Tagged: ESOblog Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:13 pm on June 14, 2019 Permalink | Reply
    Tags: "Spot-on Science", , , , , , ESOblog, Paola Amico-Science Liaison   

    From ESOblog: “Spot-on Science” 

    ESO 50 Large

    From ESOblog

    Why all ESO Supernova content is checked by an active scientist.

    1
    The very first panel of the exhibition The Living Universe in the ESO Supernova Planetarium & Visitor Centre, explains why we study the Universe. From here, visitors will be taken on a journey all the way across the Universe, learning about stars, galaxies, black holes, exoplanets and much more. Credit:ESO/P. Horálek

    The ESO Supernova is the gateway to space for the European public. It provides an immersive experience that leaves visitors in awe of the Universe in which they live and seemingly-abstract concepts are explained in an innovative and engaging way. But all this is futile if we don’t get the science right. We speak to ESO scientist Paola Amico about her involvement as a “Science Liaison” for the ESO Supernova.

    2
    Paola Amico

    Q. Firstly, could you tell us what being a Science Liaison for the ESO Supernova involves?

    A. I check everything that is produced for scientific accuracy to make sure that people are as well informed as possible and that misconceptions are not spread. This all started in 2016, when there was a call for volunteers for the ESO Supernova, which was due to be opened to the public two years later.

    I applied and Tania — the Supernova Coordinator — realised I had a background in astronomy. She checked my CV to review my experience and quickly asked me to take on the role of Science Liaison! I happily accepted and continue to do this even now. It means that I evaluate the text on everything that is produced in the Supernova; this includes exhibition panels, student workshops, planetarium shows, and even the AstroCalendar, which is a kind of database of astronomical events. At the same time, I also took on the role of Science Liaison for ESO’s Department of Communications more generally.

    Q: What experience do you have that makes you a good Science Liaison?

    A: By background I am an astronomer specialising in galactic dynamics — so how galaxies rotate, dark matter and things like that. After finishing a PhD in astronomy, I started at ESO as a Fellow in 1994, and somehow I got more and more attracted to the technology that is applied to astronomy. In particular I became fascinated by detectors, which are a bit like the eyes of any telescope.

    I was later offered a fellowship in ESO’s instrumentation division, and from that moment on I managed to stay in the field of technology for astronomy. I worked as an instrument scientist and support astronomer for eight years, both at Keck Observatory and at ESO’s Paranal Observatory. My instruments were almost all capable of adaptive optics, which corrects for turbulence in Earth’s atmosphere that causes stars to twinkle and blur. Telescopes that use adaptive optics are really cool, and I think even more fun than other telescopes! Somehow it requires some real-time thinking, interacting and interpretation, because the atmosphere changes all the time, making it quite human-like. I would say working on instruments with adaptive optics is now my role of expertise, I am a systems engineer and I support two instruments on ESO’s Extremely Large Telescope.

    I’m very lucky, because I’m pretty old (ha!) and saw many astronomical technologies being born. The application of technology to astronomy was really starting to take off when I began working in the field. With detectors, for example, they were first one pixel, then eight, and now we are working with detectors made up of millions of pixels! It’s been a real privilege to see that happen and I think working in astronomy during this time of change has given me vital knowledge that I can apply to my Science Liaison role.

    As well as explaining current science and astronomy, the ESO Supernova also presents ESO and all the incredible telescopes that we operate. For example, I was involved in developing a workshop all about optics that shows students and teachers how instruments work and what people can do even with small telescopes. I think my experience in astronomy technology really gives me a broad range of knowledge in the “what”, “why” and “how” of astronomy that makes me a good fit for the Science Liaison role.

    Q: The ESO Supernova covers pretty much every topic in astronomy. Has it been difficult to review such a range of subjects?

    A: It was a bit overwhelming at the beginning! Even for active astronomers it can be a challenge to know the most up-to-date research in every area. For me, this was partly why I wanted to be involved — to get back in touch with all of astronomy. And I’ve learned so much! I went through all my studies again and began recovering all this information.

    The interesting thing is that when I started as an astronomer back in the eighties, the science was at a completely different stage. Since then astronomy has progressed an almost unbelievable amount and there have been so many incredible discoveries. There is so much modern science that is hugely important now that we knew little about twenty years ago; take black holes, gravitational waves, and dark energy for example. I’m so pleased to have had the opportunity to catch up on some of the things I missed — but it required a lot of hard work!

    Of course, when reviewing content for the ESO Supernova, I have to check that all the numbers and facts are reported correctly, and in order to do that I cross-check and read a lot of scientific papers. It is so important that all our information is accurate, because it is our duty to inform the public.

    Q: What excites you most about the ESO Supernova?

    A: The reason I volunteered in the first place was to give tours to the students, in particular secondary school students, given my past as a high school maths teacher. I love interacting with them and telling them all about astronomy and science. When I first started at ESO, I volunteered with Italian kids, guiding them around the ESO Headquarters and even showing them a movie about the construction of ESO’s Very Large Telescope. This was really exciting — even watching a movie was very spectacular back then!

    We always put time aside for the students to ask astronomers questions, and I just loved that. But now, with the Supernova, I am supported by a hugely impressive exhibition, making it easier to impress the public, much more than I did just with just a VHS back in 1994!

    Q: What is your favourite thing about being a Science Liaison at ESO?

    A: Astronomy is intrinsically wonderful, with every image being so beautiful and impressive. But I love to be able to explain that there is so much more behind the beauty, and using that to inspire young people to go into science, or just to ask big questions and think about their place in the Universe.

    Science is about solving a mystery, and it’s great to give people a sense of the scientific approach — I like to encourage people to question what’s around them and maybe even to be more critical about what they might hear in the news.

    With the Science Liaison work, I always think critically. I take everything I read a sentence at a time, looking at each word and asking if this is the best word to use, the best way to describe an idea. I look at everything with doubt, not because I don’t trust what someone has written, but because it helps you critically analyse what you are looking at, and make it better.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 10:31 am on June 2, 2019 Permalink | Reply
    Tags: "Astronomical failures", , , , , ESOblog   

    From ESOblog: “Astronomical failures” 

    ESO 50 Large

    From ESOblog

    1

    We want to share a secret: scientists fail all the time. A lot of scientific research leads to a “null” result, meaning that it is not a discovery. And though these results are vital steps on the road to discovery, they are rarely published, meaning that a huge chunk of science goes missing. But unfortunately for the following scientists, some failures are so dramatic that they go down in history.

    1. When the world conspires against you — Guillaume Le Gentil and the curse of Venus

    Often, our endeavours rely on factors outside our control and, while some challenges can be overcome, sometimes you can be downright unlucky. That is how you might describe Guillaume Le Gentil, who set out in the eighteenth century to measure the transit of Venus in order to calculate the size of the Solar System. The phenomenon occurs in pairs — with Venus transiting twice in the astronomically short timeframe of eight years. As adjacent pairs happen less frequently than once every hundred years; this was Le Gentil’s only chance. He travelled to the other side of the world, where the transits would be visible, but an extraordinary series of misfortunes befell him; between wars and the weather, he was unable to measure the first transit, and unable to view the second one at all. After a difficult journey home, Le Gentil discovered that everyone back in France had assumed him dead, his belongings had been taken by relatives and his wife had remarried. Le Gentil became well-known for his memoirs and his other scientific studies, but this was probably little consolation as he watched his competitor Captain Cook revel in success.

    2. When teamwork lets you down — John Couch Adams and the elusive eighth planet

    In the early nineteenth century, Uranus was behaving strangely. The planet had been discovered forty years earlier, but its movements weren’t following the expected path, leading to speculation about an unseen planet beyond it, interfering with its orbit. The young astronomer John Couch Adams set out to discover this new eighth planet. He spent years making calculations of its location, some of them correct. But the observers just couldn’t find this planet, even though they saw it, and mistook it for a star! What we now know as Neptune was discovered soon afterwards by another team of astronomers. Disheartening as this must have been, Adams moved on, applying himself to other questions and making great discoveries, most notably that the spectacular Leonid meteor showers originate from the debris of comet Tempel-Tuttle.

    3. When you’re right for the wrong reasons — Albert Einstein and the cosmological constant

    Einstein’s name may be synonymous with genius, but even the great logician was not immune to error. When his equations of general relativity suggested the size of the Universe was changing, he added in a term, the cosmological constant, to make the equations compatible with the Universe being static, a widely-held assumption at the time. After Hubble discovered that the Universe was actually expanding, Einstein scrapped the constant, whose introduction became known as his biggest blunder. But it turned out that scrapping it was the real mistake. Decades later it transpired that, not only is the Universe expanding, but the expansion is accelerating. Describing this using the equations of general relativity again required the cosmological constant. So when Einstein made his great mistake, he unwittingly fixed his equations to fit a characteristic of the Universe that he would never know.

    4. When you bury your head in the sand — Fred Hoyle and the big bang

    One astrophysicist famously opposed the idea that the Universe had a beginning, and his sarcastic reaction has become embedded in our language. Fred Hoyle was one of the authors of the steady state model, which says that the Universe is pretty much the same as it always has been. When the Universe was found to be expanding, physicists extrapolated backwards to conclude that it started as something much smaller and denser, threatening Hoyle’s steady state model. Devoted to his theory, Hoyle flippantly dismissed the new proposal as a “Big Bang”. As evidence mounted for the Universe’s beginning, Hoyle refused to accept it, instead contriving ways in which a steady state Universe could explain new observations. Despite his vehement opposition, he left the biggest imprint on the public perception of the idea — the ‘big bang’ is quite a catchy name after all!

    2
    Major milestones in the Universe since the Big Bang occurred 14 billion years ago. Credit: NAOJ

    But failures still occur today in our quest to find out more about the Universe…

    5. When there is much more at stake — NASA and the Apollo disasters

    NASA’s famous Apollo missions led to what is arguably humanity’s most remarkable achievement: setting foot on the Moon. In attempting something that has never been done before, especially something so ambitious, mistakes are inevitable. However, as disheartening as failure normally is, it becomes infinitely more serious when people’s lives are in jeopardy. Tragically, failures in the Apollo 1 mission led to the fatalities of three crew members. In subsequent launches, it was absolutely vital to learn from those mistakes. Most of the later missions were successful, but spaceflight remained high-risk, as demonstrated by the Apollo 13 mission, when an oxygen tank exploded in space. After an unimaginably nail-biting period of trying to set the craft on a safe path to Earth, the crew made it back alive, partly thanks to safeguards built in after Apollo 1. While most missions have been successful, there have been spaceflight fatalities since, highlighting the paramount importance of vigilance when people’s lives depend on it, no matter how many successful missions have gone before.

    6. When the devil is in the detail —NASA and the imperial disaster

    Fortunately, the Mars Climate Orbiter was an unmanned spacecraft, allowing some humour to be found in the circumstances of its failure. Built by NASA to study the Martian atmosphere, it burned up and disintegrated after making it almost all the way to the red planet. The problem was in the communication of two pieces of code in the programming. One calculated the force, in imperial pounds, that the thrusters needed to exert, and another read these calculations — in metric Newtons! The spacecraft followed the wrong path at the wrong speed, and burned up in Mars’ atmosphere instead of going into orbit around the red planet. A unit conversion might have been the easiest part of programming the spacecraft, but its simplicity clearly didn’t negate its importance!

    3
    Mars Climate Orbiter

    7. All’s well that ends well — Short-sighted Hubble

    When the Hubble Space Telescope sent its first images home, they were blurry, not discerning in detail the celestial objects that it had been sent up to see. The problem was identified as an error in the primary mirror; a tiny error of just two microns in an instrument used in the mirror’s production had made the mirror too flat, rendering its images useless. Since bringing Hubble back was not an option, NASA and ESA decided to build an additional set of mirrors that could correct Hubble’s vision. The ‘spectacles’ were installed by astronauts on a special mission, and they worked, allowing Hubble to begin its distinguished career sending back sharp views of the distant Universe. This story tells us that failure doesn’t always mean the end. Often, with determination and creativity, mistakes are fixable.

    What we can be sure of is that mistakes are absolutely essential to progress; an adage often attributed to Einstein states “a person who never made a mistake never tried anything new”, and science is all about trying new things and pushing boundaries. The scientific method by which our knowledge progresses is built on taking what we think we know and testing it to its limits, seeing if it holds up, and being ready to change our ideas if it turns out to be wrong. So, filling in the backdrop of all the attention-worthy illustrious scientific achievements, it is really the failures that make this millennia-long endeavour to understand the thing that we call science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 3:45 pm on May 19, 2019 Permalink | Reply
    Tags: Another current focus area is lasers which can be used to sharpen images by creating artificial stars in a technique called adaptive optics., Detectors are the key element of any astronomical instrument — they are like the eyes that see the light from the Universe., ESO’s Technology Development Programme, ESOblog, Lasers in Adaptive Optics, , To avoid wasted efforts we tend to focus our work into themes for example detectors or adaptive optics.   

    From ESOblog: “Shaping the future” 

    ESO 50 Large

    From ESOblog

    1

    17 May 2019

    Pushing the limits of our knowledge about the Universe requires the constant development of new trailblazing technologies. We speak to Mark Casali, former Head of ESO’s Technology Development Programme to find out more about how ESO keeps itself at the cutting-edge of scientific research.

    2
    Mark Casali

    Q. Firstly, could you tell us about ESO’s Technology Development Programme?

    A. We are a team of about a dozen people developing new technology that enables ESO to reach its ambitious scientific goals. This means we work on concepts with a fairly long timeframe — looking into completely innovative techniques and developing technology for astronomical instruments that will exist in the future, rather than those that exist today.

    Technology takes a long time to emerge, so we can’t wait to develop it until we want to produce an instrument that does something specific. Rather we need to already have the technology in place before the instrument is developed, in order to speed up production.

    One question people often ask is how we decide what new technology to explore. Of course, there are always more brilliant ideas than funds available, but our research is science-driven, meaning that when developing new technology we always focus on things that will eventually enable us to do the most exciting science.

    3
    The main mirror of the Extremely Large Telescope is visible at the centre of this image. It consists of 798 segments that together form a mirror 39 metres wide.
    Credit: ESO/L. Calçada/ACe Consortium

    Q. What kind of new technology are you developing at the moment?

    A. To avoid wasted efforts, we tend to focus our work into themes, for example detectors or adaptive optics. This means that we solve many problems in a single area so that area can move forward. This is more efficient than investing in several different areas and making only a small amount of progress in each.

    Detectors are the key element of any astronomical instrument — they are like the eyes that see the light from the Universe. Many very good detectors exist commercially, but often it’s useful to have detectors with really specific properties. So we put a lot of effort into developing new detectors.

    Another current focus area is lasers, which can be used to sharpen images by creating artificial stars, in a technique called adaptive optics. We also develop new mirror technology, for example mirrors that can change shape to create sharper images.

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system

    3
    The Paranal engineer Gerhard Hüdepohl checks the huge camera attached at the Cassegrain focus of VISTA, directly below the cell of the main mirror. VISTA´s powerful eye is a 3-tonne camera containing 16 special detectors sensitive to infrared light with a combined total of 67 megapixels. It will have widest coverage of any astronomical near-infrared camera. VISTA is the largest telescope in the world dedicated to surveying the sky at near-infrared wavelengths. Credit: ESO

    Q. Do you develop all of this new technology here at ESO?

    A. We actually only do about half of the technology development in house, and the other half is contracted out to external industry, universities or institutes around Europe. The decision to work on projects internally or externally depends on factors like whether we have the relevant expertise within our small team.

    Working with external partners is really a collaboration from which both parties benefit. We gain expertise, as well as a good quality product, because industry usually provides well-engineered products that are reliable and don’t break down easily. Also working with industrial partners gives us access to expensive machinery that we wouldn’t be able to afford ourselves for a single project. On the other hand, we are really looking to develop cutting-edge technology, so when we fund a company to develop something new, they really get ahead of the pack and could be the only company to be producing a certain product commercially. It’s a win-win for all involved!

    Working with industrial, academic and institutional partners also allows us to support our Member States, providing them with a return on the money they invest in ESO. Our collaborations with external partners occur through calls to tender and typically last about two years.

    Q. And what about the other way around? Does technology developed within ESO ever go on to have commercial success?

    A. Occasionally, yes! Although we don’t have a specific department for technology transfer, it does happen organically every now and then.

    For example, a couple of years ago we created a special laser called a Raman fibre laser that is used to create an artificial laser guide star by exciting sodium atoms high up in Earth’s atmosphere. We then signed a license agreement with two commercial partners for them to use this novel laser technology.

    3
    ESO’s Raman fibre laser feeding the frequency-doubling Second Harmonic Generation unit,, which produces a 20W laser at 589 nm. The light is used to create an artificial laser guide star by exciting sodium atoms in the Earth’s atmosphere at 90 km altitude. ESO has signed an agreement to license its cutting-edge laser technology to two commercial partners, Toptica Photonics and MPB Communications. This marks the first time that ESO has transferred patented technology and know-how to the private sector, offering significant opportunities both for business and for ESO. Credit: ESO

    Q. The Technology Development Programme sounds like an interesting place to work. What experience do you have that made you a good fit to oversee such a department?

    A. After a PhD in astronomy and then a stint as a researcher, I got involved in telescope construction projects. I believe that this combination of scientific and technical understanding was really helpful in my role.

    I do agree that this is a great team to work in! Not only is it really interesting to bring ideas for revolutionary technology through to actual deliverables, but I also feel that it’s a very important part of ESO’s work. Without new and improved technology, we wouldn’t be able to continue to make new discoveries and remain at the forefront of astronomical research.

    Q. Isn’t ESO involved in the European Union’s ATTRACT initiative to develop new technology?

    A. ESO is indeed one of the partners in the ATTRACT consortium, which consists mostly of large European infrastructures like CERN and EMBL, as well as universities and some industrial partners. The consortium recently received funding from the European Commission to run a competition for ideas in detector and imaging technology. This could be applied to many different fields, for example detecting light for astronomical or medical applications, or imaging particles for particle physics applications.

    We received over 1200 technology development ideas, of which 170 will be awarded 100 000 euros each. After a year and a half of work on their projects, a few of these will receive funding for a scale-up project. Hopefully these will include some astronomy-related projects!

    Through ATTRACT, ESO is able to work with other big organisations to develop the European economy, and I believe that the initiative is improving lives by creating products, services, jobs and even new companies.

    Q. Is there anything else you’d like to mention?

    A. Two things. The first being that the future of technology development at ESO is very bright; it’s likely that our programme will be supported and continue to grow long into the future. The second is that anybody can look at the list of ESO-developed technologies online, which we keep updated so that the public can see where their money goes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 1:41 pm on May 3, 2019 Permalink | Reply
    Tags: , , , , , ESOblog, Predicting the future of the Universe by measuring the distance to our closest galactic neighbour   

    From ESOblog: “The first rung on the cosmic distance ladder” 

    ESO 50 Large

    From ESOblog

    Predicting the future of the Universe by measuring the distance to our closest galactic neighbour.

    Large Magellanic Cloud. Adrian Pingstone December 2003

    26 April 2019

    1

    In the most accurate measurement to any galaxy ever, a team of scientists recently calculated the distance to the Large Magellanic Cloud to an incredible precision of 1%. This research was carried out in the hope of gaining a better understanding of dark energy and the future of the Universe. And it worked. We speak to the lead scientist involved in this study — Grzegorz Pietrzyński — to find out more about the enormous implications of this extraordinary measurement.

    2
    Grzegorz Pietrzynski

    Q. First of all, why is it important to measure the distances to other galaxies?

    A. Since our ancient ancestors began thinking about the cosmos, measuring distances has been one of the most important, fascinating and challenging goals in astronomy. It’s much more than recognising the scale of the Universe; it also means understanding the physical nature of astronomical objects, and each significant improvement in the accuracy of the distance scale opens up whole new fields of astrophysical research.

    It is especially important to measure the distance to the Large Magellanic Cloud — also known as the LMC — because distances to all the other galaxies in the Universe are calibrated against this one.

    2
    The Large and Small Magellanic Clouds glow above one of the four Very Large Telescope Unit Telescopes. Credit: A. Tudorica/ESO

    Q. Could you expand upon what you mean by that?

    A. Measuring the distance to the LMC is the first step in what is known as the cosmic distance ladder, which is a succession of methods astronomers use to measure the distances to astronomical objects. It is called a ladder because the first step — measuring the distances to the closest galaxies — requires one technique. Measuring how far away slightly more distant galaxies are requires another technique that relies on the first technique. And so on.

    The first step is to measure the distances to pulsating stars called Cepheid variables. About 100 years ago, American astronomer Henrietta Swan Leavitt discovered that the intrinsic brightness — or luminosity — of a Cepheid variable is closely related to its pulsation rate, also known as its period. By comparing their apparent brightness as seen from Earth with the real brightness predicted by their pulsation rate, astronomers can find out how far away a Cepheid variable is. An object with a known brightness, such as this one, is called a standard candle.

    But to get an accurate distance, it is important to know the exact relationship between luminosity and pulsation rate. To calculate this relationship, astronomers have previously been using a technique called parallax to measure distances to individual Cepheids in the Milky Way.

    2
    Iconic image of Standard candle, objects with a known luminosity that can be used to gauge cosmic distances. Credit: NASA/JPL-Caltech

    But another way, and indeed currently the best way, to measure the period-luminosity relationship of Cepheids is to measure the distance to a galaxy with a rich population of these stars, for example the LMC.

    By calculating the precise distance to the LMC, and getting an accurate value for the Cepheid period-luminosity relationship, we can look at even more distant Cepheids, in galaxies further away. And in these galaxies another type of standard candle exists: bright stellar explosions called type Ia supernovae.

    We know the distances to these more distant galaxies because of the Cepheid period-luminosity relationship, meaning that we also know how far away the type Ia supernovae are, and therefore can calculate how bright they are intrinsically. And as type Ia supernova are so bright, we can also see them in even more distant galaxies, so we can then work out how far away these very distant galaxies are.

    Q. So by looking at type Ia supernova in even more distant galaxies, we find out more about the scale of the Universe?

    A. Exactly! But there’s a catch. The type Ia supernovae in more distant galaxies are further away than they would be in a static Universe, because the Universe is expanding. This was discovered in the early 20th century by Edwin Hubble, who explained the expansion using a value called the Hubble constant. And because of the difference in what the supernovae look like, and what they would look like in a static Universe, we can use them to probe the expansion of the Universe and calculate the Hubble constant.

    But after 100 years of trying to determine this value, it turned out that the most difficult and challenging step is the first one: to calibrate the Cepheid period-luminosity relationship. We aimed to do this more precisely than ever before using eclipsing binary stars to measure an accurate distance to the LMC, a galaxy which possesses a few thousands Cepheids. This enabled us to work out the period-luminosity relationship of Cepheids in the LMC very accurately.

    Q. Could you tell us more about how you measured the distance to the LMC?

    A. Well in 2013 I already worked with a team to measure this distance precise to 2% using eight eclipsing binary stars and several telescopes, including ESO’s 3.6-metre and New Technology Telescope. During each eclipse, the total brightness of the system dips, allowing us to measure the properties of the stars. By comparing their actual size with the size that they appear on the sky, we can calculate their distance from Earth.

    But 2% was not enough. In astronomy, we are always working to find out things with more precision. So this time round, we looked at 20 eclipsing binaries to find the distance much more precisely. It involved observing for several hundred nights over 20 years, using many different telescopes including ESO’s Very Large Telescope.

    Q. So what did you find the distance to be this time round?

    A. We found that the LMC is 1 497 000 000 000 000 000 kilometres away, with an uncertainty of just 1%, meaning that the actually value could be up to 1% larger or smaller than this value. It’s incredible to think that we can be so sure about the distance to something so far away!

    And based on this precise distance, we believe that we will be able to calculate the Hubble constant more accurately than ever before. Just recently a team of scientists used the Hubble Space Telescope to calculate it to a precision of 1.9% but we think that we will be able to get this down to 1.5%!

    Q. Could you explain more about why it is so important to know the value of the Hubble constant?

    A. Knowing the Hubble constant helps us find out how fast the Universe is accelerating, which effectively means that we can predict the future of the Universe. Will it expand forever? Will it stop accelerating and one day collapse? Astronomers now believe that it will expand forever, becoming colder and colder until it can no longer support life.

    In the 1990s, astronomers discovered that the expansion of the Universe is accelerating because of a mysterious phenomenon called dark energy. Since then, explaining dark energy has been a major challenge. But by becoming more certain about the Hubble constant, we will find out more about dark energy.

    We can also use the Hubble constant to find out lots of other information about the Universe, for example the amount of matter and radiation that exists. Therefore, an independent, highly accurate measurement of the Hubble constant is vital for making significant progress towards understanding cosmology in general.

    Furthermore, there’s another way to measure the Hubble constant using the cosmic microwave background radiation. But this gives a very different result and we have no idea why! Therefore it is extremely important to improve the precision and accuracy of the Hubble constant to investigate this discrepancy in more detail. If the discrepancy is confirmed, modern physics requires significant revision.

    4
    This illustration shows the three steps astronomers previously used to measure the expansion rate of the Universe to an unprecedented accuracy, reducing the total uncertainty to 2.4%. With the new LMC distance measurement (using eclipsing binaries as the first step rather than parallax), this uncertainty will reduce to just 1.5%.
    Credit: NASA, ESA, A. Feild (STScI), and A. Riess (STScI/JHU)

    5
    CMB per ESA/Planck

    Q. Are there any other implications of this result?

    A. One implication is that our new technique can be applied to verify how good other methods of measuring distances are. For example, ESA’s Gaia space observatory is using the parallax method to create a 3D map of the Milky Way.

    Parallax method ESA

    By comparing Gaia measurements to measurements obtained through our eclipsing binary method, we can figure out the accuracy of Gaia’s map.

    Nearby galaxies in general, and especially the LMC as the closest galaxy, are perfect laboratories for studying different objects and processes. But for many of these studies we need to know precise distances. With the advent of huge telescopes like the Extremely Large Telescope, we will be able to conduct studies of nearby galaxies with unprecedented accuracy, making it vital that we already know precisely how far away they are.

    Q. Is there anything else you would like to mention?

    A. I would like to thank many astronomers involved for interesting discussions, suggestions, and stimulation, the staff at La Silla, Paranal and Las Campanas for their excellent support during observations, and the funding agencies for their generous support.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 1:12 pm on May 3, 2019 Permalink | Reply
    Tags: , , , , EHT and Messier 87, ESOblog   

    From ESOblog: “Modelling reality” 

    ESO 50 Large

    From ESOblog

    3 May 2019

    1

    The recent release of the first “image” of a black hole can’t have escaped your notice. But how can we use this image to find out about the physical characteristics of the black hole? …to unearth more details about these mysterious objects? The secret is in the simulations that theoretical physicists have spent years working on. Two theoreticians involved in the Event Horizon Telescope (EHT) tell us more.


    Luciano Rezzolla is a theoretician in the Event Horizon Telescope collaboration. He uses sophisticated numerical simulations to deduce the characteristics of the black hole.
    Credit: ESO

    Name: Luciano Rezzolla
    Job: Professor of relativistic astrophysics and numerical relativity at Goethe University, Germany
    Roles in the EHT project: Theoretician

    What were the biggest challenges you faced whilst getting to this result?

    Early on, it was already very clear that our task as theorists in the EHT collaboration was to provide a physical explanation for what would be observed using the telescopes, and to use sophisticated numerical simulations to deduce the properties of the black hole. We were always aware that this would be a huge challenge. So following this strategy, we performed the most extensive numerical exploration of the dynamics of the plasma surrounding the black hole, to figure out how it swirls around and shines when it actually falls onto the black hole.

    We considered hundreds of different physical and astrophysical scenarios by studying different properties (masses and spins) of the black hole, but also different thermodynamic properties of the orbiting plasma. For each scenario we constructed thousands of synthetic images that could theoretically be the result of the complex bending and lensing of the light near the black hole. At the end of this effort we had built a library of more than 60,000 synthetic images!

    We had thought that based on this huge image library, we would easily be able to decide which scenario was the correct one. But what we instead realised is that many combinations of physical parameters can lead to simulated images that, once blurred with the telescope resolution, would match the actual observed image very well.

    This was a relief because it meant that whatever our conclusions on the properties of the observed image, these would be very robust. But although we were very confident that this was a black hole, we weren’t sure what its characteristics would be. This meant that we had to go back to the blackboard and sharpen the techniques we were using to compare the theory with the observations. In practice this has meant a lot of sleepless nights especially for Dr. Fromm, a member of our team in Frankfurt, who eventually managed to single out the simulated images that best matched the observations after exploiting a sophisticated genetic algorithm.

    Once we established what physical properties were needed to create a “best-match simulated image”, we could guess the real physical properties of the black hole. Therefore we managed to explain the physical origin of the emission ring surrounding the black hole — a very rewarding and reassuring feeling!


    Monika Mościbrodzka is co-coordinator of a research group that looks at the polarisation of the light from the ring surrounding the black hole. She also contributes significantly to theoretical modelling and interpretation of EHT data. Credit: ESO

    Name: Monika Mościbrodzka
    Job: Assistant professor, Radboud University, the Netherlands
    Roles in the EHT project: Co-coordinator of a research group that looks at polarisation of the light from the ring surrounding the black hole. Leader of theoretical research, major contributor to theoretical modelling and interpretation of EHT data.

    What emotions have you been through whilst getting to this result?

    My work as a theoretical astrophysicist in the EHT project focuses on modelling the appearance of black holes depending on what is around them. Over many years of my academic research prior to making the EHT observations I sort of got used to seeing simulated pictures of black holes.

    Then when the EHT data was calibrated and ready for imaging, I joined one of the imaging teams out of curiosity. I sensed that this would be a perfect opportunity for a theorist to get in touch with reality. This experience turned out to be very rewarding. It is hard to find words that describe the emotions that I felt when I first saw the initial images of M87 last summer. These images were MIND BLOWING.

    But as a theorist I felt an additional thrill when looking at the image. The black hole appeared almost exactly how I imagined it to be, just exactly how I had predicted it would look in my models of its host galaxy, Messier 87. So in some sense this experiment did not reveal something completely unexpected.

    During the press conference in Brussels, I was honestly moved. After months of secret-keeping, we could finally speak openly about our black hole, this extraordinary wonder of nature, with the rest of the world. I feel extremely privileged to be a part of the EHT team that made such a big impact on science. It’s truly a life-changing experience.

    The next step for EHT scientists is to analyse the polarisation of light from the ring that surrounds the black hole. This will give us critical information about the magnetic fields at the black hole’s event horizon, helping us to understand the exact nature of the light that is visible in the image that we see. We could start to discover, for example, how exactly this light is produced.

    Links

    ESO EHT web page
    ESO EHT blog post: Photographing a black hole
    ESO EHT blog post: Behind the black hole
    EHT blog
    Goethe University: Making black holes visible
    Papers:
    Paper I: The Shadow of the Supermassive Black Hole
    Paper II: Array and Instrumentation
    Paper III: Data processing and Calibration
    Paper IV: Imaging the Central Supermassive Black Hole
    Paper V: Physical Origin of the Asymmetric Ring
    Paper VI: The Shadow and Mass of the Central Black Hole

    Science Snapshots showcases quirky or interesting scientific results using ESO telescopes from the larger scientific community. Find more interviews with astronomers and stories about astronomical research at ESO here on the ESOblog.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 1:55 pm on April 22, 2019 Permalink | Reply
    Tags: , , , , ESOblog, , The Black Hole of Messier 87   

    From ESOblog: “Behind the black hole Messier 87” 

    ESO 50 Large

    From ESOblog

    The first image of a black hole, Messier 87 Credit Event Horizon Telescope Collaboration, via NSF 4.10.19

    Imaging a black hole is no easy task. The Event Horizon Telescope (EHT) project involved over 200 scientists from around the world, and without their hard work, dedication, and imagination, such a feat would never have been possible. Three of these scientists talk about how it feels to be part of an international collaboration that has recently turned the seemingly-impossible into a reality.


    Sera Markoff is a member of the EHT Science Council, co-coordinator of the Multiwavelength Working Group, co-coordinator of Proposals Working Group and leads a research group that contributed to theoretical modelling and interpretation.
    Credit: ESO/BlackHoleCam /Radboud University/ Cristian Afker/Cafker Productions. Produced by: Cristian Afker/Cafker Productions /ESO.

    Name: Sera Markoff
    Job: Professor of Theoretical High Energy Astrophysics, University of Amsterdam, the Netherlands
    Roles in the EHT project: Member of the Science Council, co-coordinator of the Multiwavelength Working Group, co-coordinator of Proposals Working Group and leads a research group that contributed to theoretical modelling and interpretation.

    What has been the most exciting part of this project so far?

    Without a doubt, the most exciting part of the project so far was to make the big discovery — to show the world that black holes really exist, and to quite literally be able to gaze down into that sinkhole. I have been working on modeling black holes in one way or another for most of my career, and I think that one gets a bit blasé at some point, since we use the concept of black holes all the time without having ever actually seen one directly. To really “look it in the eye” is fascinating but also a bit maddening! And now I dream of seeing what it looks like close up, without the distortions of a telescope in between! I want to understand how such a thing can be possible, when our understanding of physics at the moment is not complete and cannot yet explain gravity or black holes at a quantum level.

    I also found working with a big team focused on a single, major goal very exciting. There were so many researchers, particularly PhD and postdoctoral students who dedicated a huge amount of time to making this project a success, and I am very happy to see it pay off for them, since it will boost their careers massively.


    Heino Falcke, of Radboud University in the Netherlands, coined the term “black hole shadow” and was the scientists that originally came up with the idea of imaging a black hole using millimetre-wavelength Very Large Baseline Interferometry (VLBI). Heino is currently chair of the EHT science council and co-Principal Investigator of the European Research Council Synergy Grant BlackHoleCam that co-funded the EHT.
    Credit: ESO/BlackHoleCam /Radboud University/ Cristian Afker/Cafker Productions. Produced by: Cristian Afker/Cafker Productions /ESO.

    Name: Heino Falcke
    Job: Professor of Astroparticle Physics and Radio Astronomy, Radboud University, the Netherlands
    Roles in the EHT project: Coiner of the term “black hole shadow” and proposer to try to image a black hole using millimetre-wavelength Very Large Baseline Interferometry (VLBI). Chair of the EHT science council and co-Principal Investigator (together with Luciano Rezzolla and Michael Kramer) of the European Research Council Synergy Grant BlackHoleCam that co-funded the EHT.

    How did it feel when you saw the first image of the black hole?

    Twenty-five years ago, back in the pioneering days of millimetre-wavelength VLBI, I was doing my PhD at the Max-Planck Institute in Bonn. Modeling the black hole at the centre of the Milky Way, I realised that light of millimetre-wavelength or below would be emitted from close to the black hole’s event horizon. Alas, black holes are surprisingly tiny, so the event horizon seemed too small to see, even with an Earth-sized telescope.

    But then, one lonely afternoon in the library, I stumbled across an article that described how a black hole would look much bigger when illuminated from behind. I was electrified. I hadn’t considered gravitational lensing — that a black hole could actually magnify itself due to the bending of light by its own mass. This would make it look much bigger!

    I worked with two other scientists, Eric Agol and Fulvio Melia, to calculate what a black hole would look like if it was engulfed by a glowing transparent region and, lo and behold, we found that a dark area would appear, surrounded by a bright ring that would be just large enough to be detected. We called the dark area the “shadow of the black hole” and claimed it could be detected within the following ten years!

    Well, not quite. But 19 years later my own PhD student, Sara Issaoun, showed me the first raw data from the EHT project. The plot was a complicated and incomplete one-dimensional mathematical transformation of an image. But doing the mathematical inversion in my head, as we have all learned to do during this project, my heart started beating faster: this could be a ring!

    Weeks later, we could finally make the actual image and there it was — the shadow inside a ring. All these years after predicting that it would be possible to image a black hole in this way, this huge collaboration of scientists had finally done so! For an hour I felt like I was hovering above the ground, but then it hit me that we still had many rough months to go before we could be certain. I sent up a brief “thank you” prayer to heaven and continued the day with a smile on my face.


    Sara Issaoun, of Radboud University in the Netherlands observed using one of the eight EHT telescopes, the Submillimeter Telescope (SMT). Sara also contributed to data processing and calibration, as well as the imaging efforts.
    Credit: ESO/BlackHoleCam /Radboud University/ Cristian Afker/Cafker Productions. Produced by: Cristian Afker/Cafker Productions /ESO.

    Name: Sara Issaoun
    Job: Graduate student at Radboud University, the Netherlands
    Roles in EHT project: EHT observing staff at the Submillimeter Telescope (SMT), core contributor in EHT data processing and calibration, active contributor in imaging efforts

    Describe some of the emotions you went through whilst getting to this result.

    Although I’ve gone through many emotions during this project, the most common is probably exhaustion! During our 2017 observing campaign at the SMT in Arizona, I was excited to be carrying out observations, hearing the equipment roar as blinking green lights indicated the successful collection of data. And the weather was excellent, meaning that we could observe on multiple days in a row. The downside to this? Back-to-back 16 hour observing shifts, with preparation time in between, and very, very little sleep. Combined with the high altitude, this made it an exhausting expedition. But then I saw the messages rolling in from Chile, the South Pole, Spain, Mexico and Hawaii, which made me feel part of a truly historic moment; all these telescopes and people, all staring towards the centre of Messier 87 — just one galaxy in amongst several trillion that exist in the Universe.

    After we packed up our recordings and drove down the mountain, it took a few months before we got the results of our observations. But when we heard that the telescope had worked well, and that we had worked well, I felt extreme relief.

    But it also meant that our data was ready for calibration, which involved a lot more hard work, exhaustion and stress. I will never forget the day when I first saw the fully calibrated data; the quality was so high that it took only seconds for me to understand that this could lead to a groundbreaking image. Four imaging teams worked separately to create the final image, and I was part of one of these teams.

    A mere few minutes after I started processing the data, I saw the ring structure appear. It was jaw-dropping, even thrilling. Six weeks of hard work passed, during which we perfected our image and improved our understanding of the data, before all the imaging teams met at a workshop in July 2018. We were all extremely anxious to see if everyone had seen the same structure. Once again, it turned out that everyone saw the same thing, even though we had all been using different software. This was real. This was it. The room filled with applause and laughter and general awe at being part of this incredible project. We were fully aware of the huge amount of work ahead of us, to understand what we were seeing and convince the rest of the community, but that moment was really special.

    See the full article here .


    Katie Bouman “Imaging a Black Hole with the Event Horizon Telescope”

    Event Horizon Telescope Array

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM 30m Radio telescope, on Pico Veleta in the Spanish Sierra Nevada,, Altitude 2,850 m (9,350 ft)


    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Mauna Kea, Hawaii, USA, Altitude 4,080 m (13,390 ft)

    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    NSF CfA Greenland telescope

    Future Array/Telescopes

    Future Array/Telescopes

    IRAM NOEMA in the French Alps on the wide and isolated Plateau de Bure at an elevation of 2550 meters, the telescope currently consists of ten antennas, each 15 meters in diameter.interferometer, Located in the French Alpes on the wide and isolated Plateau de Bure at an elevation of 2550 meters

    NSF CfA Greenland telescope

    NSF CfA Greenland telescope


    Greenland Telescope

    ARO 12m Radio Telescope, Kitt Peak National Observatory, Arizona, USA, Altitude 1,914 m (6,280 ft)


    ARO 12m Radio Telescope


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 11:54 am on April 12, 2019 Permalink | Reply
    Tags: , , , , , ESOblog,   

    From ESOblog: “Photographing a black hole” 

    ESO 50 Large

    From ESOblog

    Messier 87 supermassive black hole from the EHT

    10 April 2019

    Today, the Event Horizon Telescope team announced that they have “imaged” a black hole for the first time ever. The black hole lies 55 million light-years away at the centre of the massive galaxy Messier 87. Such an incredible feat has taken decades of collaboration between people and telescopes around the world — requiring patience, persistence and perseverance. And the story doesn’t end here. Rubén Herrero-Illana and Hugo Messias, two ESO/ALMA fellows, tell us about how they were involved at the front line of this endeavour, and about the enormous efforts involved in such an astonishing achievement.

    Q. Firstly, could you tell us a bit more about the Event Horizon Telescope?

    Rubén Herrero-Illana (RHI): The Event Horizon Telescope — or EHT — is an experiment that uses eight telescopes around the world to observe some of the closest supermassive black holes with an unprecedented resolution. The scientific goal of the EHT is to find out what happens in the extreme environments around supermassive black holes, which are some of the most intriguing objects in the Universe.

    The EHT uses a technique called very long baseline interferometry (VLBI), in which we make several radio telescopes, separated by thousands of kilometres, observe the same object in the sky simultaneously. By combining the signals from each telescope in a particular way, we are able to mimic a telescope as large as the Earth. To explain just how amazing this is — the resolution that we obtain this way would allow us to stand in Chile and see through the eye of a needle in Spain!

    The participating stations in the EHT include ESO’s APEX telescope and ALMA, which ESO is a partner in.

    3
    Consisting of 66 antennas, ALMA is revolutionising the way that we see the Universe. As well as helping to image black holes, ALMA gives astronomers an unprecedented capability to study the cool Universe — molecular gas and dust as well as the relic radiation of the Big Bang. ALMA studies the building blocks of stars, planetary systems, galaxies, and life itself. Credit: ESO/S. Guisard (www.eso.org/~sguisard)

    Q. What were your roles in the project?

    RHI: For the last two years, we have been involved in the preparation and execution of the observations at ALMA. This involves actually observing on site using the telescope. We have also been part of the group that calibrates the ALMA data and checks their quality before sending them to the correlators, which are the supercomputers th combine the signals from every station.

    Q. What do you mean by ‘calibrating’ the data?

    Hugo Messias (HM): We correct the raw data from the telescope for any system imperfection or inhomogeneous behavior. There are many things to correct for: for example, light is distorted and partially absorbed as it travels through Earth’s turbulent atmosphere, making the image blurrier and fainter. And even though the telescope system is state-of-the-art, it may introduce other imperfections in the light we receive from the Universe. We need to correct for all of these things to ensure that we have great data!

    Q. So has it been difficult to schedule observations of the black hole at the centre of Messier 87?

    4
    Analogue signals collected by the antenna are converted to digital signals and stored on hard drives together with the time signals provided by atomic clocks. The hard drives are then flown to a central location to be synchronised. Credit: ALMA (ESO/NAOJ/NRAO), J.Pinto & N.Lira

    RHI: Yes! The individual telescopes that make up the EHT are not fully dedicated to the EHT project; they are cutting-edge telescopes that astronomers use all year long to observe a variety of different objects. Once per year, all these telescopes agree to create a gap in their schedules to observe together as part of the EHT. But the observing time is very limited.

    During observing campaigns, we must decide every day if an observation is going to be triggered or if we are going to wait until the next day. If we decide to wait, all stations will continue their usual observations, but if we get the green light, everyone will observe the agreed black hole targets and a part of the valuable time set aside for the EHT is consumed. This decision is mainly based on the weather forecast, and it is a tough one. After all, it is not that common to have good weather in so many places in both hemispheres at the same time! Furthermore, there are some small details that make things even more interesting. For instance, communication with the South Pole Telescope in the middle of Antarctica is not steady, but restricted to the limited windows when telecommunication satellites pass above the telescope. Last minute decisions are not always an option.

    HM: During the observations, a plan is sketched and distributed among all observing facilities. This schedule has to be followed to very precise timings, so we know that all telescopes are pointing at the same source at the same time. When finished, the data obtained are sent to the data-combining correlators. The challenge is that some of the stations might have been shut due to poor weather conditions, or that the data take months to arrive. An extreme example of the latter is that data from the South Pole Telescope arrive at the correlators only 6–8 months after observation!

    Q. Thirteen partner organisations and more than 200 people are involved in this project. Why does it require such a huge international effort?

    HM: Imaging a black hole is incredibly difficult. Even though the black hole at the centre of Messier 87 is 6.5 billion times the mass of the Sun, it is very dense, and therefore relatively small. And it is 55 million light-years away, so from Earth it looks tiny! We have been trying to image the event horizon — the ‘point of no return’ around a black hole, beyond which light can’t escape. But to discern something so small, we need a huge telescope. And as we are measuring light that has wavelengths on the order of millimetres, we need a telescope the size of the Earth! This is physically impossible, so we used interferometry — which is the same technique that ALMA uses on a smaller scale — to connect telescopes around the globe to mimic an Earth-sized telescope. And that takes a huge international effort.

    Q. How are the telescopes synchronised?

    RHI: When using the technique of interferometry, it is essential to combine the signals from each telescope at the exact same time. One way to ensure the synchronisation is to connect every station with a fibre-optic link to a central supercomputer. But considering the remote locations of the EHT telescopes, this would clearly not have been an option! Instead, each telescope was equipped with an ultra-precise hydrogen maser atomic clock that precisely timed each observation. This made it possible to combine data later on.

    4
    The locations of the participating telescopes of the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA). Credit: ESO/O. Furtak

    Q. Was it difficult to collaborate with other institutions all around the world?

    RHI: There are always challenges in coordination and communication among the many different people working in an observatory: astronomers, engineers, administrators and computing teams, to name just a few. Everyone must work together towards the same goal. ALMA is a huge observatory, with hundreds of workers from more than ten different countries, and some of the other observatories involved in the EHT project are almost as big. Now imagine eight of these observatories working together on a time critical, cutting-edge project, and you will get a grasp of how much fun a project like the EHT can be!

    Q. How does it feel to be part of an international collaboration that has made such an incredible discovery?

    HM: I feel honoured, proud, fulfilled, and hopeful. The latter is more related to the fact that we are showing that, despite the cultural differences, a team comprising individuals with distinct backgrounds had a common goal, and achieved it. That teaches the world another key lesson, besides the one being reported.

    Q. Is there anything else you would like to mention?

    HM: Aside from the people included in the author list of the papers, many other individuals enabled this discovery to happen. We are not only “standing on the shoulders of giants” who carved out the path towards the techniques and technology we currently use, but also on shoulders of hard-working people who build and maintain the antennas, correlators and software at these remote sites. This is what enabled the discovery to happen. To them, I say a big thank you, as well as to the curious society that provided the will and, of course, the funding. These contributions were key to making this feat a reality!

    See https://sciencesprings.wordpress.com/2019/04/10/from-european-southern-observatory-astronomers-capture-first-image-of-a-black-hole/ for lists with links.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 11:27 am on March 31, 2019 Permalink | Reply
    Tags: "Concealing the Cosmos", , , , , ESOblog, Light as a pollutant   

    From ESOblog: “Concealing the Cosmos” 

    ESO 50 Large

    From ESOblog

    1
    On the Ground

    29 March 2019

    Why light pollution makes it difficult for astronomers to observe on location.

    2
    Eleanor Spring

    When people find out that I am a professional astronomer, they tend to imagine that I spend my days (well, my nights) gazing up at the stars, adjusting telescopes and collecting images of the Universe. As my job as a PhD candidate is to study space, this is a reasonable response. So I am usually met with surprise when I tell people that in fact most astronomers spend very little of their time observing, and that I have never collected data for professional use, on location, myself. Why?

    The main justification for my lack of interaction with telescopes is the extraordinary amount of time, money and resources it takes to physically reach them. The inconvenient placement of modern telescopes is no accident. It is entirely deliberate, and serves the purpose of getting the telescopes as far away from human habitation as possible. ESO’s telescopes are located deep in the Chilean Atacama desert, with Paranal Observatory [below] (the home of the Very Large Telescope) located 130 km from the nearest city of Antofagasta. This is because where human beings are, light pollution follows.

    It’s strange to think of light as a pollutant. Our days are naturally filled with it, and our nights are made infinitely easier by its presence. Nonetheless, the relatively unchecked growth of humanity’s dwellings, infrastructure and technology has resulted in our night skies being flooded with excess light, both within and outside the visible range that human eyes are sensitive to. It is difficult for someone who was raised in a town or city to appreciate the impact of light pollution on our skies. It was not until a few years ago that I realised that, from the lonely isolation of the Chilean desert, the sky appears to be literally ripped apart by the spillage of the billions of stars that comprise our Milky Way.

    So what is the difference between light, and light pollution? An apt analogy is any other kind of waste product or pollutant. For example: a disposable coffee cup. The cup is only intended to hold coffee, not to be scattered on streets and contribute to landfills. But because we did not care to invent anything better, or reduce our intake of coffee, the disposable cups pile up and up until they start to affect our environment. The same is true for light pollution. Devices intended to light our homes, offices and streets spill surplus light, as waste, in unnecessary directions. This light scatters off the molecules and particles in our atmosphere, and infuses the night sky with a strange, dull glow. It is not intentional, but through poor design, excess use of artificial light and a general lack of care, humans have completely changed the night sky environment.

    3
    The setting Milky Way at La Silla Observatory. Despite La Silla’s remote location, bright city lights illuminate the horizon. Credit: ESO/P. Horálek

    This glowing means that the stars and planets in the night sky are no longer the sole source of photons (light particles). The excess light falls into telescopes and onto our eyes indiscriminately, greatly or entirely blocking out the visually stunning, and far more interesting light sources.

    But whilst this pollution is infuriating for astronomers, who have to resort to locating telescopes deep in the desert; high up mountains; or at the very poles of the Earth, is it anything more than an inconvenience for a handful of people? Sadly, yes. The impact of light pollution extends far beyond the loss of a readily available beautiful sky. The rhythm that our bodies naturally go through everyday is profoundly confused by artificial light at times we would naturally be sleeping. Light pollution has been correlated with insomnia, increased stress and issues regulating hormones.

    The effects extend far beyond the human race. The vast majority of evolutionary history has taken place without the influence of artificial light. Light pollution extending beyond the range that humans can see impacts insects, birds and animals, disorientating them and affecting entire ecosystems.

    If a dark night sky is of such importance, not just for the well-being and pleasure of humans, but of entire species of other living creatures, then what is being done to preserve them? Fortunately many organisations exist to combat the spread of light pollution. It is of course in ESO’s keenest interest to preserve our dark skies, and it works in collaboration with many of these initiatives.

    Certain areas of the world are already protected dark sky sanctuaries, including a small part of the Atacama Desert. People who want to make a difference on a more personal or local level have plenty of possibilities; to begin with, minimising light at night as much as possible. When unavoidable, it can be kept muted, and shaded from the sky with curtains or by capping the tops of lamps. In addition, as we see from the blue colour of the sky during the day, our atmosphere optimally scatters blue light. Whilst this is idyllic during our waking hours, at night, keep artificial lighting as reddish or yellowish as possible, to minimise scatter. If local government and individuals all start to implement these small changes, it would help everyone to admire the beauty of the night sky.

    In the meantime, from the perspective of astronomers, the long journey into the Atacama Desert is well worth it, giving us the opportunity to experience the extraordinary luxury of a sky relatively unaffected by mankind. Not only does it make truly stunning astrophotography possible, but it allows astronomers who observe using ESO telescope the chance to collect some of the most pristine data on Earth.
    Links

    Dark skies preservation at ESO

    Eleanor Spring is a former ESO science communication intern, who has continued her relationship with ESO as a freelancer, working as the Public Information Officer in charge of the ESO Pictures of the Week. She is currently living in Amsterdam and working on a PhD, developing techniques to characterise exoplanets, which provides the exciting opportunity to see another side of ESO — the use of data collected at their telescopes! She has also found other outlets for her love of communication: teaching yoga and (attempting) to learn Dutch and French.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,


    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres


    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 4:10 pm on March 22, 2019 Permalink | Reply
    Tags: , , , , ESOblog, VVV-WIT-07, WIT-"What Is This" star   

    From ESOblog: “What Is This?” 

    ESO 50 Large

    From ESOblog

    22 March 2019

    1
    Astronomers discover mysterious star displaying never-seen-before behaviour.

    Many, if not most, stars vary in brightness, typically by just a little and very predictably. These changes occur on timescales from minutes to years, and can tell us about the internal structure of stars in a way that no other observations can. But recently, a team of astronomers used ESO facilities to discover an extreme variable star named VVV-WIT-07, with WIT being short for “What is this?”. Seen from Earth, this strange star suddenly and irregularly reduces in brightness by 30–40%. In one extraordinary case it even dimmed by about 80%. But “normal” stars just don’t do that. The research was led by Roberto Saito from the Universidade Federal de Santa Catarina. ESO astronomer Valentin Ivanov was involved in the research and tells us more.

    We made this discovery whilst searching for extreme variable stars in the innermost parts of the Milky Way using ESO’s VISTA survey telescope.

    3
    The Milky Way arcing over VISTA, the Visible and Infrared Survey Telescope for Astronomy, used to discover VVV-WIT-07. Credit: ESO/Y. Beletsky

    This was part of a survey of the Milky Way — named VISTA Variables in Via Lactea, or VVV for short — that we have been working on for many years. The survey is the first to image the most crowded and obscured regions of our home galaxy with high angular resolution at infrared wavelengths. The high angular resolution helps to separate the billions of stars that are superimposed close together on the sky and observing at infrared wavelengths makes it easier to see through the dust that — just like fog hides magnificent views on Earth — blocks our view of the most interesting parts of the Milky Way.

    2
    VVV-WIT-07 in the centre of a star field. Credit: Saito et al.

    A key word that could be used to describe our finding is extreme. In every aspect. Extreme objects are always the most interesting, because they push the limits of our knowledge beyond the well-known and well-understood comfort zone. The extreme places are where new discoveries await. And surveys like VVV are a great way to identify such objects because they scan a lot of the sky many times over.

    Whilst we have found a number of extreme objects through the VVV survey so far, possibly the most mysterious is the highly varying VVV-WIT-07, which doesn’t fit with any known class of variable star. Over eight years, we observed this star 85 times through the VVV survey. The first observations showed nothing strange — simply a mild scatter in the brightness measurements, consistent with the observational uncertainties. However, in August–September 2011, just before the end of the observing season, the star dimmed by a factor of almost two! By June 2012, when we began re-observing it, the star’s brightness was nearly back to normal. But by mid-July, it had dimmed by almost 80%! Then it was back to its usual self in about a week. The data taken since then contain hints of additional drops in brightness, but nothing so dramatic.

    Our first reaction was “this can not be” — this is just a healthy pessimism, common among scientists. But once we inspected the images and checked the observations, it was clear that we had come across something very strange.

    By June 2012, when we began re-observing it, the star’s brightness was nearly back to normal. But by mid-July, it had dimmed by almost 80%!

    Since making this discovery, we have been asking ourselves why this star varies so much in brightness, but that’s not a simple question to answer. One relatively likely possibility is that an object (or even multiple objects!) is orbiting VVV-WIT-07, passing between us and its host star, blocking some of the light. Given the drastic light loss, this object could a ringed exoplanet, but with extreme, giant rings, far larger than those of Saturn. Or it could be a family of comet-like objects that occasionally block up to 80% of the starlight.

    2
    Lightcurve of VVV-WIT-07 showing how it varied in brightness between 2010 and 2018. The insert shows an expanded view of the particularly dramatic dimming event that occurred in July 2012. Credit: Saito et al.

    Another possibility is that VVV-WIT-07 may be surrounded by a clumpy or warped disc, oriented nearly edge-on from our point of view, and the dips in brightness are caused by the clumps, or the warp, crossing the star and blocking its light.

    All these options involve extremely rare classes of objects. So far astronomers know of only one case each for a passing Saturn-like planet and comet family, and just a handful of cases of edge-on clumpy or warped discs. And the host stars in those cases don’t resemble VVV-WIT-07 at all.

    Indeed, VVV-WIT-07 is a strange object, fully justifying the “What Is This” in its name.

    3
    SPHERE image of dust rings around a nearby star. The disc is clumpy — something astronomers currently have no explanation for. It´s possible that this phenomenon is caused by the presence of planets. Credit: ESO/Perrot

    ESO SPHERE extreme adaptive optics system and coronagraphic facility on the extreme adaptive optics system and coronagraphic facility on the VLT MELIPAL UT3, Cerro Paranal, Chile, with an elevation of 2,635 metres (8,645 ft) above sea level

    The possibility of finding new worlds is always fascinating, but we have identified a system that challenges the imagination even more than usual, because it is so unlike our own planetary system. The unusual dips in the observed brightness of VVV-WIT-07 remind us of the famous Boyajian’s Star, that dims as much as 22% — still a feeble amount compared to our star’s brightness reduction of 80%.

    Huge variations in brightness are common for stars in binary systems with two stars of near-equal mass, when one passes in front of the other. But through our observations we see clearly that VVV-WIT-07 is not a binary star. The only previously discovered non-binary star to dim by a comparable amount is Mamajek’s Object, which is the previously-mentioned star shadowed by a passing planet with a gigantic ring system.

    Further observations are needed before we will be able to draw a firm conclusion about what causes this phenomenon. We are continuing to monitor it, hoping to catch it in the act: during a dip. Then we will attempt to obtain new types of observations that should help us to find out what causes this strange behavior.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level


    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 2:32 pm on March 1, 2019 Permalink | Reply
    Tags: "Radioactive planets", André de Castro Milone, , , , , , ESO 3.6m telescope & HARPS at Cerro LaSilla Chile 600 km north of Santiago de Chile at an altitude of 2400 metres, ESOblog, Jorge Luis Melendez Moreno, The presence of thorium is an indicator that any rocky planets around these stars may host plate tectonics which can trigger and support life   

    From ESOblog: “Radioactive planets” 

    ESO 50 Large

    From ESOblog

    1 March 2019
    Science Snapshots

    ESO 3.6m telescope & HARPS at Cerro LaSilla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    Searching for hints of life around the Sun’s galactic twins.

    Using the HARPS instrument on the ESO 3.6-metre telescope, a team of scientists recently carried out the largest ever search for thorium in stars that are almost identical to the Sun: solar twins. The presence of thorium is an indicator that any rocky planets around these stars may host plate tectonics, which can trigger and support life. We speak to two of the scientists involved in this search to find out whether these results have strengthened the claim for the existence of life elsewhere in the Milky Way.

    3
    André de Castro Milone

    4
    Jorge Luis Melendez Moreno

    Using the HARPS instrument on the ESO 3.6-metre telescope, a team of scientists recently carried out the largest ever search for thorium in stars that are almost identical to the Sun: solar twins. The presence of thorium is an indicator that any rocky planets around these stars may host plate tectonics, which can trigger and support life. We speak to two of the scientists involved in this search, André de Castro Milone and Jorge Luis Melendez Moreno, to find out whether these results have strengthened the claim for the existence of life elsewhere in the Milky Way.

    Q. Firstly, what is a solar twin and why are they so interesting to study?

    Andre de Castro Milone (AM): Solar twins are stars that are very similar to the Sun, for example in temperature, luminosity and chemical make-up. It is likely that the birth and evolution of these stars were also similar to the Sun’s birth and evolution, implying that planets may have formed around them in a similar way to how the planets formed in our own Solar System. This means that solar twins could be great places to start our search for life elsewhere in the Universe.

    Q. In this study you looked at the amount of thorium in 53 solar twins. Why thorium?

    AM: We looked at one specific type of radioactive thorium (Th-232). On Earth, the decay of such radioactive elements creates a heat flow in the convective mantle under the surface, which causes the tectonic plates on the surface to move. This makes Earth a geologically dynamic planet with earthquakes and volcanoes that contribute to the carbon cycle that regulates the temperature of the atmosphere.

    Jorge Luis Melendez Moreno (JM): As a stable atmosphere is closely related to the emergence and evolution of life, this means that the initial amounts of certain radioactive elements in a rocky planet contribute significantly to a planet’s ability to host life. Thorium is one of these elements that can be instrumental to the presence of life. It decays very slowly, meaning that it creates a gentle heat flow for a very long time, giving life a chance to thrive.

    Q. So why were you looking for thorium in the stars rather than in the planets themselves?

    JM: Because planets are so small and dim, it is extremely difficult to see thorium in them using current telescopes. It is much easier to find out how much thorium there is in their parent star. We used this information to figure out how much there was at the beginning of each star’s life. Planets form from a disc of gas and dust left over from the star’s formation, so knowing how much thorium there was in the star at the time of planet formation, we can estimate how much thorium went into a planet.

    Q. How exactly did you measure the amount of thorium in the stars?

    AM: We used the HARPS instrument on the ESO 3.6-metre telescope to capture very high-quality optical spectra from each star. Solar twins look white-ish from here on Earth, but HARPS can spread out the light into a spectrum to allow us to see that they actually emit light of a whole range of colours, or wavelengths. Each element in a star absorbs light at specific wavelengths, so spectra can be used to find out what elements are present. Using the spectra, we could make an estimation of how much thorium is currently in each star and knowing the rate of radioactive decay, we could estimate how much thorium was in each star when it formed.

    Q. And were you surprised by the amount of thorium you found in each star?

    JM: We didn’t really have an expectation about how much thorium might exist in solar twins, because a large study like this one had never been carried out before. So it would be more appropriate to say we were “excited” by what we found, rather than “surprised”.

    AM: It’s helpful to use the Sun as a comparison here, which is made up of mostly hydrogen atoms. In the Sun, there is just one thorium atom for every one trillion hydrogen atoms — that’s one with twelve zeros after it! We found that the amount of thorium varied in solar twins, but that it is 0.76–1.81 times as high as it is in the Sun, so about 1–2 thorium atoms for every trillion hydrogen atoms. Interestingly, we calculated that the thorium in the solar twins when they formed would have been about 1.09–1.37 times the initial thorium content of the Sun. This suggests that there could be plenty of thorium in any surrounding rocky planets, so they could be even more geologically active than Earth! This strengthens the argument that life could exist elsewhere in the Milky Way.

    JM: Possibly the most exciting thing is that we found thorium in stars with a variety of ages, meaning that life might be spread around not only in space, but also in time. There might be some really young life or some ancient life out there in the galaxy!

    4

    The spectrum of the Sun, with light spread out into separate wavelengths. Black lines show where light is absorbed by specific elements. One of the lines in the blue-violet region corresponds to the thorium that was studied in this investigation.
    Credit: N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

    Solar Fourier Transform Spectrometer, commonly called the FTS Tank, at the McMath-Pierce Solar Facility at NOAO Kitt Peak National Observatory Altitude 2,096 m (6,877 ft),


    Credit: N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

    National Solar Observatory at Kitt Peak in Arizona, elevation 6,886 ft (2,099 m)

    Q. Planets with atmospheres have already been discovered using other techniques. Why is this particular technique useful?

    JM: Indeed, lots of planets with atmospheres have been detected, but we still don’t know of any Earth-like planets around solar twins because other techniques are currently not able to detect them. Future telescopes such as the Extremely Large Telescope (ELT) will be capable of searching for signs of life on Earth-like planets around some stars, but unfortunately not Sun-like stars because it would take about a century to look at their atmospheres in sufficient detail.

    AM: Atmospheres are also not sufficient for life. Take Mars, for example. It has an atmosphere (which is thin due to its low surface gravity and lack of magnetic field) but no sign of current geological activity. Venus, on the other hand, shows signs of geological activity, but the atmosphere is extremely dense, with an out-of-control greenhouse effect. This was caused by an irreversible process — perhaps the evaporation of a huge amount of liquid water — and has led to Venus becoming unsuitable for life as we know it. Both Mars and Venus were of course formed around the same thorium-rich Sun as Earth was.

    So the existence of thorium on a planet is just one point in favour of the existence of life. Lots of other factors are involved that determine whether or not life is likely. But I believe that if we find enough solar twins, with enough geologically active planets around them, then we are likely to eventually find one that hosts life.

    Q. So would you like to use the ELT to carry out follow-up research?

    JM: We’d love to! The next step is to really look for planets around these solar twins. We have been using smaller telescopes such as the ESO 3.6-metre, and more recently have been observing solar twins with the Very Large Telescope. But later on, we would next like to use the ELT and even space telescopes to get a clearer picture of planets around solar twins and potentially find Earth 2.0!

    Until then, our main focus is on characterising the fundamental properties of solar twins, in particular their chemical composition and magnetic activity cycles, as those are vital steps towards understanding, and even discovering, planets around them.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level

    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: