Tagged: ESO VISTA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:19 pm on January 10, 2016 Permalink | Reply
    Tags: , , ESO VISTA, Flame Nebula - Great Images   

    From ESO: “VISTA: Pioneering New Survey Telescope Starts Work” Original Article from December 2009 – Fantastic Imagery 


    European Southern Observatory

    11 December 2009

    Contacts

    Prof. Jim Emerson
    Queen Mary, University of London
    UK
    Tel: +44 794 127 1548
    Email: j.p.emerson@qmul.ac.uk

    Richard Hook
    ESO Survey Telescopes PIO
    Tel: +49 151 1055 5780
    Email: rhook@eso.org

    Julia Maddock
    Science and Technology Facilities Council
    UK
    Tel: +44 1793 44 2094
    Email: julia.maddock@stfc.ac.uk

    Siân Halkyard
    Queen Mary, University of London
    UK
    Tel: +44 20 7882 7454
    Email: s.halkyard@qmul.ac.uk

    Temp 1
    Flame Nebula

    Temp 2
    Upper left: This VISTA close-up of the Flame Nebula (NGC 2024) shows the bright young stars at its core and the smoke-like tendrils of dust and gas in great detail. This extract covers a field about twelve arcminutes across.
    Lower left : Close to the Flame Nebula lies a bright reflection nebula called NGC 2023.
    arcminutes across.
    Upper right : Close to the edge of the VISTA image (not shown on the main image above) lies a strange object known as Herbig-Haro 92 (HH92). This curiosity is part of a string of glowing clumps and filaments created by material blown out in a jet from a very young star. The star itself is buried deep in dust at the lower left of this cutout and is not even visible in this near-infrared VISTA image. This very small extract covers a field about three arcminutes across.
    Lower right : The wide field of the VISTA camera includes another famous object — the Horsehead Nebula (Barnard 33). In visible light the Horsehead is a dark and dusty silhouette set against a glowing background of glowing gas. In the VISTA infrared view the dust becomes largely transparent and the outline has an evocative wraithlike quality. This extract is about seven arcminutes across.
    Credit: ESO/J. Emerson/VISTA. Acknowledgment: Cambridge Astronomical Survey Unit

    A new telescope — VISTA (the Visible and Infrared Survey Telescope for Astronomy) — has just started work at ESO’s Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world’s largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula [above], the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well.

    VISTA is the latest telescope to be added to ESO’s Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA’s main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made — its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair — and its construction and polishing presented formidable challenges.

    VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK’s accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council’s UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO’s Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO.

    “VISTA is a unique addition to ESO’s observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and the future European Extremely Large Telescope,” says Tim de Zeeuw, the ESO Director General.

    At the heart of VISTA is a 3-tonne camera containing 16 special detectors sensitive to infrared light, with a combined total of 67 million pixels. Observing at wavelengths longer than those visible with the human eye allows VISTA to study objects that are otherwise impossible to see in visible light because they are either too cool, obscured by dust clouds or because they are so far away that their light has been stretched beyond the visible range by the expansion of the Universe. To avoid swamping the faint infrared radiation coming from space, the camera has to be cooled to -200 degrees Celsius and is sealed with the largest infrared-transparent window ever made. The VISTA camera was designed and built by a consortium including the Rutherford Appleton Laboratory, the UK ATC and the University of Durham in the United Kingdom.

    Because VISTA is a large telescope that also has a large field of view it can both detect faint sources and also cover wide areas of sky quickly. Each VISTA image captures a section of sky covering about ten times the area of the full Moon and it will be able to detect and catalogue objects over the whole southern sky with a sensitivity that is forty times greater than that achieved with earlier infrared sky surveys such as the highly successful Two Micron All-Sky Survey. This jump in observational power — comparable to the step in sensitivity from the unaided eye to Galileo’s first telescope — will reveal vast numbers of new objects and allow the creation of far more complete inventories of rare and exotic objects in the southern sky.

    “We’re delighted to have been able to provide the astronomical community with the VISTA telescope. The exceptional quality of the scientific data is a tribute to all the scientists and engineers who were involved in this exciting and challenging project,” adds Ian Robson, Head of the UK ATC.

    The first released image shows the Flame Nebula (NGC 2024), a spectacular star-forming cloud of gas and dust in the familiar constellation of Orion (the Hunter) and its surroundings. In visible light the core of the object is hidden behind thick clouds of dust, but the VISTA image, taken at infrared wavelengths, can penetrate the murk and reveal the cluster of hot young stars hidden within. The wide field of view of the VISTA camera also captures the glow of NGC 2023 and the ghostly form of the famous Horsehead Nebula.

    The second image is a mosaic of two VISTA views towards the centre of our Milky Way galaxy in the constellation of Sagittarius (the Archer). Vast numbers of stars are revealed — this single picture shows about one million stars — and the majority are normally hidden behind thick dust clouds and only become visible at infrared wavelengths.

    For the final image, VISTA has stared far beyond our galaxy to take a family photograph of a cluster of galaxies in the constellation of Fornax (the Chemical Furnace). The wide field allows many galaxies to be captured in a single image including the striking barred-spiral NGC 1365 and the big elliptical galaxy NGC 1399.

    VISTA will spend almost all of its time mapping the southern sky in a systematic fashion. The telescope is embarking on six major sky surveys with different scientific goals over its first five years. One survey will cover the entire southern sky and others will be dedicated to smaller regions to be studied in greater detail. VISTA’s surveys will help our understanding of the nature, distribution and origin of known types of stars and galaxies, map the three-dimensional structure of our galaxy and the neighbouring Magellanic Clouds, and help determine the relation between the structure of the Universe and the mysterious dark energy and dark matter.

    The huge data volumes — typically 300 gigabytes per night or more than 100 terabytes per year — will flow back into the ESO digital archive and will be processed into images and catalogues at data centres in the United Kingdom at the Universities of Cambridge and Edinburgh. All data will become public and be available to astronomers around the globe.

    Jim Emerson of Queen Mary, University of London and leader of the VISTA consortium, is looking forward to a rich harvest of science from the new telescope: “History has shown us some of the most exciting results that come out of projects like VISTA are the ones you least expect — and I’m personally very excited to see what these will be!”
    Notes

    [1] The VISTA Consortium is led by Queen Mary, University of London and consists of: Queen Mary, University of London; Queen’s University of Belfast; University of Birmingham; University of Cambridge; Cardiff University; University of Central Lancashire; University of Durham; The University of Edinburgh; University of Hertfordshire; Keele University; Leicester University; Liverpool John Moores University; University of Nottingham; University of Oxford; University of St Andrews; University of Southampton; University of Sussex and University College London.

    From the above references:
    Temp 4
    NGC 2023
    The magnificent reflection nebula NGC 2023 lies nearly 1500 light-years from Earth. It is located within the constellation of Orion (The Hunter), in a prestigious area of the sky close to the well-known Flame and Horsehead Nebulae. The entire structure of NGC 2023 is vast, at four light-years across. This NASA/ESA Hubble Space Telescope picture just takes in the southern part, with the subtle shades of colour closely resembling those of a sunset on Earth.

    NASA Hubble Telescope
    NASA/ESA Hubble

    NGC 2023 surrounds a massive young B-type star. These stars are large, bright and blue-white in colour, and have a high surface temperature, being several times hotter than the Sun. The energy emitted from NGC2023’s B-type star illuminates the nebula, resulting in its high surface brightness: good news for astronomers who wish to study it. The star itself lies outside the field of view, at the upper left, and its brilliant light is scattered by Hubble’s optical system, creating the bright flare across the left side of the picture, which is not a real feature of the nebula.

    Stars are forming from the material comprising NGC 2023. This Hubble image captures the billowing waves of gas, 5000 times denser than the interstellar medium. The unusual greenish clumps are thought to be Herbig–Haro objects. These peculiar features of star-forming regions are created when gas ejected at hundreds of kilometres per second from newly formed stars impacts the surrounding material. These shockwaves cause the gas to glow and result in the strange shapes seen here. Herbig–Haro objects typically only last for a few thousand years, which is the blink of eye in astronomical terms.
    This picture was created from multiple images taken with the Wide Field Camera of Hubble’s Advanced Camera for Surveys [ACS].

    NASA Hubble ACS
    ACS

    Exposures through a blue filter (F475W) are coloured blue, exposures through a yellow filter (F625W) are coloured green and images through a near-infrared filter (F850LP) are shown as red. The total exposure times per filter are 800 s, 800 s and 1200 s, respectively, and the field of view spans 3.2 arcminutes.
    Date 25 July 2011

    It is also the site of star formation and one very bright young star has created a cavity in the surrounding cloud. Fierce ultraviolet radiation from the young star is causing the gas to fluoresce and the nearby dust is reflecting the intense bluish starlight. VISTA’s infrared vision reveals its wispy gas clouds in exquisite clarity. The field of view of this extract is about eight

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 12:05 am on December 16, 2015 Permalink | Reply
    Tags: 4MOST, , AESOP, , , ESO VISTA   

    From AAO: “AESOP” 

    AAO Australian Astronomical Observatory

    Australian Astronomical Observatory

    1

    AESOP is the fibre positioner unit for the 4MOST instrument planned for the 4-metre European Southern Observatories VISTA telescope in Chile.

    4MOST 4-metre Multi-Object Spectroscopic Telescope
    4MOST 4-metre Multi-Object Spectroscopic Telescope

    ESO Vista Telescope
    ESO/VISTA telescope

    The 4MOST project, led by the Astrophysical Institute Potsdam (Germany), involves a number of European partners. The AAO component, AESOP, deploys 2400 optical fibres to required positions on the curved focal surface of the telescope. Each fibre can be deployed anywhere within a fixed patrol area. Field reconfigurations are achieved in an iterative closed-loop process with positional feedback from a metrology system. Optical fibres are connectorised at their exit from the positioner system, where they feed a fibre bundle terminated a series of optical spectrographs. The proposed design for AESOP is an evolution of the AAO’s tilting spine technology, first designed and implemented in the FMOS-Echidna instrument for the Subaru telescope.

    NAOJ Subaru FMOS
    FMOS on the NAOJ Subaru telescope

    NAOJ Subaru Telescope
    NAOJ Subaru HiCIAO Camera
    NAOJ Subaru telescope

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    AAO Anglo Australian Telescope Exterior
    AAO Anglo Australian Telescope Interior
    Anglo-Australian telescope

    The Australian Astronomical Observatory, a division of the Department of Industry, Innovation and Science, operates the Anglo-Australian and UK Schmidt telescopes on behalf of the astronomical community of Australia. To this end the Observatory is part of and is funded by the Australian Government. Its function is to provide world-class observing facilities for Australian optical astronomers.

     
  • richardmitnick 9:07 am on November 18, 2015 Permalink | Reply
    Tags: , , ESO VISTA   

    From ESO: “The Birth of Monsters – Vista pinpoints earliest giant galaxies” 


    European Southern Observatory

    18 November 2015
    Karina I. Caputi
    Kapteyn Astronomical Institute – University of Groningen
    The Netherlands
    Email: karina@astro.rug.nl

    Henry J. McCracken
    Institut d’Astrophysique de Paris
    France
    Email: hjmcc@iap.fr

    Bo Milvang-Jensen
    Dark Cosmology Center – University of Copenhagen
    Denmark
    Email: milvang@dark-cosmology.dk

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    ESO’s VISTA survey telescope has spied a horde of previously hidden massive galaxies that existed when the Universe was in its infancy. By discovering and studying more of these galaxies than ever before, astronomers have, for the first time, found out exactly when such monster galaxies first appeared.

    Just counting the number of galaxies in a patch of sky provides a way to test astronomers’ theories of galaxy formation and evolution. However, such a simple task becomes increasingly hard as astronomers attempt to count the more distant and fainter galaxies. It is further complicated by the fact that the brightest and easiest galaxies to observe — the most massive galaxies in the Universe — are rarer the further astronomers peer into the Universe’s past, whilst the more numerous less bright galaxies are even more difficult to find.

    A team of astronomers, led by Karina Caputi of the Kapteyn Astronomical Institute at the University of Groningen, has now unearthed many distant galaxies that had escaped earlier scrutiny. They used images from the UltraVISTA survey, one of six projects using VISTA to survey the sky at near-infrared wavelengths, and made a census of faint galaxies when the age of the Universe was between just 0.75 and 2.1 billion years old.

    UltraVISTA has been imaging the same patch of sky, nearly four times the size of a full Moon, since December 2009. This is the largest patch of sky ever imaged to these depths at infrared wavelengths. The team combined these UltraVISTA observations with those from the NASA Spitzer Space Telescope, which probes the cosmos at even longer, mid-infrared wavelengths [1].

    NASA Spitzer Telescope
    NASA/Spitzer

    “We uncovered 574 new massive galaxies — the largest sample of such hidden galaxies in the early Universe ever assembled,” explains Karina Caputi. “Studying them allows us to answer a simple but important question: when did the first massive galaxies appear?”

    Imaging the cosmos at near-infrared wavelengths allowed the astronomers to see objects that are both obscured by dust, and extremely distant [2], created when the Universe was just an infant.

    The team discovered an explosion in the numbers of these galaxies in a very short amount of time. A large fraction of the massive galaxies [3] we now see around us in the nearby Universe were already formed just three billion years after the Big Bang.

    “We found no evidence of these massive galaxies earlier than around one billion years after the Big Bang, so we’re confident that this is when the first massive galaxies must have formed,” concludes Henry Joy McCracken, a co-author on the paper [4].

    In addition, the astronomers found that massive galaxies were more plentiful than had been thought. Galaxies that were previously hidden make up half of the total number of massive galaxies present when the Universe was between 1.1 and 1.5 billion years old [5]. These new results, however, contradict current models of how galaxies evolved in the early Universe, which do not predict any monster galaxies at these early times.

    To complicate things further, if massive galaxies are unexpectedly dustier in the early Universe than astronomers predict then even UltraVISTA wouldn’t be able to detect them. If this is indeed the case, the currently-held picture of how galaxies formed in the early Universe may also require a complete overhaul.

    The Atacama Large Millimeter/submillimeter Array (ALMA) will also search for these game-changing dusty galaxies. If they are found they will also serve as targets for ESO’s 39-metre European Extremely Large Telescope (E-ELT), which will enable detailed observations of some of the first ever galaxies.
    Notes

    [1] ESO’s VISTA telescope observed in the near-infrared wavelength range 0.88–2.15 μm while Spitzer performed observations in the mid-infrared at 3.6 and 4.5 μm.

    [2] The expansion of space means that the more distant a galaxy is, the faster it appears to be speeding away from an observer on Earth. This stretching causes the light from these distant objects to be shifted into redder parts of the spectrum, meaning that observations in the near-to-mid infrared are necessary to capture the light from these galaxies.

    [3] In this context, “massive” means more than 50 billion times the mass of the Sun. The total mass of the stars in the Milky Way is also close to this figure.

    [4] The team found no evidence of massive galaxies beyond a redshift of 6, equivalent to times less than 0.9 billion years after the Big Bang.

    [5] This is equivalent to redshifts between z=5 and z=4.
    More information

    This research was presented in a paper entitled Spitzer Bright, UltraVISTA Faint Sources in COSMOS: The Contribution to the Overall Population of Massive Galaxies at z = 3-7, by K. Caputi et al., which appeared in the Astrophysical Journal.

    The team is composed of Karina I. Caputi (Kapteyn Astronomical Institute, University of Groningen, Netherlands), Olivier Ilbert (Laboratoire d’Astrophysique de Marseille, Aix-Marseille University, France), Clotilde Laigle (Institut d’Astrophysique de Paris, France), Henry J. McCracken (Institut d’Astrophysique de Paris, France), Olivier Le Fèvre (Laboratoire d’Astrophysique de Marseille, Aix-Marseille University, France), Johan Fynbo (Dark Cosmology Centre, Niels Bohr Institute, Copenhagen, Denmark), Bo Milvang-Jensen (Dark Cosmology Centre), Peter Capak (NASA/JPL Spitzer Science Centre, California Institute of Technology, Pasadena, California, USA), Mara Salvato (Max-Planck Institute for Extragalactic Physics, Garching, Germany) and Yoshiaki Taniguchi (Research Center for Space and Cosmic Evolution, Ehime University, Japan).

    Links

    Research Paper in the Astrophysical Journal
    Photos of VISTA
    VISTA Public Surveys

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 6:59 am on October 28, 2015 Permalink | Reply
    Tags: , , , ESO VISTA   

    From ESO: “VISTA Discovers New Component of Milky Way” 


    European Southern Observatory

    28 October 2015
    stvan Dékány
    Instituto Milenio de Astrofí­sica, Pontificia Universidad Católica de Chile
    Santiago, Chile
    Email: idekany@astro.puc.cl

    Dante Minniti
    Universidad Andres Bello
    Santiago, Chile
    Tel: +56 2 2661 8732
    Email: dante@astrofisica.cl

    Daniel Majaess
    Saint Mary’s University, Mount Saint Vincent University
    Halifax, Canada
    Email: dmajaess@ap.smu.ca

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1

    Astronomers using the VISTA telescope at ESO’s Paranal Observatory have discovered a previously unknown component of the Milky Way. By mapping out the locations of a class of stars that vary in brightness called Cepheids, a disc of young stars buried behind thick dust clouds in the central bulge has been found.

    The Vista Variables in the Vía Láctea Survey (VVV) [1] ESO public survey is using the VISTA telescope at the Paranal Observatory to take multiple images at different times of the central parts of the galaxy at infrared wavelengths [2]. It is discovering huge numbers of new objects, including variable stars, clusters and exploding stars (eso1101, eso1128, eso1141).

    A team of astronomers, led by Istvan Dékány of the Pontificia Universidad Católica de Chile, has now used data from this survey, taken between 2010 and 2014, to make a remarkable discovery — a previously unknown component of our home galaxy, the Milky Way.

    “The central bulge of the Milky Way is thought to consist of vast numbers of old stars. But the VISTA data has revealed something new — and very young by astronomical standards!” says Istvan Dékány, lead author of the new study.

    Analysing data from the survey, the astronomers found 655 candidate variable stars of a type called Cepheids. These stars expand and contract periodically, taking anything from a few days to months to complete a cycle and changing significantly in brightness as they do so.

    The time taken for a Cepheid to brighten and fade again is longer for those that are brighter and shorter for the dimmer ones. This remarkably precise relationship, which was discovered in 1908 by American astronomer Henrietta Swan Leavitt, makes the study of Cepheids one of the most effective ways to measure the distances to, and map the positions of, distant objects in the Milky Way and beyond.

    But there is a catch — Cepheids are not all the same — they come in two main classes, one much younger than the other. Out of their sample of 655 the team identified 35 stars as belonging to a sub-group called classical Cepheids — young bright stars, very different from the usual, much more elderly, residents of the central bulge of the Milky Way.

    The team gathered information on the brightness, pulsation period, and deduced the distances of these 35 classical Cepheids. Their pulsation periods, which are closely linked to their age, revealed their surprising youth.

    “All of the 35 classical Cepheids discovered are less than 100 million years old. The youngest Cepheid may even be only around 25 million years old, although we cannot exclude the possible presence of even younger and brighter Cepheids,” explains the study’s second author Dante Minniti, of the Universidad Andres Bello, Santiago, Chile.

    The ages of these classical Cepheids provide solid evidence that there has been a previously unconfirmed, continuous supply of newly formed stars into the central region of the Milky Way over the last 100 million years. But, this wasn’t to be the only remarkable discovery from the survey’s dataset.

    Mapping the Cepheids that they discovered, the team traced an entirely new feature in the Milky Way — a thin disc of young stars across the galactic bulge. This new component to our home galaxy had remained unknown and invisible to previous surveys as it was buried behind thick clouds of dust. Its discovery demonstrates the unique power of VISTA, which was designed to study the Milky Way’s deep structures by wide-field, high-resolution imaging at infrared wavelengths.

    “This study is a powerful demonstration of the unmatched capabilities of the VISTA telescope for probing extremely obscured galactic regions that cannot be reached by any other current or planned surveys,” remarks Dékány.

    “This part of the galaxy was completely unknown until our VVV survey found it!” adds Minniti.

    Further investigations are now needed to assess whether these Cepheids were born close to where they are now, or whether they originate from further out. Understanding their fundamental properties, interactions, and evolution is key in the quest to understand the evolution of the Milky Way, and the process of galaxy evolution as a whole.


    download mp4 video here.


    download mp4 video here.

    Notes

    [1] The VVV survey is observing the central parts of our galaxy in five near-infrared bands. The total area of this survey is 520 square degrees and contains at least 355 open and 33 globular clusters. The VVV is multi-epoch in nature in order to detect a large number of variable objects and will provide more than 100 carefully spaced observations at different times for each part of the sky covered. A catalogue with about a billion point sources including about a million variable objects is expected. These will be used to create a three-dimensional map of the bulge of the Milky Way galaxy.

    [2] The dust clouds in interstellar space absorb and scatter visible light very effectively and make them opaque. But at longer wavelengths, such as those observed by VISTA, the clouds are much more transparent, allowing the regions beyond the dust to be probed.

    More information

    This research was presented in a paper entitled The VVV Survey reveals classical Cepheids tracing a young and thin stellar disk across the Galaxy’s bulge, by I. Dékány et al., in the Astrophysical Journal Letters.

    The team is composed of I. Dékány (Instituto Milenio de Astrofísica, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile), D. Minniti (Universidad Andres Bello, Santiago, Chile; Instituto Milenio de Astrofísica MAS and Basal CATA, Santiago, Chile; and Vatican Observatory, Vatican City State), D. Majaess (Saint Mary’s University, Halifax, Nova Scotia, Canada; Mount Saint Vincent University, Halifax, Nova Scotia, Canada) , M. Zoccali (Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio de Astrofísica, Santiago, Chile), G. Hajdu (Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio de Astrofísica, Santiago, Chile), J. Alonso-García (Universidad de Antofagasta, Antofagasta, Chile; Instituto Milenio de Astrofísica, Santiago, Chile), M. Catelan (Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio de Astrofísica, Santiago, Chile), W. Gieren (Universidad de Concepción, Concepción, Chile; Instituto Milenio de Astrofísica, Santiago, Chile) and J. Borissova (Universidad de Valparaíso, Valparaíso, Chile; Instituto Milenio de Astrofísica, Santiago, Chile).

    Research Paper

    VVV Survey webpages

    Photos of VISTA

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 9:37 am on April 30, 2015 Permalink | Reply
    Tags: , , ESO VISTA, ,   

    From ESO- ESOcast 74: “Mapping the Southern Skies” 


    European Southern Observatory

    ESOcast 74 looks at ESO’s pair of survey telescopes at Paranal: the Visible and Infrared Survey Telescope for Astronomy (VISTA) and the VLT Survey Telescope (VST).

    Download available at YouTube

    Watch, enjoy, learn.

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 7:36 am on February 4, 2015 Permalink | Reply
    Tags: , , ESO VISTA   

    From ESO: “VISTA Stares Right Through the Milky Way” 


    European Southern Observatory

    4 February 2015

    Richard Hook
    ESO education and Public Outreach Department
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    A new image taken with ESO’s VISTA survey telescope reveals the famous Trifid Nebula in a new and ghostly light. By observing in infrared light, astronomers can see right through the dust-filled central parts of the Milky Way and spot many previously hidden objects. In just this tiny part of one of the VISTA surveys, astronomers have discovered two unknown and very distant Cepheid variable stars that lie almost directly behind the Trifid. They are the first such stars found that lie in the central plane of the Milky Way beyond its central bulge.

    temp

    ESO Vista Telescope
    ESO/Vista

    As one of its major surveys of the southern sky, the VISTA telescope at ESO’s Paranal Observatory in Chile is mapping the central regions of the Milky Way in infrared light to search for new and hidden objects. This VVV survey (standing for VISTA Variables in the Via Lactea) is also returning to the same parts of the sky again and again to spot objects that vary in brightness as time passes.

    ESO Paranal Facilities
    Paranal

    A tiny fraction of this huge VVV dataset has been used to create this striking new picture of a famous object, the star formation region Messier 20, usually called the Trifid Nebula, because of the ghostly dark lanes that divide it into three parts when seen through a telescope.

    The familiar pictures of the Trifid show it in visible light, where it glows brightly in both the pink emission from ionised hydrogen and the blue haze of scattered light from hot young stars. Huge clouds of light-absorbing dust are also prominent. But the view in the VISTA infrared picture is very different. The nebula is just a ghost of its usual visible-light self. The dust clouds are far less prominent and the bright glow from the hydrogen clouds is barely visible at all. The three-part structure is almost invisible.

    In the new image, as if to compensate for the fading of the nebula, a spectacular new panorama comes into view. The thick dust clouds in the disc of our galaxy that absorb visible light allow through most of the infrared light that VISTA can see. Rather than the view being blocked, VISTA can see far beyond the Trifid and detect objects on the other side of the galaxy that have never been seen before.

    By chance this picture shows a perfect example of the surprises that can be revealed when imaging in the infrared. Apparently close to the Trifid in the sky, but in reality about seven times more distant [1], a newly discovered pair of variable stars has been found in the VISTA data. These are Cepheid variables, a type of bright star that is unstable and slowly brightens and then fades with time. This pair of stars, which the astronomers think are the brightest members of a cluster of stars, are the only Cepheid variables detected so far that are close to the central plane, but on the far side of the galaxy. They brighten and fade over a period of eleven days.
    Notes

    [1] The Trifid Nebula lies about 5200 light-years from Earth, the centre of the Milky Way is about 27 000 light-years away, in almost the same direction, and the newly discovered Cepheids are at a distance of about 37 000 light-years.
    More information

    These results were presented in a paper entitled “Discovery of a Pair of Classical Cepheids in an Invisible Cluster Beyond the Galactic Bulge”, by I. Dekany et al., recently published in Astrophysical Journal Letters.

    The team is composed of I. Dékány (Millennium Institute of Astrophysics, Santiago, Chile; Universidad Católica de Chile, Santiago, Chile), D. Minniti (Universidad Andres Bello, Santiago, Chile; Millennium Institute of Astrophysics; Center for Astrophysics and Associated Technologies; Vatican Observatory, Vatican City State, Italy), G. Hajdu (Universidad Católica de Chile; Millennium Institute of Astrophysics), J. Alonso-García (Universidad Católica de Chile; Millennium Institute of Astrophysics), M. Hempel (Universidad Católica de Chile), T. Palma (Millennium Institute of Astrophysics; Universidad Católica de Chile;), M. Catelan (Universidad Católica de Chile; Millennium Institute of Astrophysics), W. Gieren (Millennium Institute of Astrophysics; Universidad de Concepción, Chile) and D. Majaes (Saint Mary’s University, Halifax, Canada; Mount Saint Vincent University, Halifax, Canada).

    See the full article here.

    Another view:

    2

    The Trifid nebula (M20, NGC NGC 6514) in pseudocolor.
    Image taken with the Palomar 1.5-m telescope.

    Caltech Palomar 1.5m 60in telescope
    Caltech Palomar

    Caltech Palomar 1.5 m 60in telescope interior

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Main

    ESO, European Southern Observatory, builds and operates a suite of the world’s most advanced ground-based astronomical telescopes.

     
  • richardmitnick 2:50 pm on January 12, 2015 Permalink | Reply
    Tags: , , , ESO VISTA,   

    From SEN: “Pulsating stars found in hidden star cluster on far side of the Galaxy” 

    SEN
    SEN

    11 January 2015
    Amy Tyndall

    Astronomers from Chile and Canada have recently detected the first pair of a type of pulsating star called Cepheids. to be found on the far side of the Milky Way.

    c
    This Hubble image shows RS Puppis, a type of variable star known as a Cepheid variable. As variable stars go, Cepheids have comparatively long periods— RS Puppis, for example, varies in brightness by almost a factor of five every 40 or so days. RS Puppis is unusual; this variable star is shrouded by thick, dark clouds of dust enabling a phenomenon known as a light echo to be shown with stunning clarity. These Hubble observations show the ethereal object embedded in its dusty environment, set against a dark sky filled with background galaxies.

    NASA Hubble Telescope
    Hubble

    It seems that they may be part of a young, open star cluster, making this a potential double-discovery win for the team as neither object has been discovered on the opposite side of the Galactic disc to the Earth before.

    By using infrared data from a survey called the Vista Variables in the Via Láctea (VVV), using the VISTA telescope based at Paranal Observatory, Chile, the team created a new observing programme, called the VVV Galactic Cepheid Program (VGCP). Its aim was to discover and characterise distant Cepheids with the aim of mapping the spiral arm structure on the far side of the Milky Way’s disc, behind the central bulge.

    ESO Vista Telescope
    ESO/VISTA

    As part of their first results from VGCP, the team were able to detect a close pair of classical Cepheids that are almost identical in their observed properties. These “Twin Cepheids” both have the same apparent brightness and colour (temperature), are located at the same distance away from the Sun, and are obscured by the same amount of dust from the central bulge.

    From these similarities and subsequent models, it is believed that both stars are the same age at around 48 million years, have a separation of just over 3 light-years, and are located more than 37,000 light-years away.

    1
    False colour VVV image taken from the paper, showing the location of the two Cepheids highlighted by the white marks. The image scale given is 30 arcseconds, or 0.11 light years. Image credit: I. Dékány et al. 2014

    Cepheid variables are very large, luminous yellow stars in the later stages of stellar evolution that expand and contract which causes their brightness to vary over a period of time between one and 70 days. They are therefore classified as “pulsating variable stars”.

    The name Cepheid originates from the first star of its type ever discovered in 1794, Delta Cephei in the constellation Cepheus. Delta Cephei is one of four Cepheids visible to the naked eye from Earth. These stars are commonly referred to as a “standard candle” of distance measurement, as they follow a very reliable “period-luminosity relationship”.

    The period over which the star completes one pulsation tells us how bright it must really be intrinsically. Comparing that to the star’s apparent brightness in the sky allows its distance to be gauged precisely.

    This feature made Cepheids very important in helping astronomers to map the size and structure of the Milky Way, in particular its spiral arms. And their detection in nearby galaxies helped convince astronomers that these really were collections of stars outisde our own Milky Way.

    Since classical Cepheids are relatively rare, the chance of finding two so similar and so close together is practically zero. “Finding such Twin Cepheids is quite as unlikely as winning the lottery!” said Dr István Dékány, lead author on a paper accepted for publication in Astrophysical Journal Letters.

    It is believed that the Twin Cepheids may be part of a larger “open cluster“, which is a grouping of a few thousand stars of similar age that formed from the same initial molecular cloud. Currently, the presence of the open cluster is only inferred as the region obscured by the dense dust and stars of the Milky Way’s central bulge which makes it difficult to observe them. As a result, the team hope to acquire deeper observations in the future to confirm its existence.

    “Our current, popular face-on maps of the Milky Way are analogous to early maps of the globe from the 16th century, where most of the continents were already depicted but distances and shapes were totally distorted,” explains Dékány.

    There is a whole other, as-yet relatively unknown locale on the opposite side of the Galaxy, buried within the gas and dust, that will keep the team busy for a while. “What we see with the latest technology is still only the tip of the iceberg,” Dékány concludes.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The vision of Sen—space exploration network—is to create a global space content network. Sen provides space news and information on the science, economics and government of space and in so doing aims to:
    —promote interest in space;
    —raise awareness of the reality of humankind and Earth in the Universe, providing a different perspective to life on this planet;
    —educate and encourage consideration of the physics, economics and government of space;
    —create a community in which people can learn, debate and share information about space;
    —further the exploration of space;
    —film the universe forever building an electronic version of the universe, a never ending work of art, creating Sen Universe – a computerised to scale 3D universe, starting with the Solar System. Sen Universe will replace computer imagery with real film and imagery as our exploration of the universe continues, forever building an electronic version of the universe, a never ending work of art and science.
    —Ultimately, in achieving the above, Sen aims to be a business without boundary in space and time.

    Space is everything, it affects everything – it defines our environment, the government of mankind, relations, the future. By promoting interest and awareness of space a different perspective of our conduct and government of life on the planet can be obtained in the hope of creating a united planet.

    Sen will aim to be an enterprise that represents the best human effort at creating an enterprise without boundary in space and time.

     
  • richardmitnick 6:01 am on September 10, 2014 Permalink | Reply
    Tags: , , , , ESO VISTA,   

    From ESO: “This Star Cluster Is Not What It Seems” 


    European Southern Observatory

    10 September 2014
    Contacts

    Alessio Mucciarelli
    University of Bologna
    Bologna, Italy
    Tel: +39 051 20 95705
    Email: alessio.mucciarelli2@unibo.it

    Lars Lindberg Christensen
    Head of ESO ePOD
    Garching bei München, Germany
    Tel: +49 89 3200 6761
    Cell: +49 173 3872 621
    Email: lars@eso.org

    VLT observations of Messier 54 show the lithium problem also applies outside our galaxy

    This new image from the VLT Survey Telescope at ESO’s Paranal Observatory in northern Chile shows a vast collection of stars, the globular cluster Messier 54. This cluster looks very similar to many others but it has a secret. Messier 54 doesn’t belong to the Milky Way, but is part of a small satellite galaxy, the Sagittarius Dwarf Galaxy. This unusual parentage has now allowed astronomers to use the Very Large Telescope (VLT) to test whether there are also unexpectedly low levels of the element lithium in stars outside the Milky Way.

    m54

    ESO Vista Telescope
    ESO Vista

    ESO VLT Interferometer
    ESO VLT at Paranal

    The Milky Way galaxy is orbited by more than 150 globular star clusters, which are balls of hundreds of thousands of old stars dating back to the formation of the galaxy. One of these, along with several others in the constellation of Sagittarius (The Archer), was found in the late eighteenth century by the French comet hunter Charles Messier and given the designation Messier 54.

    For more than two hundred years after its discovery Messier 54 was thought to be similar to the other Milky Way globulars. But in 1994 it was discovered that it was actually associated with a separate galaxy — the Sagittarius Dwarf Galaxy. It was found to be at a distance of around 90 000 light-years — more than three times as far from Earth as the galactic centre.

    Astronomers have now observed Messier 54 using the VLT as a test case to try to solve one of the mysteries of modern astronomy — the lithium problem.

    Most of the light chemical element lithium now present in the Universe was produced during the Big Bang, along with hydrogen and helium, but in much smaller quantities. Astronomers can calculate quite accurately how much lithium they expect to find in the early Universe, and from this work out how much they should see in old stars. But the numbers don’t match — there is about three times less lithium in stars than expected. This mystery remains, despite several decades of work [1].

    Up to now it has only been possible to measure lithium in stars in the Milky Way. But now a team of astronomers led by Alessio Mucciarelli (University of Bologna, Italy) has used the VLT to measure how much lithium there is in a selection of stars in Messier 54. They find that the levels are close to those in the Milky Way. So, whatever it is that got rid of the lithium seems not to be specific to the Milky Way.

    This new image of the cluster was created from data taken with the VLT Survey Telescope (VST) at the Paranal Observatory. As well as showing the cluster itself it reveals the extraordinarily dense forest of much closer Milky Way stars that lie in the foreground.
    Notes

    [1] There are several possible proposed solutions to the riddle. The first is that the calculations of the amounts of lithium produced in the Big Bang are wrong — but very recent tests suggest that this is not the case. The second is that the lithium was somehow destroyed in the earliest stars, before the formation of the Milky Way. The third is that some process in the stars has gradually destroyed lithium during their lives.
    More information

    This research was presented in a paper, The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54, by A. Mucciarelli et al., to appear in Monthly Notices of the Royal Astronomical Society (Oxford University Press).

    The team is composed of: A. Mucciarelli (University of Bologna, Italy), M. Salaris (Liverpool John Moores University, Liverpool, UK), P. Bonifacio (Observatoire de Paris, France), L. Monaco (ESO, Santiago, Chile) and S. Villanova (Universidad de Concepcion, Concepcion, Chile).

    See the full article here.

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Main

    ESO, European Southern Observatory, builds and operates a suite of the world’s most advanced ground-based astronomical telescopes.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 10:03 pm on July 11, 2014 Permalink | Reply
    Tags: , , , , ESO VISTA   

    From ESO: “VISTA Captures Celestial Cat’s Hidden Secrets” 2010 


    European Southern Observatory

    21 April 2010
    Richard Hook
    Survey Telescopes PIO
    Garching, Germany
    Tel: +49 89 3200 6655
    Email: rhook@eso.org

    The Cat’s Paw Nebula, NGC 6334, is a huge stellar nursery, the birthplace of hundreds of massive stars. In a magnificent new ESO image taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) at the Paranal Observatory in Chile, the glowing gas and dust clouds obscuring the view are penetrated by infrared light and some of the Cat’s hidden young stars are revealed.

    cats paw

    ESO Vista Telescope
    ESO/VISTA

    Towards the heart of the Milky Way, 5500 light-years from Earth in the constellation of Scorpius (the Scorpion), the Cat’s Paw Nebula stretches across 50 light-years. In visible light, gas and dust are illuminated by hot young stars, creating strange reddish shapes that give the object its nickname. A recent image by ESO’s Wide Field Imager (WFI) at the La Silla Observatory (eso1003) captured this visible light view in great detail. NGC 6334 is one of the most active nurseries of massive stars in our galaxy.

    ESO Wide Field Imager 2.2m LaSilla
    ESO/WFI at LaSilla

    VISTA, the latest addition to ESO’s Paranal Observatory in the Chilean Atacama Desert, is the world’s largest survey telescope (eso0949). It works at infrared wavelengths, seeing right through much of the dust that is such a beautiful but distracting aspect of the nebula, and revealing objects hidden from the sight of visible light telescopes. Visible light tends to be scattered and absorbed by interstellar dust, but the dust is nearly transparent to infrared light.

    VISTA has a main mirror that is 4.1 metres across and it is equipped with the largest infrared camera on any telescope. It shares the spectacular viewing conditions with ESO’s Very Large Telescope (VLT), which is located on the nearby summit. With this powerful instrument at their command, astronomers were keen to see the birth pains of the big young stars in the Cat’s Paw Nebula, some nearly ten times the mass of the Sun. The view in the infrared is strikingly different from that in visible light. With the dust obscuring the view far less, they can learn much more about how these stars form and develop in their first few million years of life. VISTA’s very wide field of view allows the whole star-forming region to be imaged in one shot with much greater clarity than ever before.

    ESO VLT Interferometer
    ESO/VLT

    The VISTA image is filled with countless stars of our Milky Way galaxy overlaid with spectacular tendrils of dark dust that are seen here fully for the first time. The dust is sufficiently thick in places to block even the near-infrared radiation to which VISTA’s camera is sensitive. In many of the dusty areas, such as those close to the centre of the picture, features that appear orange are apparent — evidence of otherwise hidden active young stars and their accompanying jets. Further out though, slightly older stars are laid bare to VISTA’s vision, revealing the processes taking them from their first nuclear fusion along the unsteady path of the first few million years of their lives.

    The VISTA telescope is now embarking on several big surveys of the southern sky that will take years to complete. The telescope’s large mirror, high quality images, sensitive camera and huge field of view make it by far the most powerful infrared survey telescope on Earth. As this striking image shows, VISTA will keep astronomers busy analysing data they could not have otherwise acquired. This cat is out of the bag.

    See the full article here.

    Another view
    ngc6334
    This image of the star formation region NGC 6334 is one of the first scientific images from the ArTeMiS instrument on APEX. The picture shows the glow detected at a wavelength of 0.35 millimetres coming from dense clouds of interstellar dust grains. The new observations from ArTeMiS show up in orange and have been superimposed on a view of the same region taken in near-infrared light by ESO’s VISTA telescope at Paranal.

    ESO APEX
    ESO APEX

    ESO ARTEMIS
    ArTeMis on APEX

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Main

    ESO, European Southern Observatory, builds and operates a suite of the world’s most advanced ground-based astronomical telescopes.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 9:01 am on April 18, 2013 Permalink | Reply
    Tags: , , , , , ESO VISTA   

    From ESO: “The hidden fires of the Flame Nebula” 

    This image, the first to be released publicly from VISTA, the world’s largest survey telescope, shows the spectacular star-forming region known as the Flame Nebula, or NGC 2024, in the constellation of Orion (the Hunter) and its surroundings.

    flame
    Release date: 11 December 2009, 11:30

    In views of this evocative object in visible light the core of the nebula is completely hidden behind obscuring dust, but in this VISTA view, taken in infrared light, the cluster of very young stars at the object’s heart is revealed. The wide-field VISTA view also includes the glow of the reflection nebula NGC 2023, just below centre, and the ghostly outline of the Horsehead Nebula (Barnard 33) towards the lower right. The bright bluish star towards the right is one of the three bright stars forming the Belt of Orion. The image was created from VISTA images taken through J, H and Ks filters in the near-infrared part of the spectrum. The image shows about half the area of the full VISTA field and is about 40 x 50 arcminutes in extent. The total exposure time was 14 minutes.”

    For this image and for the full range of ESO, “like” the ESO Astronomy Fan Page.

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube
    THE BASIC TOOLS OF E.S.O.
    i1
    Paranal Platform The VLT

    ESO NTT

    NTT – New Technology Telescope


    La Silla


    ALMA Atacama Large Millimeter/submillimeter Array

    i2
    The European Extremely Large Telescope
    VISTAVISTA (the Visible and Infrared Survey Telescope for Astronomy)


    Atacama Pathfinder Experiment telescope (APEX)

    ESO, European Southern Observatory, builds and operates a suite of the world’s most advanced ground-based astronomical telescopes.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 549 other followers

%d bloggers like this: