Tagged: ESO – European Southern Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:45 am on June 17, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, Unexpected Excess of Giant Planets in Star Cluster   

    From ESO: “Unexpected Excess of Giant Planets in Star Cluster” 

    ESO 50 Large

    European Southern Observatory

    17 June 2016
    Anna Brucalassi
    Max-Planck-Institut für extraterrestrische Physik
    Garching bei München, Germany
    Tel: +49 89 30000 3022
    Email: abrucala@mpe.mpg.de

    Luca Pasquini
    ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6792
    Email: lpasquin@eso.org

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Hannelore Hämmerle
    Max-Planck-Institut für extraterrestrische Physik
    Garching bei München, Germany
    Tel: +49 89 30 000 3980
    Email: hhaemmerle@mpa-garching.mpg.de

    1
    Artist’s impression of a hot Jupiter exoplanet in the star cluster Messier 67. No image credit.

    An international team of astronomers have found that there are far more planets of the hot Jupiter type than expected in a cluster of stars called Messier 67. This surprising result was obtained using a number of telescopes and instruments, among them the HARPS spectrograph at ESO’s La Silla Observatory in Chile. The denser environment in a cluster will cause more frequent interactions between planets and nearby stars, which may explain the excess of hot Jupiters.

    ESO/HARPS
    ESO 3.6m telescope & HARPS at LaSilla
    ESO 3.6m telescope & HARPS at LaSilla

    A Chilean, Brazilian and European team led by Roberto Saglia at the Max-Planck-Institut für extraterrestrische Physik, in Garching, Germany, and Luca Pasquini at ESO, has spent several years collecting high-precision measurements of 88 stars in Messier 67 [1]. This open star cluster is about the same age as the Sun and it is thought that the Solar System arose in a similarly dense environment [2].

    The team used HARPS, along with other instruments [3], to look for the signatures of giant planets on short-period orbits, hoping to see the tell-tale “wobble” of a star caused by the presence of a massive object in a close orbit, a kind of planet known as a hot Jupiters. This hot Jupiter signature has now been found for a total of three stars in the cluster alongside earlier evidence for several other planets.

    A hot Jupiter is a giant exoplanet with a mass of more than about a third of Jupiter’s mass. They are “hot” because they are orbiting close to their parent stars, as indicated by an orbital period (their “year”) that is less than ten days in duration. That is very different from the Jupiter we are familiar with in our own Solar System, which has a year lasting around 12 Earth- years and is much colder than the Earth [4].

    “We want to use an open star cluster as laboratory to explore the properties of exoplanets and theories of planet formation”, explains Roberto Saglia. “Here we have not only many stars possibly hosting planets, but also a dense environment, in which they must have formed.”

    The study found that hot Jupiters are more common around stars in Messier 67 than is the case for stars outside of clusters. “This is really a striking result,” marvels Anna Brucalassi, who carried out the analysis. “The new results mean that there are hot Jupiters around some 5% of the Messier 67 stars studied — far more than in comparable studies of stars not in clusters, where the rate is more like 1%.”

    Astronomers think it highly unlikely that these exotic giants actually formed where we now find them, as conditions so close to the parent star would not initially have been suitable for the formation of Jupiter-like planets. Rather, it is thought that they formed further out, as Jupiter probably did, and then moved closer to the parent star. What were once distant, cold, giant planets are now a good deal hotter. The question then is: what caused them to migrate inwards towards the star?

    There are a number of possible answers to that question, but the authors conclude that this is most likely the result of close encounters with neighbouring stars, or even with the planets in neighbouring solar systems, and that the immediate environment around a solar system can have a significant impact on how it evolves.

    In a cluster like Messier 67, where stars are much closer together than the average, such encounters would be much more common, which would explain the larger numbers of hot Jupiters found there.

    Co-author and co-lead Luca Pasquini from ESO looks back on the remarkable recent history of studying planets in clusters: “No hot Jupiters at all had been detected in open clusters until a few years ago. In three years the paradigm has shifted from a total absence of such planets — to an excess!”
    Notes

    [1] Some of the original sample of 88 were found to be binary stars, or unsuitable for other reasons for this study. This new paper concentrates on a sub-group of 66 stars.

    [2] Although the cluster Messier 67 is still holding together, the cluster that may have surrounded the Sun in its early years would have dissipated long ago, leaving the Sun on its own.

    [3] Spectra from the High Resolution Spectrograph on the Hobby-Eberly Telescope in Texas, USA, were also used, as well as from the SOPHIE spectrograph at the Observatoire de Haute Provence, in France.

    McDonald Observatory Hobby-Eberly Telescope
    U Texas Austin McDonald Observatory Hobby-Eberly Telescope

    L'Observatoire de Haute-Provence
    L’Observatoire de Haute-Provence

    [4] The first exoplanet found around a star similar to the Sun, 51 Pegasi b, was also a hot Jupiter. This was a surprise at the time, as many astronomers had assumed that other planetary systems would probably be like the Solar System and have their more massive planets further from the parent star.

    More information

    This research was presented in a paper entitled Search for giant planets in M67 III: excess of Hot Jupiters in dense open clusters, by A. Brucalassi et al., to appear in the journal Astronomy & Astrophysics.

    The team consists of: A. Brucalassi (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; University Observatory Munich, Germany), L. Pasquini (ESO, Garching, Germany), R. Saglia (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; University Observatory Munich, Germany), M.T. Ruiz (Universidad de Chile, Santiago, Chile), P. Bonifacio (GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, Meudon, France), I. Leão (ESO, Garching, Germany; Universidade Federal do Rio Grande do Norte, Natal, Brazil), B.L. Canto Martins (Universidade Federal do Rio Grande do Norte, Natal, Brazil), J.R. de Medeiros (Universidade Federal do Rio Grande do Norte, Natal, Brazil), L. R. Bedin (INAF-Osservatorio Astronomico di Padova, Padova, Italy) , K. Biazzo (INAF-Osservatorio Astronomico di Catania, Catania, Italy), C. Melo (ESO, Santiago, Chile), C. Lovis (Observatoire de Geneve, Sauverny, Switzerland) and S. Randich (INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy).

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 11:39 am on January 20, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory,   

    From Pale Red Dot: “Pale Blue Dot, Pale Red Dot, Pale Green Dot, …” 

    Pale Red Dot

    Pale Red Dot

    1.14.16
    Alan Boss, Carnegie Institution for Science

    Even Carl Sagan would be astonished by what has transpired in the 20 years since the first reproducible evidence for a giant planet in orbit around a sun-like star was announced in October 1995. The announcement of the discovery of a giant planet in orbit around the near-solar twin 51 Pegasus by Michel Mayor and Didier Queloz, followed by its confirmation a few weeks later by Geoff Marcy and Paul Butler, was completely unexpected, not because 51 Peg b has a mass of about half that of Jupiter, or a circular orbit, but because 51 Peg b orbits its star at a distance just 1/100 that of Jupiter, twenty times closer to 51 Peg than the Earth is to the Sun. Theorists such as myself could not imagine forming a presumably gas giant planet that close to a star, a confined space lacking in the raw materials necessary for forming any giant planet. We also feared that if a giant planet formed at a more reasonable distance, similar to Jupiter’s present orbit, subsequent gravitational interactions between the giant planet and the residual planet-forming disk of gas and dust might result in unchecked inward orbital migration of the giant planet toward the growing central protostar that could only result in the planet being swallowed by the voracious youngster. 51 Peg b proved planet formation theorists to be wrong, and we have been playing catch-up ever since.

    Temp 1
    Changes in the velocity of the Sun-like star 51 Peg were used by M. Mayor and D. Queloz to infer the presence of a planet in a short period orbit around the star. Source : arXiv:astro-ph/0310261

    Two months after the announcement of 51 Peg b, Carl Sagan sent letters to George Wetherill and me regarding his claim to have predicted theoretically the formation of a planet similar to 51 Peg b. Sagan had published a paper with a colleague in 1977 that used a simple model of the planet formation process to predict that if a protoplanetary disk happened to have all of its mass concentrated close to the protostar, then a single, massive planet orbiting at 10 times the distance of 51 Peg b might form. Their 1977 paper concluded, however, that such a formation mechanism was “highly questionable”. With the discovery of 51 Peg b, Sagan was ready to drop the “highly questionable” qualifier, and take credit for the first theoretical prediction of an extrasolar planet. Wetherill and I discussed Sagan’s claim, but had several objections of our own: first, whether the initial conditions assumed for the disk by Sagan were at all feasible, and, second, whether the simple model used was up to the task. Detailed computational models of planet formation were Wetherill’s specialty, building on the firm analytical foundation built by Victor Safronov and his colleagues, and Wetherill considered the simple model used in the 1977 paper to be closer to numerology than to proper physics. We politely refrained from supporting Sagan’s claim to theoretical ownership of 51 Peg b.

    One year later, Carl Sagan died at the untimely age of 62 of a rare bone marrow disease, a shock to all of us who knew him as the prophet of the search for life beyond Earth. Just as I remember my seventh-grade classroom where I first heard about the assassination of President Kennedy in 1963, I remember the traffic light I was stopped at when a radio news show reported the death of Carl. By the time of his death, the roster of exoplanets discovered by Doppler spectroscopy (see http://home.dtm.ciw.edu/users/boss/planets.html/) had grown from one to seven, five of which were discovered by Butler and Marcy. The list of exoplanet candidates was now growing at the rate of a planet every month. Carl was a visionary prophet who lived long enough to catch a glimpse of the Promised Land beyond Earth, but not long enough to fully comprehend the prevalence of extrasolar planets.

    51 Peg b was not in any way the first claimed discovery of an exoplanet. The most famous of these was the gas giant planet thought to orbit around Barnard’s Star, a red dwarf star similar to Proxima Centauri that is our nearest neighbour after the Alpha Centauri AB/Proxima Centauri triple system.

    Temp 5
    Shining brightly in this Hubble image is our closest stellar neighbour: Proxima Centauri.
    Proxima Centauri lies in the constellation of Centaurus (The Centaur), just over four light-years from Earth. Although it looks bright through the eye of Hubble, as you might expect from the nearest star to the Solar System, Proxima Centauri is not visible to the naked eye. Its average luminosity is very low, and it is quite small compared to other stars, at only about an eighth of the mass of the Sun.

    NASA Hubble Telescope
    NASA/ESA Hubble

    NASA Hubble WFPC2
    WFPC2 [no longer in service]

    However, on occasion, its brightness increases. Proxima is what is known as a “flare star”, meaning that convection processes within the star’s body make it prone to random and dramatic changes in brightness. The convection processes not only trigger brilliant bursts of starlight but, combined with other factors, mean that Proxima Centauri is in for a very long life. Astronomers predict that this star will remain middle-aged — or a “main sequence” star in astronomical terms — for another four trillion years, some 300 times the age of the current Universe.
    These observations were taken using Hubble’s Wide Field and Planetary Camera 2 (WFPC2). Proxima Centauri is actually part of a triple star system — its two companions, Alpha Centauri A and B, lie out of frame.
    Although by cosmic standards it is a close neighbour, Proxima Centauri remains a point-like object even using Hubble’s eagle-eyed vision, hinting at the vast scale of the Universe around us.
    Date 28 October 2013

    Temp 6
    The two bright stars are (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Taken with Canon 85mm f/1.8 lens with 11 frames stacked, each frame exposed 30 seconds.
    2012-02-27
    Skatebiker

    Peter van de Kamp announced in 1963 the discovery of this planet, 60% more massive than Jupiter, and with an orbital period twice that of Jupiter’s twelve years. This planet made a lot more sense to the theorists than 51 Peg b, and it was accepted as a real detection. Van de Kamp used the astrometric method to search for the wobbles of the central star caused by an unseen planet, where multiple images are taken over a decade or longer. Ten years later, in 1973 George Gatewood published an independent set of astronomical plates that showed that the wobbles that van de Kamp thought were caused by a planet around Barnard’s star were caused instead by changes in the 24-inch refractor used by van de Kamp and in the photographic emulsions used for the exposures. As of 1973, there were no good examples of planets outside our solar system, leaving theorists to continue to concentrate solely on the puzzles associated with the formation of the our own collection of rocky planets, gas giants, and ice giants.

    There were other claims for exoplanet discoveries in the two decades between 1973 and 1995. Gordon Walker and Bruce Campbell started one of the first Doppler spectroscopy searches in 1983, and after twelve years of observing, published their final paper in early 1995, concluding that they had found no firm evidence of planets with masses greater than that of Jupiter. In 1988, they thought they had found evidence for a Jupiter in orbit around Gamma Cephei, but after taking more data, in 1992 they published a retraction of the claim. The case for an exoplanet around Gamma Cephei is still debated (see http://exoplanet.eu/catalog/gamma_cephei_b/).

    In 1988 another Doppler detection appeared, that of an object orbiting the star HD114762, discovered by David Latham and Michel Mayor. This object, however, had a minimum mass of about 11 Jupiter masses, perilously close to the critical value of 13.5 Jupiter masses, which separates Brown dwarfs from Jupiters. Brown dwarfs are massive enough to burn deuterium during their early evolution, whereas planets are forbidden to enjoy the energy generated by hydrogen fusion reactions (see http://home.dtm.ciw.edu/users/boss/definition.html/). Alexander Wolszczan and Dale Frail used the most exotic method of all to discover planetary-mass objects: in 1992 they published evidence from precise timing of the radio wave pulses emitted by the pulsar PSR1257+12 of the presence of not one, but two planets with masses of several times that of the Earth. The fact that these objects orbited in the deadly radiation field of a neutron star that presumably resulted from a supernova explosion made for a fascinating discovery, but one that held little interest for those of us who were fixated on searching for potentially habitable Earth-mass planets around solar-type stars.

    Temp 2
    Artists impression of extrasolar planets in the pulsar, PSR B1257+12.
    NASA/JPL-Caltech/R. Hurt (SSC) – http://photojournal.jpl.nasa.gov/catalog/PIA08042

    In 2004, Butler and his colleagues announced the discovery of the first example of a new class of exoplanets: super-Earths. They showed that the M dwarf star Gliese 436 was orbited by a planet with a mass as small as 21 times that of the Earth, a mass that suggested a composition lacking in gas but rich in rock and ice. Doppler spectroscopy surveys have found hundreds of exoplanets and super-Earths in the intervening years, enough so that by 2009, the prediction could be made that roughly 1/3 of all M dwarf stars were orbited by super-Earths. M dwarfs are at most about 1/2 the mass of the Sun, with much lower luminosities, leading to their having habitable zones much closer to their stars than Earth is to the Sun, but this remarkably high estimate of M dwarf exoplanets was a strong encouragement that the same high abundances would turn out to be the case for G dwarf stars like the Sun.

    Proving this point would fall to NASA’s first space telescope designed specifically for exoplanet detection, the Kepler Space Telescope (see http://kepler.nasa.gov/).

    NASA Kepler Telescope
    NASA/Kepler

    Kepler was the brainchild of William Borucki, who struggled for decades to convince his colleagues (and NASA) of the incredible power of a space telescope for discovering exoplanets by the transit photometry technique. Launched in March 2009, Kepler has more than repaid the America taxpayers who funded its development and operations, having discovered nearly 5,000 exoplanet candidates (at a cost of roughly $100K each) and over 1,000 confirmed planets. Kepler has proven that exoplanets are everywhere, even around G dwarf stars, in startling abundances. Estimates range as high as there being one habitable Earth-like planet for every star in our galaxy.

    Temp 3
    Kepler Objects of Interest (many of them are most likely planets) as of July 23, 2015. Credits : NASA Ames/W. Stenzel – Licensed under Public Domain via Commons

    As someone who has lived through the ups and downs of the history of the field of planet formation and detection, this revelation never fails to amaze me, and often chokes me up when giving public lectures. I cannot imagine that Carl Sagan would feel otherwise were he to have survived long enough to survey the entirety of this Promised Land. We now dream not just of pale blue dots, but of pale green dots indicative of chlorophyll worlds, of not-too-distant future space telescopes capable of the direct imaging of nearby habitable worlds, telescopes powerful enough to sample the compositions of the atmospheres of these worlds in search of molecules associated with habitable and even inhabited planets. Proxima Centauri is a sterling example of such a nearby star that we will continue to scrutinize in the coming years.

    Carl Sagan lived at a time when the optimists among us hoped that maybe one out of a hundred stars might have a planet of some sort in orbit around it. His famous reference to the Earth as a pale blue dot hinted at the likely fragility of life in the Milky Way galaxy, life quite possibly confined to a single refuge in the immense void of an otherwise uncaring and oblivious universe. We now know that nearly every star we can see in the night sky has at least one planet, and that a goodly fraction of those are likely to be rocky worlds orbiting close enough to their suns to be warm and perhaps inhabitable. The search for a habitable world around Proxima Centauri is the natural outgrowth of the explosion in knowledge about exoplanets that human beings have achieved in just the last two decades of the million-odd years of our existence as a unique species on Earth. If Pale Red Dots are in orbit around Proxima, we are confident we will find them, whether they are habitable or not.

    Temp 4
    Dr. Alan Boss explains science results during the NASA Science update. Tuesday, March 22, 2005. Photo Credit: “NASA/Bill Ingalls”

    About the author. Dr. Alan Boss is a Research Scientist at the Carnegie Institution for Science’s Department of Terrestrial Magnetism. He is an internationally recognized theoretical astrophysicist, whose research interests include the study of star formation, evolution of the solar nebula and other protoplanetary disks, and the formation and search for extrasolar planets. Dr. Boss has served on manifold NASA review panels, and has led both NASA and community working groups on extrasolar planet studies, including Chair of the NASA Astrophysics Subcommittee, Chair of NASA Planetary Systems Science Working Group, Chair of NASA Origins of Solar Systems MOWG, Chair of the IAU Working Group on Extrasolar Planets, President of IAU Commissions 51 and 53, and Chair of the AAAS Section on Astronomy. He received a NASA Group Achievement award in 2008 for his role in the Astrobiology Roadmap and another in 2010 for his role in the SIM Planet Finding Capability Study Team. He is a member and Fellow of several professional organizations including the American Astronomical Society, AGU, AAAS, Meteoritical Society, and the American Academy of Arts and Sciences. He has received numerous NASA and NSF grants, served on many professional committees, and is a Series Editor of the Cambridge Astrobiology Series. He has published two books about the search for planets outside the Solar System, “Looking for Earths: The Race to Find New Solar Systems” in 1998, and “The Crowded Universe: The Search for Living Planets” in 2009. Boss is currently the Chair of the NASA Exoplanet Exploration Program Analysis Group, as well as Chair of NASA’s Exoplanet Technology Assessment Committee and WFIRST/AFTA Coronagraph and Infrared Detectors Technology Assessment Committees.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What is PALE RED DOT?

    It is an outreach project to show to the public how scientists are working to address a major question that could affect us all, namely are there Earth-like planets around the nearest stars?

    Why we call it PALE RED DOT?

    In 1990, Voyager 1, on its trek towards interstellar space, sent back a picture of the Inner Solar System on which the Earth occupied less than a pixel. This image of Earth was called Pale Blue Dot, and inspired the late Carl Sagan’s essay ‘Pale Blue Dot : A vision of the human future in Space’, which in turn has been the source of inspiration for a generation of exoplanet hunters. Given that Proxima Centauri — or just Proxima — is a red dwarf star, such a planet would show reddish tints. Even if successful, we will only obtain information about its orbital period and mass — even less than Voyager 1’s pale blue pixel… at least for now!

    What is special about the project?

    Proxima Centauri is the nearest star to the Sun. The discovery of a planet with some characteristics like Earth in our immediate vicinity would be momentous. After years of data acquisition by many researchers and teams, a signal has been identified which may indicate the presence of an Earth-like planet. The Pale Red Dot project will carry out further detailed observations with the aim to confirm or refute the presence of the planet. By broadcasting the progress and results of the observations through all media channels available e.g. press, website, and social media, the Pale Red Dot project aims to promote Science Technology Engineering and Mathematics (STEM) in the broader society, inform the public and hopefully inspire a new generation of scientists.

    How such a scientific program is organized?

    The planned observation campaign is based on a proposal submitted by the involved scientists to ESO, LCOGT and BOOTES observatories. The proposals, in turn, are based on the analysis of data accumulated and obtained over the years by ourselves or by other researchers abroad. Observatories and other advanced research facilities are mostly supported by public resources, large international consortia and private foundations.

    How the results will be reported?

    As in any professional scientific work, final results need to be reviewed by the community before being announced. After the campaign is finished by April 1st, the really tough process of analyzing the data, drawing conclusions and presenting them in a credible manner will begin. After that, the analysis will be summarized in an article and submitted to a scientific journal. At that point, one or more scientists NOT involved in the project will critically revise the work, suggest modifications and even reject its publication if fundamental flaws are spotted. This last step of peer-review can take any time between a few months to a year or two. Hopefully, the data will prove to be high quality and the observations will have a straightforward interpretation, but that is just a hope. A few key milestones of the peer-review process will also be reported on the website, which might remain active at a lower activity level after the observing campaign has finished.

     
  • richardmitnick 2:49 pm on January 9, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, Tarantula Nebula   

    From ESO: “Portrait of a Dramatic Stellar Crib” ESO brings forward now this 2006 article, Very Worthwhile 


    European Southern Observatory

    Temp 1

    ESO Releases 256 Million Pixel Image of Immense Stellar Factory

    21 December 2006
    No writer credit found

    A new, stunning image of the cosmic spider, the Tarantula Nebula and its surroundings, finally pays tribute to this amazing, vast and intricately sculpted web of stars and gas. The newly released image, made with ESO’s Wide Field Imager [WFI] on the 2.2-m ESO/MPG Telescope at La Silla, covers 1 square degree on the sky and could therefore contain four times the full Moon.

    ESO WFI LaSilla
    WFI

    ESO 2.2 meter telescope
    2.2-m ESO/MPG Telescope at La Silla

    Known as the Tarantula Nebula for its spidery appearance, the 30 Doradus complex is a monstrous stellar factory. It is the largest emission nebula in the sky, and can be seen far down in the southern sky at a distance of about 170,000 light-years, in the southern constellation Dorado (The Swordfish or the Goldfish). It is part of one of the Milky Way’s neighbouring galaxies, the Large Magellanic Cloud.

    4
    The Large Magellanic Cloud. NASA

    The Tarantula Nebula is thought to contain more than half a million times the mass of the Sun in gas and this vast, blazing labyrinth hosts some of the most massive stars known. The nebula owes its name to the arrangement of its brightest patches of nebulosity, that somewhat resemble the legs of a spider. They extend from a central ‘body’ where a cluster of hot stars (designated ‘R136’) illuminates and shapes the nebula. This name, of the biggest spiders on the Earth, is also very fitting in view of the gigantic proportions of the celestial nebula – it measures nearly 1,000 light-years across and extends over more than one third of a degree: almost, but not quite, the size of the full Moon. If it were in our own Galaxy, at the distance of another stellar nursery, the Orion Nebula (1,500 light-years away), it would cover one quarter of the sky and even be visible in daylight.

    5
    In one of the most detailed astronomical images ever produced, NASA/ESA’s Hubble Space Telescope captured an unprecedented look at the Orion Nebula. … This extensive study took 105 Hubble orbits to complete. All imaging instruments aboard the telescope were used simultaneously to study Orion. The Advanced Camera mosaic covers approximately the apparent angular size of the full moon.

    Because astronomers believe that most of the stars in the Universe were formed in large and hectic nurseries such as the 30 Doradus region, its study is fundamental. Early this year, astronomers took a new, wide look at the spider and its web of filaments, using the Wide Field Imager on the 2.2-m MPG/ESO telescope located at La Silla, Chile, while studying the dark clouds in the region. Dark clouds are enormous clouds of gas and dust, with a mass surpassing a million times that of the Sun. They are very cold, with temperatures about -260 degrees Celsius, and are difficult to study because of the heavy walls of dust behind which they hide. Their study is however essential, as it is in their freezing wombs that stars are born.

    Observing in four different bands, the astronomers made a mosaic of the half-degree field of view of the instrument to obtain an image covering one square degree. With each individual image containing 64 million pixels, the resultant mosaic thus contained 4 times as many, or 256 million pixels! The observations were made in very good image quality, the ‘seeing’ being typically below 1 arcsecond.

    The image is based on data collected through four filters, including two narrow-band filters that trace hydrogen (red) and oxygen (green). The predominance of green in the Tarantula is a result of the younger, hotter stars in this region of the complex.

    It would be easy to get lost in the meanderings of the filamentary structures or get stuck in the web of the giant arachnid, as is easily experienced with the zoom-in feature provided on the associated photo page, and it is therefore difficult to mention all the unique objects to be discovered. Deserving closer attention perhaps is the area at the right-hand border of the Tarantula. It contains the remains of a star that exploded and was seen with the unaided eye in February 1987, i.e. almost 20 years ago. Supernova SN 1987A, as it is known, is the brightest supernova since the one observed by the German astronomer Kepler in 1604. The supernova is known to be surrounded by a ring, which can be distinguished in the image.

    6
    Remnant of SN 1987A seen in light overlays of different spectra. ALMA data (radio, in red) shows newly formed dust in the center of the remnant. Hubble (visible, in green) and Chandra (X-ray, in blue) data show the expanding shock wave.

    NASA Chandra Telescope
    NASA/Chandra

    A little to the left of SN 1987A, another distinctive feature is apparent: the Honeycomb Nebula. This characteristic bubble-like structure results apparently from the interaction of a supernova explosion with an existing giant shell, which was itself generated by the combined action of strong winds from young, massive stars and supernova explosions.

    The image is based on observations carried out by João Alves (Calar Alto, Spain), Benoit Vandame and Yuri Bialetski (ESO) with the Wide Field Imager (WFI) at the 2.2-m telescope on La Silla. The colour composite was made by Bob Fosbury (ST-EcF).

    The reduced data used to make this image are released as Advanced Data Products (ADP) by the Virtual Observatory Systems Department of ESO. More detail on how to access the data are available from the 30 Doradus ADP page.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 2:21 pm on January 9, 2016 Permalink | Reply
    Tags: , , Copernicus Science Center, , ESO - European Southern Observatory   

    From ESO via Copernicus Science Center: “Interview with Tim de Zeeuw, Director General of ESO” 


    European Southern Observatory

    Copernicus Science Center bloc
    Copernicus Science Center

    Interview by Paweł Ziemnicki from the Heavens of Copernicus Planetarium
    Publishing date: 27th December 2015

    Temp 1

    Since 2012 Poland belongs to European Space Agency (ESA), and from August 2015 – to the European Southern Observatory. In the same time, general directors of those two organisations Tim de Zeeuw from ESO and Johann-Dietrich Wörner from ESA signed cooperation agreement.

    Paweł Ziemnicki: ESO is rather an astronomical organisation whereas ESA is rather considered to be an astronautic organisation. What was the reason that these two organisations decided to sign an agreement and start to cooperate?

    Tim de Zeeuw: It is a very good question. ESA’s mission is much broader, they build launchers, they build rockets, but they also have a mandatory science program, which is about twelve per cent of their budget. We have worked with them in the past already in many areas. We wrote joined studies to see what could happen in the exoplanet field where we need missions in space to do certain things but to do the full science you also need observations from the ground and it is good to combine this. At ESO we also take care of some of the outreach for the ESA part of the Hubble Space Telescope.

    NASA Hubble Telescope
    NASA/ESA Hubble

    It is something that ESO is good in and it is sort of outsource by ESA to us. And we have then decided than with the new Director General coming of ESA, Johann-Dietrich Wörner, it would be good to sign a frame agreement which makes it easier in the future to intensify the collaboration. I invited him to Chile to sign it there because in this way we could bring him to the VLT so that he could see what it is that we do in space science and studying the universe which is complementary to what ESA can do. It was quite a good visit.

    Is it possible that joining forces you may lower the costs of some of the activities performed by each of both organisations?

    That is not how I see this collaboration. I see it more as further increasing the scientific value of the two programs because we will coordinate them a little closer. To be more specific: ESA will launch in 5-8 years time a mission called PLATO which will find many exoplanets.

    ESA PLATO
    ESA/PLATO

    But to get the full science out of that mission we need to study many of these objects with the spectrographs we have in Chile. We want to be sure that the program is coordinated well so that ESA doesn’t fly the mission when there is no follow-up observations from the ground or we don’t have the instruments etc. So it is more a better use of the funding than lowering costs.

    What technology issues are most probable to be exchanged in the near future?

    The complexity of instruments on big ground-based telescopes is getting quite close to the complexity of building a space instrument. Of course space instruments are smaller because you need to be able to launch them and everything has to checked many times because you cannot go and repair them after you have launched them. But ground-bases observatories are often in very remote places, instruments are big and complex and you do not want to go to fix them all the time. They have to work almost as well as if they were in space.

    There are certainly areas of collaboration in detectors. They have to be very sensitive to catch the very faint light coming from the universe. In many cases we use the same detectors on the ground that fly in space missions.

    Temp 2
    Photo: Director General of ESO (on the right) and Director General of ESO are signing cooperation agreement. No image credit found.

    What are the closest scientific common purposes?

    One is the study of exoplanets. Another one is a basic one which we are already doing. ESA’s spacecraft GAIA is measuring the positions and movements of the stars very accurately.

    ESA Gaia satellite
    ESA/GAIA

    But to reach the ultimate precision ESA needs to know exactly were the satellite is in space (it is as far as 5 times further from Earth than the Moon, going around the L2 point) and needs to know the speed of the satellite with precision to 2.5 milimeters per second. For that they need every night observations from the ground against the starfield, where is GAIA – so we do that for ESA. With information of the exact positions of the satellite they are able to reconstruct where all the stars are.

    GAIA will discover many interesting stars. Then astronomers will want to study them more carefully than it is possible with the GAIA mission. To fully understand the physics of these stars they will use ESO instruments and telescopes. So again, the aim of collaboration is optimizing the science program.

    Is it possible that in 20, 30 years ESO would like to have its own orbital telescope, send it with support from ESA?

    Originally ESO was established to build a big telescope in the southern hemisphere. Now its mission is to build world-class observing facilities – it doesn’t say „in the south” and it doesn’t say „on the ground”. Having said this I don’t think that it is very likely that we would ourself start building satellites. The division of work between ESO and ESA is quite normal and ESA is doing well. But it does not always has to be like this that ground based observatories follow research done by spacecraft. It might be also like this that we spot something interesting from the ground and than we need the space mission to study it better – so we can go to ESA. It’s the same science no matter if it is from the ground or from space. We just want to be sure that we do not duplicate efforts. But who knows, we would be happy to launch a satellite.

    Temp 3
    ALMA, for which ESO is a partner with NAOJ and NRAO

    Astronauts have to know the sky quite well for navigation. Is ESO going to provide astronomy courses for ESA astronauts in Chile?

    I think they mainly study the sky at the universities. But we have had several visits of astronauts and they liked our hardware. I would be happy to do something but we’ve got nothing planned at the moment. ESA trains its astronauts quite well on its own.

    What are the most important benefits for countries like Poland, that participate in both organisations?

    The goals for membership in ESA and ESO are somehow different for most countries. This goes back to the fact that most of ESA’s program goes to launchers, rockets and Earth observations. Observations of the universe is part of the mandatory science program so they have to do it but very important is the role of ESA for the industry. There is also national pride to have space program or be involved in such program.

    As for ESO we are an organisation that enables scientific discoveries so it is mainly for astronomers. But building our facilities requires the same level of industry engagement like it is with ESA. For the governments, like for example in Poland, the goal is double: to support astronomers in doing science but also to gain opportunities for industry.

    Did ESA Director General enjoy the visit at Paranal and did he like the VLT?

    He loved it. His background is more of engineering but he liked very much what he saw because there is a lot of engineering on Paranal. He also liked very much the kind of scientific questions that we are trying to answer and he realizes that to do it you need both ground and space instruments. Some things you cannot do from the ground. I was extrememly worried before his visit because we had an unusual day. The sky over Paranal was clouded in the evening. But in the middle of the night it cleared up. He woke up and he enjoyed looking at completely dark sky with the beautiful Milky Way. He liked it. I think he will come back.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Copernicus Science Center campus

    Mission, vision and values of Copernicus Science Center

    Our mission is to encourage personal engagement in discovering and understanding the world, as well as taking responsibility for the changes occurring around us.
    VISION

    We draw together people and organizations to create a community that believes in development through science, and we retain the strongest position among science centres in Central Europe.
    VALUES

    Cooperation and trust

    When working we engage in dialogue, in an atmosphere of mutual respect. We achieve our objectives through devotion and cooperation. We believe in people, in their good intentions, skills, and knowledge. This enables us to build relations, which are the foundation of our organization.

    Creativity, innovation, boldness

    We seek solutions actively and creatively, not being afraid to experiment. We set ourselves ambitious tasks, mindful of the risk involved and taking responsibility for the outcome. We set trends.

    Honesty and trustworthiness

    We act and make decisions in accordance with best practice and in line with our best knowledge. We keep the good of the Copernicus Science Centre and its development firmly in mind, always adhering to legal norms and ethical standards. We tell the truth to fellow workers and to visitors.

    Science

    We recognize that the harmonious advancement of civilization is based on the achievements of scientific inquiry, enhanced by human reflection. We take pleasure in science and utilize its achievements to encourage critical thinking and discovery of the world.

    Committed teamwork

    We are convinced that our diversity is a source of strength and potential. We base ourselves on knowledge and experience, sharing them and learning from one another. We invest in gaining new skills. We work with passion and devotion. Our institution’s stable development and position give us a sense of security and encourage us to identify with the Copernicus Science Centre mission.

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 3:18 pm on December 27, 2015 Permalink | Reply
    Tags: , , ESO - European Southern Observatory,   

    From ESO: “Stars are the nuclear furnaces of the Universe” 


    European Southern Observatory

    12.27.15
    No Writer Credit

    1
    Stars are the nuclear furnaces of the Universe in which chemical elements, including the building blocks of life, are synthesised and recycled: without stars there would be no life. Accordingly,stellar astrophysics has long been a core activity for astronomers. But much remains to be understood. With higher angular resolution and greater sensitivity astronomers will be able to observe the faintest, least massive stars,allowing us to close the current huge gap in our knowledge concerning star and planet formation. Nucleocosmochronometry — the radiocarbon-14 method as applied to stars — will become possible for stars right across the Milky Way, allowing us to study galactic prehistory by dating the very first stars. And some of the brightest stellar phenomena, including the violent deaths of stars in supernovae and gamma-ray bursts, will be traced out to very large distances, offering a direct map of the star formation history of the entire Universe.

    The European Extremely Large Telescope (E-ELT) will be able to answer some of the most prominent open questions: What are the details of star formation, and how does this process connect with the formation of planets? When did the first stars form? What triggers the most energetic events that we know of in the Universe, the deaths of stars in gamma-ray bursts?

    2
    The term island universes was introduced in 1755 by Immanuel Kant, and used at the beginning of the 20th century to define spiral nebulae as independent galaxies outside the Milky Way. Trying to understand galaxy formation and evolution has become one of the most active fields of astronomical research over the last few decades, as large telescopes have reached out beyond the Milky Way.Yet, even nearby giant galaxies have remained diffuse nebulae that cannot be resolved into individual stars. The unique angular resolution of the E-ELT will revolutionise this field by allowing us to observe individual stars in galaxies out to distances of tens of millions of light-years. Even at greater distances, we will be able to make the kind of observations of the structure of galaxies and the motions of their constituent stars that previously have only been possible in the nearby Universe: by taking advantage of the finite speed of light, we can peer back in time to see how and when galaxies were assembled.

    The European Extremely Large Telescope (E-ELT) will be able to answer some of the most prominent open questions: What stars are galaxies made of? How many generations of stars do galaxies host and when did they form? What is the star formation history of the Universe? When and how did galaxies as we see them today form? How did galaxies evolve through time?

    3
    The discovery that the expansion of the Universe has recently begun to accelerate, presumably driven by some form of dark energy, was arguably one of the most important as well as mysterious scientific break-throughs of the past decade.The E-ELT will help us to elucidate the nature of dark energy by helping to discover and identify distant type Ia supernovae. These are excellent distance indicators and can be used to map out space and its expansion history. In addition to this geometric method the E-ELT will also attempt, for the first time, to constrain dark energy by directly observing the global dynamics of the Universe: the evolution of the expansion rate causes a tiny time-drift in the redshifts of distant objects and the E-ELT will be able to detect this effect in the intergalactic medium. This measurement will offer a truly independent and unique approach to the exploration of the expansion history of the Universe.

    The E-ELT will also search for possible variations over cosmic time of fundamental physical constants, such as the fine-structure constant and the proton-to-electron mass ratio. An unambiguous detection of such variations would have far-reaching consequences for unified theories of the fundamental interactions, for the existence of extra dimensions of space and/or time, and for the possibility of scalar fields acting in the late Universe.

    4
    The E-ELT will pursue a vigorous scientific programme of exploring the formation and evolution of galaxies in the high redshift Universe. Although a satisfactory scenario describing the hierarchical assembly of dark matter halos is now well established, our physical understanding of the build-up of the baryonic component of galaxies is only fragmentary and fundamentally incomplete. With the enormous sensitivity and resolution gains of the E-ELT we will be able to peer beyond our present horizons and uncover the physical processes that form and transform galaxies across cosmic time. The E-ELT will provide us with spatially resolved spectroscopic surveys of hundreds of massive galaxies all the way out to the redshifts of the most distant galaxies presently known, supplying us with the kind of detailed information on their stellar masses, ages, metallicities, star formation rates and dynamical states that is currently only available for low redshift galaxies.

    The E-ELT will also push back to the crucial earliest stages of galaxy formation, right at the end of the dark ages, by identifying the galaxies responsible for the reionization of the Universe and by informing us of their basic properties. Through these observations the E-ELT will drive the transition from the current phenomenological models to a much more physical understanding of galaxy formation and evolution.

    5
    The E-ELT offers the exciting prospect of reconstructing the formation and evolution histories of a representative sample of galaxies in the nearby Universe by studying their resolved stellar populations.

    16
    Local Group of nearby galaxies. Andrew Z. Colvin

    A galaxy’s stellar populations carry a memory of its entire star formation history, and decoding this information offers detailed insights into the galaxy’s past. However, studying stellar populations requires the capability of resolving and measuring individual stars and so up until now such studies have been limited to our own Galaxy and its nearest neighbours. In particular, no examples of large elliptical galaxies are within reach of current telescopes for this type of study.

    With its superior resolution and photon collecting power the E-ELT will allow us to perform precise photometry and spectroscopy on the stellar populations of a much more representative sample of galaxies, reaching out to the nearest giant ellipticals at the distance of the Virgo cluster.

    15
    This deep image of the Virgo Cluster obtained by Chris Mihos and his colleagues using the Burrell Schmidt telescope shows the diffuse light between the galaxies belonging to the cluster. North is up, east to the left. The dark spots indicate where bright foreground stars were removed from the image. Messier 87 is the largest galaxy in the picture (lower left).

    Case Western Burrell Schmidt telescope Kitt Peak
    Case Western Reserve Burrell Schmitt telescope at Kitt Peak, AZ, USA

    Thus, the E-ELT will provide detailed information on the star formation, metal enrichment and kinematic histories of nearby galaxies, showing us how they were formed and built-up over time.

    6
    Discovering and characterising planets and proto-planetary systems around other stars will be one of the most important and exciting aspects of the E-ELT science programme. This will include not only the discovery of planets down to Earth-like masses using the radial velocity technique but also the direct imaging of larger planets and possibly even the characterisation of their atmospheres.

    The E-ELT will be capable of detecting reflected light from mature giant planets (Jupiter to Neptune-like) and may be able to probe their atmospheres through low resolution spectroscopy. It will also enable us to directly study planetary systems during their formation from proto-planetary discs around many nearby very young stars. Furthermore, observations of giant planets in young stellar clusters and star forming regions will trace their evolution as a function of age. Thus, the E-ELT will answer fundamental questions regarding planet formation and evolution, the planetary environment of other stars, and the uniqueness (or otherwise) of the Solar System and Earth.

    7
    This artist’s impression shows the magnetar in the very rich and young star cluster Westerlund 1. This remarkable cluster contains hundreds of very massive stars, some shining with a brilliance of almost one million suns. European astronomers have for the first time demonstrated that this magnetar — an unusual type of neutron star with an extremely strong magnetic field — probably was formed as part of a binary star system. The discovery of the magnetar’s former companion elsewhere in the cluster helps solve the mystery of how a star that started off so massive could become a magnetar, rather than collapse into a black hole. Credit: ESO/L. Calçada

    8
    May this holiday season sparkle and shine, may all of your wishes and dreams come true, and may you feel this happiness all year round. Wishing you much happiness today and throughout the New Year.
    The E-ELT Admin team

    9
    NGC 5426 and NGC 5427 are two spiral galaxies of similar sizes engaged in a dramatic dance. It is not certain that this interaction will end in a collision and ultimately a merging of the two galaxies, although the galaxies have already been affected. Together known as Arp 271, this dance will last for tens of millions of years, creating new stars as a result of the mutual gravitational attraction between the galaxies, a pull seen in the bridge of stars already connecting the two. Located 90 million light-years away towards the constellation of Virgo (the Virgin), the Arp 271 pair is about 130 000 light-years across. It was originally discovered in 1785 by William Herschel. Quite possibly, our own Milky Way will undergo a similar collision in about five billion years with the neighbouring Andromeda galaxy, which is now located about 2.6 million light-years away from the Milky Way. This image was taken with the EFOSC instrument, attached to the 3.58-metre New Technology Telescope at ESO’s La Silla Observatory in Chile. The data were acquired through three different filters (B, V, and R) for a total exposure time of 4440 seconds. The field of view is about 4 arcminutes. Credit: ESO — with Abel Moreira.

    ESO EFOSC2
    ESO/EFOSC instrument

    16
    Andromeda Galaxy via NASA/GALEX

    NASA Galex telescope
    NASA/GALEX

    10
    A long exposure has captured the setting stars in a moonlit night in form of colorful star trails above La Silla telescope domes and inversion layer in the southern outskirts of the Atacama desert, Chile. The trails are notabely distorted at the horizon as seen in this telephoto view. This mirage is similar to other common mirage of astronomical object such as the moon or the sun when they are near the horizon; an optical phenomenon in which light rays are refracted and bent in the atmosphere to produce distorted or multiple images of the object. The European Southern Observatory’s (ESO) site at La Silla has telescopes which observe at optical and infrared. The largest optical telescope has a mirror with a diameter of 3.6 metres. The high altitude of La Silla (2400 metres), the dark sky, and the clear air above it (reducing atmospheric distortions of incoming light), make the site an ideal location for astronomical observations. Credit: ESO/B. Tafreshi (twanight.org)— with Abel Moreira.

    11
    An artist’s rendering of the European Extremely Large Telescope (E-ELT) in the Chilean Atacama Desert. In the distance, ESO’s Paranal Observatory sits atop the Cerro Paranal mountain.(You can grasp the dimension of the European Extremely Large Telescope (E-ELT) by looking at the cars nearby.) Image credit: ESO / L.Calcada http://www.eso.org/public/images/elt-fulldome-1_cc/

    12
    ESOcast 76: A Polarised View of Stellar Magnetism ESO telescopes are being used to search for the subtle signs of magnetic fields in other stars and even to map out the star spots on their surfaces. This ESOcast looks at how this information — and particularly the polarisation of light — is beginning to reveal how and why so many stars, including our own Sun, are magnetic, and what the implications might be for life on Earth and elsewhere in the Universe. — with Abel Moreira.

    13
    ESO has signed an agreement with a consortium of institutes around Europe for the design and construction of METIS, an infrared camera and spectrograph for the European Extremely Large Telescope (E-ELT). The agreement was signed by H. W. (Willem) te Beest, Vice-President Executive Board, Leiden University, on behalf of the consortium, and Tim de Zeeuw, ESO Director General, at a ceremony at the Science Faculty Club of Leiden University in the Netherlands, on 28 September 2015.

    14
    Haro 11 appears to shine gently amid clouds of gas and dust, but this placid facade belies the monumental rate of star formation occurring in this starburst” galaxy. By combining data from ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope, astronomers have created a new image of this incredibly bright and distant galaxy.

    NASA Hubble Telescope
    NASA/ESA Hubble

    The team of astronomers from Stockholm University, Sweden, and the Geneva Observatory, Switzerland, have identified 200 separate clusters of very young, massive stars. Most of these are less than 10 million years old. Many of the clusters are so bright in infrared light that astronomers suspect that the stars are still emerging from the cloudy cocoons where they were born. The observations have led the astronomers to conclude that Haro 11 is most likely the result of a merger between a galaxy rich in stars and a younger, gas-rich galaxy. Haro 11 is found to produce stars at a frantic rate, converting about 20 solar masses of gas into stars every year.

    Haro galaxies, first discovered by the noted astronomer Guillermo Haro in 1956, are defined by unusually intense blue and violet light. Usually this high energy radiation comes from the presence of many newborn stars or an active galactic nucleus. Haro 11 is about 300 million light-years away and is the second closest of such starburst galaxies.

    The paper describing this result (“Super star clusters in Haro 11: Properties of a very young starburst and evidence for a near-infrared flux excess”, by A. Adamo et al.) is available here. Credit: ESO/ESA/Hubble and NASA

    View ESO photos here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 7:48 pm on November 24, 2015 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, ESO 2016 Calendar   

    From ESO: The 2016 ESO Calendar is Truly a Splendid Thing to Behold 


    European Southern Observatory

    I just received my 2016 ESO Calendar. I love it. The graphics are just not to be believed. You can order yours at the ESOShop.

    1
    Price: € 9,99
    Well worth the price.

    Every month is its own wonderful vision.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 8:18 pm on September 17, 2015 Permalink | Reply
    Tags: , , ESO - European Southern Observatory,   

    From ESO: “Spectroscopy” 


    European Southern Observatory

    If signs of life on another planet are ever discovered, they will be found with a spectrograph

    Spectroscopy is one of an astronomer’s favourite tools to help understand the Universe. Planets, stars and galaxies are just too far away to be analysed in a laboratory. Fortunately, very important information about these distant bodies is written in the light we detect with a telescope.

    But the light is not an open book. To be read, light must be split into its different colours (or wavelengths), in the same way that rain droplets disperse the light to form a rainbow. Newton called this rainbow of colours a spectrum, the Latin word for “image”.

    1
    A prism splits white light into its components: the colours of the rainbow.

    2
    A natural prism, familiar to everybody

    The first astronomical application of spectroscopy was in the analysis of sunlight by Fraunhofer and Kirchhoff, in the early 19th century. It was expected that the white light emitted from the Sun would produce a clean rainbow when passing through a prism. But, for the very first time, a pattern of dark lines was also noticed. These unexpected lines were the fingerprintsimprinted in the light by the different chemical elements interacting with it and are called absorption lines.

    The beauty of this interaction is that each chemical element or molecule produces a unique signature in the spectrum, a sort of barcode that unequivocally identifies one element from another. By decoding these barcodes, spectroscopy can reveal important properties of any body which emits or absorbs light.

    3
    The barcode of the Sun. A very long spectrum was chopped in small chunks and then displayed one on top of another.
    Credit: NOAO/AURA/NSF

    4
    A star emits light across the spectrum — a continuum. When white light goes through a prism, it forms a rainbow, its spectrum. In the same way, as light from a star goes through the gas of a nebula — or even just the atmosphere of the star — specific colours (or wavelengths) are absorbed by the elements contained in the gas, producing dark lines over the continuum. This is an absorption spectrum. The energy that is absorbed by the gas is then re-emitted in all directions, also at the specific colours characteristic of the elements present in the gas, producing bright lines at certain wavelengths; this is known as an emission spectrum.

    Spectrographs are fundamental pieces of astronomical instrumentation and they are far more sophisticated than a prism. Instead of a simple rainbow, the output is a spectrum in which the light is much more dispersed than in a rainbow. The spectra are recorded on a CCD detector and finally saved in computer files for further processing and analysis. The spectrum of a star or any astronomical object not only reveals the presence of certain chemical elements, but also informs about the prevailing physical conditions, such as temperature and density. Spectra can also tell us about motion: by using the Doppler effect, the speed of a star or a galaxy with respect to the Earth can be measured. This effect is used to discover extrasolar planets, and a similar effect allows astronomers to measure the distances to galaxies. Spectra also contain information on the magnetic field present in the object, the composition of the matter and much more.

    Most of the telescopes at ESO’s observatories have spectrographs or have a spectroscopic mode. They cover different ranges of wavelength (from the near-ultraviolet to the mid-infrared) and offer different spectral resolutions (the higher the spectral resolution, the stronger the dispersion of the light, and the smaller the details of the spectrum that can be detected).

    5
    Illustration of a spectrum taken by X-shooter. This instrument can take simultaneous spectra of an object over a broad range of colours (or wavelengths), from ultraviolet to infrared.

    6
    Most spectrographs select the light to be split using a slit, which can be long or very short, or even just a small hole. Only that light is sent to the spectrograph (not shown here), and produce a spectrum of that slit.

    Some spectrographs at the Very Large Telescope in Paranal produce high-resolution spectra like UVES and CRIRES; others obtain spectra of many objects at the same time like FLAMES and VIMOS; and a few, like KMOS, MUSE and SINFONI, can even take spectra over their whole field of view (see Integral Field Spectroscopy).

    ESO VLT UVES
    UVES

    2
    CRIRES

    At the La Silla Observatory, the instruments installed at the New Technology Telescope (NTT), EFOSC2 (and its predecessor EMMI) and SOFI are also spectrographs. But HARPS, installed on the ESO 3.6-metre telescope, is certainly one of the most famous for its leading role in the detection of exoplanets.

    ESO EFOSC2
    EFOSC2

    ESO SOFI
    SOFI

    ESO HARPS
    HARPS

    The next generation of spectrographs, like those planned for the European Extremely Large Telescope (E-ELT), will go beyond anything we can currently achieve. Among the things we cannot do today, astronomers expect to be able to look for possible traces of life in the atmospheres of exoplanets similar to Earth. If signs of life are ever discovered on another planet, it’s most likely that the instrument involved will be a spectrograph.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 9:01 am on September 10, 2015 Permalink | Reply
    Tags: , , ESO - European Southern Observatory,   

    From ESO: “Charting the Slow Death of the Universe” 

    [Sorry, somehow I missed this article.]


    European Southern Observatory

    1

    An international team of astronomers studying more than 200 000 galaxies has measured the energy generated within a large portion of space more precisely than ever before. This represents the most comprehensive assessment of the energy output of the nearby Universe. They confirm that the energy produced in a section of the Universe today is only about half what it was two billion years ago and find that this fading is occurring across all wavelengths from the ultraviolet to the far infrared. The Universe is slowly dying.

    The study involves many of the world’s most powerful telescopes, including ESO’s VISTA and VST survey telescopes at the Paranal Observatory in Chile [see below]. Supporting observations were made by two orbiting space telescopes operated by NASA (GALEX and WISE) and another belonging to the European Space Agency (Herschel) [1].

    NASA Galex telescope
    NASA/ Galex

    NASA Wise Telescope
    NASA/WISE

    The research is part of the Galaxy And Mass Assembly (GAMA) project, the largest multi-wavelength survey ever put together.

    GAMA Survey
    From GAMA

    “We used as many space and ground-based telescopes as we could get our hands on to measure the energy output of over 200 000 galaxies across as broad a wavelength range as possible,” says Simon Driver (ICRAR, The University of Western Australia), who heads the large GAMA team.

    The survey data, released to astronomers around the world today, includes measurements of the energy output of each galaxy at 21 wavelengths, from the ultraviolet to the far infrared. This dataset will help scientists to better understand how different types of galaxies form and evolve.

    All the energy in the Universe was created in the Big Bang, with some portion locked up as mass. Stars shine by converting mass back into energy, as described by [Albert] Einstein’s famous equation E=mc2 [2]. The GAMA study sets out to map and model all of the energy generated within a large volume of space today and at different times in the past.

    “While most of the energy sloshing around in the Universe arose in the aftermath of the Big Bang, additional energy is constantly being generated by stars as they fuse elements like hydrogen and helium together,” Simon Driver says. “This new energy is either absorbed by dust as it travels through the host galaxy, or escapes into intergalactic space and travels until it hits something, such as another star, a planet, or, very occasionally, a telescope mirror.”

    The fact that the Universe is slowly fading has been known since the late 1990s, but this work shows that it is happening across all wavelengths from the ultraviolet to the infrared, representing the most comprehensive assessment of the energy output of the nearby Universe.

    “The Universe will decline from here on in, sliding gently into old age. The Universe has basically sat down on the sofa, pulled up a blanket and is about to nod off for an eternal doze,” concludes Simon Driver.

    The team of researchers hope to expand the work to map energy production over the entire history of the Universe, using a swathe of new facilities, including the world’s largest radio telescope, the Square Kilometre Array, which is due to be built in Australia and South Africa over the next decade.

    SKA Square Kilometer Array

    The team will present this work at the International Astronomical Union XXIX General Assembly in Honolulu, Hawaii, on Monday 10 August 2015.
    Notes

    [1] The telescopes and survey data used, in order of increasing wavelength, were: GALEX, SDSS, VST (KiDS survey), AAT, VISTA (VIKING survey)/UKIRT, WISE, Herschel (PACS/SPIRE).

    SDSS Telescope
    SDSS telescope at Apache Point, NM, USA

    Anglo Australian Telescope Exterior
    Anglo Australian Telescope Interior
    AAT

    UKIRT
    UKIRT interior
    UKIRT

    [2] Much of the Universe’s energy output comes from nuclear fusion in stars, when mass is slowly converted into energy. Another major source is the very hot discs around black holes at the centres of galaxies, where gravitational energy is converted to electromagnetic radiation in quasars and other active galactic nuclei. Much longer wavelength radiation comes from huge dust clouds that are re-radiating the energy from stars within them.


    Download mp4 here.

    More information

    This research will be presented in a paper entitled Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV—far-IR) and the low-z energy budget”, by S. Driver et al., submitted to the journal Monthly Notices of the Royal Astronomical Society. It will also be the subject of a talk and press event at the IAU General Assembly in Hawaii on 10 August 2015.

    The team is composed of Simon P. Driver (ICRAR, The University of Western Australia, Crawley, Western Australia, Australia [ICRAR]; University of St Andrews, United Kingdom), Angus H. Wright (ICRAR), Stephen K. Andrews (ICRAR), Luke J. Davies (ICRAR) , Prajwal R. Kafle (ICRAR), Rebecca Lange (ICRAR), Amanda J. Moffett (ICRAR) , Elizabeth Mannering (ICRAR), Aaron S. G. Robotham (ICRAR), Kevin Vinsen (ICRAR), Mehmet Alpaslan (NASA Ames Research Centre, Mountain View, California, United States), Ellen Andrae (Max Planck Institute for Nuclear Physics, Heidelberg, Germany [MPIK]), Ivan K. Baldry (Liverpool John Moores University, Liverpool, United Kingdom), Amanda E. Bauer (Australian Astronomical Observatory, North Ryde, NSW, Australia [AAO]), Steve Bamford (University of Nottingham, United Kingdom), Joss Bland-Hawthorn (University of Sydney, NSW, Australia), Nathan Bourne (Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, United Kingdom), Sarah Brough (AAO), Michael J. I. Brown (Monash University, Clayton, Victoria, Australia), Michelle E. Cluver (The University of Western Cape, Bellville, South Africa), Scott Croom (University of Sydney, NSW, Australia), Matthew Colless (Australian National University, Canberra, ACT, Australia), Christopher J. Conselice (University of Nottingham, United Kingdom), Elisabete da Cunha (Macquarie University, Sydney NSW, Australia), Roberto De Propris (University of Turku, Piikkiö, Finland), Michael Drinkwater (Queensland University of Technology, Brisbane, Queensland, Australia), Loretta Dunne (Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, United Kingdom; Cardiff University, Cardiff, United Kingdom), Steve Eales (Cardiff University, Cardiff, United Kingdom), Alastair Edge (Durham University, Durham, United Kingdom), Carlos Frenk (Durham University, Durham, United Kingdom), Alister W. Graham (Macquarie University, Sydney NSW, Australia), Meiert Grootes (MPIK), Benne W. Holwerda (Leiden Observatory, University of Leiden, Leiden, The Netherlands), Andrew M. Hopkins (AAO) , Edo Ibar (Universidad de Valparaso, Valparaiso, Chile), Eelco van Kampen (ESO, Garching, Germany), Lee S. Kelvin (Liverpool John Moores University, Liverpool, United Kingdom), Tom Jarrett (University of Cape Town, Rondebosch, South Africa), D. Heath Jones (Macquarie University, Sydney, NSW, Australia), Maritza A. Lara-Lopez (Universidad Nacional Automana de México, México), Angel R. Lopez-Sanchez (AAO), Joe Liske (Hamburger Sternwarte, Universität Hamburg, Hamburg, Germany), Jon Loveday (University of Sussex, Falmer, Brighton, United Kingdom), Steve J. Maddox (Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, United Kingdom; Cardiff University, Cardiff, United Kingdom), Barry Madore (Observatories of the Carnegie Institution of Washington, Pasadena, California, United States [OCIW]), Martin Meyer (ICRAR) , Peder Norberg (Durham University, Durham, United Kingdom), Samantha J. Penny (University of Portsmouth, Portsmouth, United Kingdom), Stephen Phillipps (University of Bristol, Bristol, United Kingdom), Cristina Popescu (University of Central Lancashire, Preston, Lancashire), Richard J. Tuffs (MPIK), John A. Peacock (Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, United Kingdom), Kevin A.Pimbblet (Monash University, Clayton, Victoria, Australia; University of Hull, Hull, United Kingdom), Kate Rowlands (University of St Andrews, United Kingdom), Anne E. Sansom (University of Central Lancashire, Preston, Lancashire), Mark Seibert (OCIW), Matthew W.L. Smith (Queensland University of Technology, Brisbane, Queensland, Australia), Will J. Sutherland (Queen Mary University London, London, United Kingdom), Edward N. Taylor (The University of Melbourne, Parkville, Victoria, Australia), Elisabetta Valiante (Cardiff University, Cardiff, United Kingdom), Lingyu Wang (Durham University, Durham, United Kingdom; SRON Netherlands Institute for Space Research, Groningen, The Netherlands), Stephen M. Wilkins (University of Sussex, Falmer, Brighton, United Kingdom) and Richard Williams (Liverpool John Moores University, Liverpool, United Kingdom).

    The Galaxy and Mass Assembly Survey, or GAMA, is a collaboration involving nearly 100 scientists from more than 30 universities located in Australia, Europe and the United States.

    ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 3:39 pm on August 24, 2015 Permalink | Reply
    Tags: , , , ESO - European Southern Observatory   

    From ESA: “ESO and ESA Directors General sign Cooperation Agreement” 

    ESASpaceForEuropeBanner
    European Space Agency

    24 August 2015
    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    On 20 August 2015 the Director General of ESO, Tim de Zeeuw, and the Director General of ESA, Johann-Dietrich Woerner, signed a cooperation agreement between the two organisations at ESO’s offices in Santiago, Chile. The ESA Director General was accompanied by Álvaro Giménez, Director of Science and Robotic Exploration at ESA, and Fabio Favata, Head of the ESA Programme Coordination Office.

    1
    A cooperation agreement was signed at ESO’s offices in Santiago, Chile

    There is considerable overlap of interests between ESO, pre-eminent in ground-based astronomy, and ESA, Europe’s leader in space research and technology. The new agreement provides a framework for future close cooperation and exchange of information in many areas, including technology and scientific research.

    The agreement will promote strategic coordination of the two organisations’ long-term plans as well as coordination of specific programmes. In addition, it will promote coordination of scientific and training programmes as well as the sharing of best practices in many areas. Coordination in the areas of services, tools and resources will also be encouraged. Additional areas covered by the new agreement are technology development and public outreach activities.

    On the day after the signature ceremony the two Directors General and accompanying staff visited the VLT and other facilities at ESO’s Paranal Observatory.

    ESO VLT Interferometer
    VLT

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 5:33 pm on August 20, 2015 Permalink | Reply
    Tags: 2016 ESO Calendar, ESO - European Southern Observatory   

    From ESO: “ESO Calendar 2016 Now Available” 


    European Southern Observatory

    1

    Price 9.99 €
    at the ESOshop

    This is a beautiful wall hanging calendar with stunning astronomical views. YHou owe it to yourself to obtain one.

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT Interferometer
    VLT

    ESO Vista Telescope
    VISTA

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: