600 Angstroms. A second phase, extending coverage to the red side of the spectrum, out to 10400 Angstroms, will be built next.

    KCWI to Climb Mauna Kea

    After KCWI arrives in Hawaii on January 18, engineers will guide it up to the top of Mauna Kea, where Keck is perched. A series of checkout and alignment tests is planned, and will be followed in a few months by the first observations through the Keck telescope.

    “There are train tracks around the telescope where the instruments are installed,” says Morrissey. “It’s like one of those old railroad roundhouses where the train would come in and they would spin it to an available space for storage. The telescope turns around, points to the instrument that the astronomer wants to use, and then they roll that instrument on. Soon KCWI will becomes part of the telescope.”

    KCWI is funded by the National Science Foundation, through the Association of Universities for Research in Astronomy (AURA) program, and by the Heising-Simons Foundation, the W.M. Keck Foundation, the Caltech Division of Physics, Mathematics and Astronomy, and the Caltech Optical Observatories.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Caltech campus
    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: