Tagged: ESRF-European Synchrotron Radiation Facility Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:38 am on August 8, 2018 Permalink | Reply
    Tags: , , , ESRF-European Synchrotron Radiation Facility   

    From ESRF The European Synchrotron: “Research gives clues to CO2 trapping underground” 

    ESRF bloc
    From ESRF The European Synchrotron

    08-08-2018

    Carbon dioxide is a widespread simple molecule in the Universe.

    CO2 is an environmentally important gas that plays a crucial role in climate change. It is a compound that is also present in the depth of the Earth but very little information about it is available. What happens to CO2 in the Earth’s mantle? Could it be eventually hosted underground? A new publication in Nature Communications unveils some key findings.

    1
    2

    In spite of its simplicity, it has a very complex phase diagram, forming both amorphous and crystalline phases above the pressure of 40 GPa. In the depths of the Earth, CO2 does not appear as we know it in everyday life. Instead of being a gas consisting of molecules, it has a polymeric solid form that structurally resembles quartz (a main mineral of sand) due to the pressure it sustains, which is a million times bigger than that at the surface of the Earth.

    Researchers have been long studying what happens to carbonates at high temperature and high pressure, the same conditions as deep inside the Earth. Until now, the majority of experiments had shown that CO2 decomposes, with the formation of diamond and oxygen. These studies were all focused on CO2 at the upper mantle, with a 70 GPa of pressure and 1800-2800 Kelvin of temperature.

    A team of scientists from the European Laboratory for Non-linear Spectroscopy (LENS), the University of Florence, the National Research Council of Italy, the University of Vienna and the ESRF came to the high-pressure beamline ID27 to study, using x-ray diffraction and Raman scattering (the latter performed in the facilities of LENS), what happens to CO2 at the depth of 2000 to 2400 kilometres, i.e. at the boundary between the silicate minerals of the lower mantle and the metallic core.

    “One of the added value of our team is the fact that we all have different backgrounds: from chemists, to mineralogists and the physicists of the ESRF. This means that we complement each other and, together, we try to get a full picture of what happens to CO2 from our different points of view”, explains Dziubek, corresponding author of the study.

    In order to achieve these conditions, they used a diamond anvil cell and submitted the sample to 2400 degrees Celsius (2700K) and 120 GPa of pressure, which is almost double than previous research. “It was a very complex setup, in particular the laser heating with a 10 micron infrared laser at pressures above 100 GPa was very challenging”, explains Mohamed Mezouar, scientist in charge of ID27. Thinking that they would come up with similar results to existing literature, they were in for a surprise: CO2 is, in fact, stable in a crystalline form and does not dissociate like previously believed.

    3
    Mohamed Mezouar, scientist in charge of ID27, on the beamline. Credits: S. Candé.

    “Our results indicate that the crystalline extended form of carbon dioxide is stable in the thermodynamic conditions of the deep lower mantle and therefore could be helpful to understand the distribution and transport of carbon in the depths of our planet. It could even open doors to the possibility of trapping CO2 underground, if it stays there or just in its polymeric form”, explains Kamil Dziubek.

    CO2 sequestration in geological formations is one of the potential solutions for mitigating the climate changes associated with the greenhouse effect. It is important, however, to investigate the fate of carbon dioxide in deep geosphere and to recognize the form in which it can be stored within the host rock. If the neat polymeric CO2 stays stable in the deep mantle, it can represent a long-term storage of carbon.

    Therefore, the next step of the team is to mimic the real conditions not only in the terms of thermodynamics but also geochemistry, and study in detail stability and reactivity of the CO2 in presence of silicates, carbonates and other minerals, which are known to exist in the deepest parts of the Earth’s mantle.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ESRF

    The ESRF – the European Synchrotron Radiation Facility – is the most intense source of synchrotron-generated light, producing X-rays 100 billion times brighter than the X-rays used in hospitals. These X-rays, endowed with exceptional properties, are produced at the ESRF by the high energy electrons that race around the storage ring, a circular tunnel measuring 844 metres in circumference. Each year, the demand to use these X-ray beams increases and thousands of scientists from around the world come to Grenoble, to access the 43 highly specialised experimental stations, called “beamlines”, each equipped with state-of-the-art instrumentation, operating 24 hours a day, seven days a week.

    Thanks to the brilliance and quality of its X-rays, the ESRF functions like a “super-microscope” which “films” the position and motion of atoms in condensed and living matter, and reveals the structure of matter in all its beauty and complexity. It provides unrivalled opportunities for scientists in the exploration of materials and living matter in a very wide variety of fields: chemistry, material physics, archaeology and cultural heritage, structural biology and medical applications, environmental sciences, information science and nanotechnologies.

    Following on from 20 years of success and excellence, the ESRF has embarked upon an ambitious and innovative modernisation project, the Upgrade Programme, implemented in two phases: Phase I (2009-2015) and the ESRF-EBS (Extremely Brilliant Source) (2015-2022) programmes. With an investment of 330 million euros, the Upgrade Programme is paving the way to a new generation of synchrotron storage rings, that will produce more intense, coherent and stable X-ray beams. By constructing a new synchrotron, deeply rooted in the existing infrastructure, the ESRF will lead the way in pushing back the boundaries of scientific exploration of matter, and contribute to answering the great technological, economic, societal and environmental challenges confronting our society.

     
  • richardmitnick 11:06 am on June 25, 2018 Permalink | Reply
    Tags: Dark-field X-ray microscopy, ESRF-European Synchrotron Radiation Facility   

    From ESRF The European Synchrotron: “Dark-field X-ray microscopy provides surprising insight on ferroelectrics” 

    ESRF bloc
    From ESRF The European Synchrotron

    25-06-2018

    1
    Dark-field x-ray microscopy enables coinciding maps of lattice strain (top), lattice orientation (middle) and diffracted intensity (bottom) – all from a single buried grain in the bulk material. Credits: Hugh Simons.

    Thanks to the unique capabilities of in-situ dark-field X-ray microscopy, scientists have now been able to see the complex structures hidden deep inside ferroelectric materials. The results, published today in Nature Materials, contradict previous studies in which only the surface was studied. This revolutionary new technique will be the main feature of a new beamline for the new EBS machine currently being built at the ESRF.

    “Until now we could only see the surface of the material; dark-field x-ray microscopy is like creating a window to its interior”, explains Hugh Simons, assistant professor at the Technical University of Denmark and corresponding author of the study. “It provides incredible contrast for even the subtlest structures inside these materials, giving us a much clearer picture of how they work”, he adds.

    Simons, together with the team of ID06 – the beamline where the technique is being developed – studied the ferroelectric material BaTiO3, which is used every day in cars, computers and mobile phones. By imaging their internal structure at the same time as they applied an electric field on it, they could see how these internal structures behave and change dynamically.

    2
    3

    Crosssectional dark-field x-ray microscopy maps of the embedded BaTiO3 grain. Individual domains are visible in the integrated intensity image (top), while the reconstructed strain (bottom) map reveals the structural relationship between domain clusters. Credit: H. Simons.

    Ferroelectric materials work thanks to the symmetry of their crystalline structure. So, when defects in the material create strain fields that break this symmetry, it can have a dramatic effect on the properties. Understanding the way these defects strain and distort the material then opens the way to making new materials with much better properties than ever before.

    During the experiment, the team measured the distortions around two particularly prevalent types of defect in many ferroelectrics: domain walls and grain boundaries. Previous studies suffered from the technical limitation that they could only work with surfaces or very thin films. They could therefore not access deeply buried grains that are strained in all directions by their neighbouring grains.

    3
    Hugh Simons sets up a sample on beamline ID06. Credits: Etienne Bouy. No image credit.

    Simons and colleagues were surprised by the results: they discovered that the strain from these defects breaks the symmetry in the domain walls over several micrometres and drastically alters the material’s response to the applied electric fields. This also implies that the behaviour of the material is fundamentally affected by heterogeneities deep within the bulk material. “You can’t assume your material has the structure you think it has”, says Simons. “Our results conflict with 50 years of research”, says Simons. “These results will now have to be taken into account when designing and simulating these materials”.

    A technique for the future EBS

    Simons has been working alongside Carsten Detlefs, beamline responsible for ID06, developing the technique of Dark X-ray microscopy for the last four years. Together they have published various publications on the technique and some fundamental studies in metals.

    This technique is new in synchrotrons and allows to study materials at different scales. Unlike bright field microscopy, where the sample is seen on a bright background, dark field microscopy detects only light that is scattered by the sample, not from direct illumination. In case of dark-field x-ray microscopy, the signal originates from Bragg diffraction. This new technique is therefore ideal for crystalline materials like most metals, ceramics, rocks, ice, semiconductors, etc. Many physical and mechanical properties of these materials depend on their internal structure, organised into grains of different sizes. Dark-field X-ray microscopy is a non-destructive technique which allows 3D mapping of orientations and stresses from 100 nanometres to 1 millimetre. The technique allows zooming in and out in both direct and angular space.

    Carsten Detlefs explains that “Dark field x-ray microscopy is inspired by dark-field transmission electron microscopy (TEM). It combines elements from x-ray diffraction topography, x-ray tomography and x-ray microscopy. Compared to TEM, we have a much better angular resolution, although a not as good spatial resolution. What is more important, however, is that we can look inside the material, whether it is inside a furnace or other sample environment, and see how the sample evolves during processing”.

    The new beamline which will feature this technique will be ready in 5 years’ time. However, the ID06 has become the launching platform for it. “It is very impressive to see movies of how the internal structure changes to such a detail. We are going where no one has ever gone before”, says Simons.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ESRF

    The ESRF – the European Synchrotron Radiation Facility – is the most intense source of synchrotron-generated light, producing X-rays 100 billion times brighter than the X-rays used in hospitals. These X-rays, endowed with exceptional properties, are produced at the ESRF by the high energy electrons that race around the storage ring, a circular tunnel measuring 844 metres in circumference. Each year, the demand to use these X-ray beams increases and thousands of scientists from around the world come to Grenoble, to access the 43 highly specialised experimental stations, called “beamlines”, each equipped with state-of-the-art instrumentation, operating 24 hours a day, seven days a week.

    Thanks to the brilliance and quality of its X-rays, the ESRF functions like a “super-microscope” which “films” the position and motion of atoms in condensed and living matter, and reveals the structure of matter in all its beauty and complexity. It provides unrivalled opportunities for scientists in the exploration of materials and living matter in a very wide variety of fields: chemistry, material physics, archaeology and cultural heritage, structural biology and medical applications, environmental sciences, information science and nanotechnologies.

    Following on from 20 years of success and excellence, the ESRF has embarked upon an ambitious and innovative modernisation project, the Upgrade Programme, implemented in two phases: Phase I (2009-2015) and the ESRF-EBS (Extremely Brilliant Source) (2015-2022) programmes. With an investment of 330 million euros, the Upgrade Programme is paving the way to a new generation of synchrotron storage rings, that will produce more intense, coherent and stable X-ray beams. By constructing a new synchrotron, deeply rooted in the existing infrastructure, the ESRF will lead the way in pushing back the boundaries of scientific exploration of matter, and contribute to answering the great technological, economic, societal and environmental challenges confronting our society.

     
  • richardmitnick 9:47 am on December 8, 2017 Permalink | Reply
    Tags: , , , ESRF-European Synchrotron Radiation Facility, , , RIXS-resonant inelastic x-ray scattering, Scientists found that as superconductivity vanishes at higher temperatures powerful waves of electrons begin to curiously uncouple and behave independently—like ocean waves splitting and rippling in, Superconductors carry electricity with perfect efficiency, The puzzling interplay between two key quantum properties of electrons: spin and charge   

    From BNL: “Breaking Electron Waves Provide New Clues to High-Temperature Superconductivity” 

    Brookhaven Lab

    December 5, 2017
    Justin Eure
    jeure@bnl.gov

    Scientists tracked elusive waves of charge and spin that precede and follow the mysterious emergence of superconductivity.

    1
    Brookhaven’s Robert Konik, Genda Gu, Mark Dean, and Hu Miao

    Superconductors carry electricity with perfect efficiency, unlike the inevitable waste inherent in traditional conductors like copper. But that perfection comes at the price of extreme cold—even so-called high-temperature superconductivity (HTS) only emerges well below zero degrees Fahrenheit. Discovering the ever-elusive mechanism behind HTS could revolutionize everything from regional power grids to wind turbines.

    Now, a collaboration led by the U.S. Department of Energy’s Brookhaven National Laboratory has discovered a surprising breakdown in the electron interactions that may underpin HTS. The scientists found that as superconductivity vanishes at higher temperatures, powerful waves of electrons begin to curiously uncouple and behave independently—like ocean waves splitting and rippling in different directions.

    “For the first time, we pinpointed these key electron interactions happening after superconductivity subsides,” said first author and Brookhaven Lab research associate Hu Miao. “The portrait is both stranger and more exciting than we expected, and it offers new ways to understand and potentially exploit these remarkable materials.”

    The new study, published November 7 in the journal PNAS, explores the puzzling interplay between two key quantum properties of electrons: spin and charge.

    “We know charge and spin lock together and form waves in copper-oxides cooled down to superconducting temperatures,” said study senior author and Brookhaven Lab physicist Mark Dean. “But we didn’t realize that these electron waves persist but seem to uncouple at higher temperatures.”

    Electronic stripes and waves

    2
    In the RIXS technique, intense x-rays deposit energy into the electron waves of atomically thin layers of high-temperature superconductors. The difference in x-ray energy before and after interaction reveals key information about the fundamental behavior of these exciting and mysterious materials.

    Scientists at Brookhaven Lab discovered in 1995 that spin and charge can lock together and form spatially modulated “stripes” at low temperatures in some HTS materials. Other materials, however, feature correlated electron charges rolling through as charge-density waves that appear to ignore spin entirely. Deepening the HTS mystery, charge and spin can also abandon independence and link together.

    “The role of these ‘stripes’ and correlated waves in high-temperature superconductivity is hotly debated,” Miao said. “Some elements may be essential or just a small piece of the larger puzzle. We needed a clearer picture of electron activity across temperatures, particularly the fleeting signals at warmer temperatures.”

    Imagine knowing the precise chemical structure of ice, for example, but having no idea what happens as it transforms into liquid or vapor. With these copper-oxide superconductors, or cuprates, there is comparable mystery, but hidden within much more complex materials. Still, the scientists essentially needed to take a freezing-cold sample and meticulously warm it to track exactly how its properties change.

    Subtle signals in custom-made materials

    The team turned to a well-established HTS material, lanthanum-barium copper-oxides (LBCO) known for strong stripe formations. Brookhaven Lab scientist Genda Gu painstakingly prepared the samples and customized the electron configurations.

    “We can’t have any structural abnormalities or errant atoms in these cuprates—they must be perfect,” Dean said. “Genda is among the best in the world at creating these materials, and we’re fortunate to have his talent so close at hand.”

    At low temperatures, the electron signals are powerful and easily detected, which is part of why their discovery happened decades ago. To tease out the more elusive signals at higher temperatures, the team needed unprecedented sensitivity.

    “We turned to the European Synchrotron Radiation Facility (ESRF) in France for the key experimental work,” Miao said.


    ESRF. Grenoble, France

    “Our colleagues operate a beamline that carefully tunes the x-ray energy to resonate with specific electrons and detect tiny changes in their behavior.”

    The team used a technique called resonant inelastic x-ray scattering (RIXS) to track position and charge of the electrons. A focused beam of x-rays strikes the material, deposits some energy, and then bounces off into detectors. Those scattered x-rays carry the signature of the electrons they hit along the way.

    As the temperature rose in the samples, causing superconductivity to fade, the coupled waves of charge and spin began to unlock and move independently.

    “This indicates that their coupling may bolster the stripe formation, or through some unknown mechanism empower high-temperature superconductivity,” Miao said. “It certainly warrants further exploration across other materials to see how prevalent this phenomenon is. It’s a key insight, certainly, but it’s too soon to say how it may unlock the HTS mechanism.”

    That further exploration will include additional HTS materials as well as other synchrotron facilities, notably Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II), a DOE Office of Science User Facility.

    BNL NSLS-II

    BNL NSLS II

    “Using new beamlines at NSLS-II, we will have the freedom to rotate the sample and take advantage of significantly better energy resolution,” Dean said. “This will give us a more complete picture of electron correlations throughout the sample. There’s much more discovery to come.”

    Additional collaborators on the study include Yingying Peng, Giacomo Ghiringhelli, and Lucio Braicovich of the Politecnico di Milano, who contributed to the x-ray scattering, as well as José Lorenzana of the University of Rome, Götz Seibold of the Institute for Physics in Cottbus, Germany, and Robert Konik of Brookhaven Lab, who all contributed to the theory work.

    This research was funded by DOE’s Office of Science through Brookhaven Lab’s Center for Emergent Superconductivity.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: