Tagged: ESO – European Southern Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:52 pm on October 20, 2016 Permalink | Reply
    Tags: Alpha Centauri A, , , , ESO - European Southern Observatory, Gravitational lensing event, The Future of Alpha Centauri   

    From ESO: “The Future of Alpha Centauri” 

    ESO 50 Large

    European Southern Observatory

    20 October 2016
    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Pierre Kervella
    Departamento de Astronomía, Universidad de Chile
    Camino El Observatorio 1515
    Las Condes
    Santiago, Chile
    Email: pkervell@das.uchile.cl

    Frédéric Thévenin
    Observatoire de la Côte d’Azur
    Boulevard de l’Observatoire
    Nice, France
    Email: Frederic.Thevenin@oca.eu
    Tel: +33 4 92 00 30 26

    A rare opportunity for planet hunting in Alpha Centauri A predicted for 2028

    1

    A very rare gravitational lensing event, set to occur in 2028, has been predicted by a team of French astronomers led by Pierre Kervella of the CNRS/Universidad de Chile. It will provide an ideal opportunity to look for evidence of a planet around a nearby star.

    Using both new and archive data obtained with a range of ESO telescopes [1], the team has predicted the trajectories of the fast-moving stellar duo known as the Alpha Centauri A and B, with negligible error. That has allowed them to predict every close alignment until 2050 between the Alpha Centauri pair and the stars which lie close to them on the sky — but which are in fact a great deal further away in space [2].

    Whilst it is satisfying to see into the future with such impressive accuracy, that is not the real prize in these results; they provide a unique opportunity for planet hunting in the Alpha Centauri system, by allowing us to search for secondary gravitational lensing events. Gravitational lensing occurs because a massive object, such as a star, warps the very fabric of the space around it. Light — coming from a distant object — that passes close to the star on its way to us follows a curved path through the warped space. The nearer star acts like a lens, bending the light from the distant object. In the most impressive cases, this can generate an Einstein ring, a circle of light around the foreground star. Because the amount of mass in this nearby star determines exactly how the light deflection occurs, deviations from the expected gravitational lensing effect can be used to determine the presence, and the masses, of planets.

    One of the most exciting alignments predicted by this study is between the more massive star in the Alpha Centauri pair, named Alpha Centauri A, and a distant background star — probably a red giant — nicknamed S5. In May 2028, there is a strong chance that the light from S5 will create an Einstein ring around Alpha Centauri A, observable with ESO’s telescopes [3]. This would provide a unique opportunity to look for planetary or low-mass objects in our nearest star system. This is particularly exciting in the light of the recent discovery of the planet Proxima b, which orbits the third star in the same star system, known as Proxima Centauri.

    Notes

    [1] Because of the vast distances involved, measuring the true motions of most stars is extremely difficult and requires incredibly precise measurements and extensive observations. The team of astronomers used data collected in 2007 from the New Technology Telescope (NTT) and new observations from the NACO instrument on the Very Large Telescope (VLT). This was complemented with data from the Atacama Large Millimeter/submillimeter Array (ALMA) to obtain high-precision measurement of the relative positions of Alpha Centauri A and B.

    [2] Because of the Alpha Centauri system’s proximity to the plane of the Milky Way, the distant star field is very densely populated; this gave the team a good chance of finding a background star which would almost perfectly align with one of the Alpha Centauri binary pair.

    [3] The event will be observable by the GRAVITY instrument on the Very Large Telescope Interferometer (VLTI), Atacama Large Millimeter/submillimeter Array (ALMA), and the forthcoming European-Extremely Large Telescope (E-ELT), providing a good chance of ascertaining the mass of any planet to a high degree of accuracy.

    ALMA, an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile.

    More Information

    This research was presented in a paper to appear on 19 October 2016 in the journal Astronomy and Astrophysics (Kervella et al. 2016, A&A, 594, A107)

    The team is composed of: P. Kervella, CNRS UMI 3386, University of Chile and LESIA, Paris Observatory; F. Mignard, Côte d’Azur Observatory, France; A. Mérand, ESO; and F. Thévenin, Côte d’Azur Observatory, France.

    Links

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 7:25 am on October 12, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, , The Milky Way’s Ancient Heart, VISTA telescope   

    From ESO: “The Milky Way’s Ancient Heart” 

    ESO 50 Large

    European Southern Observatory

    12 October 2016
    Dante Minniti
    Universidad Andrés Bello
    Santiago, Chile
    Email: dante@astrofisica.cl

    Rodrigo Contreras Ramos
    Instituto Milenio de Astrofísica
    Santiago, Chile
    Email: rcontrer@astro.puc.cl

    Mathias Jäger
    Public Information Officer
    Garching bei München, Germany
    Cell: +49 176 62397500
    Email: mjaeger@partner.eso.org

    1
    Ancient stars, of a type known as RR Lyrae, have been discovered in the centre of the Milky Way for the first time, using ESO’s infrared VISTA telescope. RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old. Their discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. These stars may even be the remains of the most massive and oldest surviving star cluster of the entire Milky Way.

    A team led by Dante Minniti (Universidad Andrés Bello, Santiago, Chile) and Rodrigo Contreras Ramos (Instituto Milenio de Astrofísica, Santiago, Chile) used observations from the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, to carefully search the central part of the Milky Way. By observing infrared light, which is less affected by cosmic dust than visible light, and exploiting the excellent conditions at ESO’s Paranal Observatory, the team was able to get a clearer view of this region than ever before. They found a dozen ancient RR Lyrae stars at the heart of the Milky Way that were previously unknown.

    Our Milky Way has a densely populated centre — a feature common to many galaxies, but unique in that it is close enough to study in depth. This discovery of RR Lyrae stars provides compelling evidence that helps astronomers decide between two main competing theories for how these bulges form.

    RR Lyrae stars are typically found in dense globular clusters. They are variable stars, and the brightness of each RR Lyrae star fluctuates regularly. By observing the length of each cycle of brightening and dimming in an RR Lyrae, and also measuring the star’s brightness, astronomers can calculate its distance [1].

    Unfortunately, these excellent distance-indicator stars are frequently outshone by younger, brighter stars and in some regions they are hidden by dust. Therefore, locating RR Lyrae stars right in the extremely crowded heart of the Milky Way was not possible until the public VVV survey was carried out using infrared light. Even so, the team described the task of locating the RR Lyrae stars in amongst the crowded throng of brighter stars as “daunting”.

    Their hard work was rewarded, however, with the identification of a dozen RR Lyrae stars. Their discovery indicate that remnants of ancient globular clusters are scattered within the centre of the Milky Way’s bulge.

    Rodrigo Contreras Ramos elaborates: “This discovery of RR Lyrae Stars in the centre of the Milky Way has important implications for the formation of galactic nuclei. The evidence supports the scenario in which the bulge was originally made out of a few globular clusters that merged.”

    The theory that galactic bulges form through the merging of globular clusters is contested by the competing hypothesis that these bulges are actually due to the rapid accretion of gas. The unearthing of these RR Lyrae stars — almost always found in globular clusters — is very strong evidence that the Milky Way bulge did in fact form through merging. By extension, all other similar galactic bulges may have formed the same way.

    Not only are these stars powerful evidence for an important theory of galactic evolution, they are also likely to be over 10 billion years old — the dim, but dogged survivors of perhaps the oldest and most massive star cluster within the Milky Way.
    Notes

    [1] RR Lyrae stars, like some other regular variables such as Cepheids, show a simple relationship between how quickly they change in brightness and how luminous they are. Longer periods mean brighter stars. This period-luminosity relationship can be used to deduce the distance of a star from its period of variation and its apparent brightness.
    More information

    This research was presented in a paper to appear in The Astrophysical Journal Letters.

    The team is composed of D. Minniti (Instituto Milenio de Astrofísica, Santiago, Chile; Departamento de Física, Universidad Andrés Bello, Santiago, Chile; Vatican Observatory, Vatican City State; Centro de Astrofisica y Tecnologias Afines – CATA), R. Contreras Ramos (Instituto Milenio de Astrofísica, Santiago, Chile; Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Santiago, Chile), M. Zoccali (Instituto Milenio de Astrofísica, Santiago, Chile; Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Santiago, Chile), M. Rejkuba (European Southern Observatory, Garching bei München, Germany; Excellence Cluster Universe, Garching, Germany), O.A. Gonzalez (UK Astronomy Technology Centre, Royal Observatory, Edinburgh, UK), E. Valenti (European Southern Observatory, Garching bei München, Germany), F. Gran (Instituto Milenio de Astrofísica, Santiago, Chile; Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Santiago, Chile)

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 9:55 am on October 5, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, Messier 78   

    From ESO: “ESO’s Dustbuster Reveals Hidden Stars” 

    ESO 50 Large

    European Southern Observatory

    5 October 2016
    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    In this new image of the nebula Messier 78, young stars cast a bluish pall over their surroundings, while red fledgling stars peer out from their cocoons of cosmic dust. To our eyes, most of these stars would be hidden behind the dust, but ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) sees near-infrared light, which passes right through dust. The telescope is like a giant dustbuster that lets astronomers probe deep into the heart of the stellar environment.

    Messier 78, or M78, is a well-studied example of a reflection nebula. It is located approximately 1600 light-years away in the constellation of Orion (The Hunter), just to the upper left of the three stars that make up the belt of this familiar landmark in the sky.

    Orion Nebula M. Robberto NASA ESA Space Telescope Science Institute Hubble
    Orion Nebula M. Robberto NASA ESA Space Telescope Science Institute Hubble

    In this image, Messier 78 is the central, bluish haze in the centre; the other reflection nebula towards the right goes by the name of NGC 2071. The French astronomer Pierre Méchain is credited with discovering Messier 78 in 1780. However, it is today more commonly known as the 78th entry in French astronomer Charles Messier’s catalogue, added to it in December of 1780.

    When observed with visible light instruments, like ESO’s Wide Field Imager at the La Silla Observatory, Messier 78 appears as a glowing, azure expanse surrounded by dark ribbons (see eso1105).

    ESO WFI LaSilla 2.2-m MPG/ESO telescope at La Silla
    ESO WFI LaSilla 2.2-m MPG/ESO telescope at La Silla

    Cosmic dust reflects and scatters the light streaming from the young, bluish stars in Messier 78’s heart, the reason it is known as a reflection nebula.

    The dark ribbons are thick clouds of dust that block the visible light originating behind them. These dense, cold regions are prime locations for the formation of new stars. When Messier 78 and its neighbours are observed in the submillimetre light between radio waves and infrared light, for example with the Atacama Pathfinder Experiment (APEX) telescope, they reveal the glow of dust grains in pockets just barely warmer than their extremely cold surroundings (see eso1219). Eventually new stars will form out of these pockets as gravity causes them to shrink and heat up.

    In between visible and submillimetre light lies the near-infrared part of the spectrum, where the Visible and Infrared Survey Telescope for Astronomy (VISTA) provides astronomers with crucial information. Beyond dusty reflections and through thinner portions of obscuring material, the luminous stellar sources within Messier 78 are visible to VISTA’s eyes. In the centre of this image, two blue supergiant stars, called HD 38563A and HD 38563B, shine brightly. Towards the right of the image, the supergiant star illuminating NGC 2071, called HD 290861, is also seen.

    Besides big, blue, hot stars, VISTA can also see many stars that are just forming within the cosmic dust strewn about this region, their reddish and yellow colours shown clearly in this image. These colourful fledgling stars can be found in the dust bands around NGC 2071 and along the trail of dust running towards the left of the image. Some of these are T Tauri stars. Although relatively bright, they are not yet hot enough for nuclear fusion reactions to have commenced in their cores. In several tens of millions of years, they will attain full “starhood”, and will take their place alongside their stellar brethren lighting up the Messier 78 region.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 11:11 am on September 19, 2016 Permalink | Reply
    Tags: Anything But Black, , , ESO - European Southern Observatory   

    From ESO: “Anything But Black” 

    ESO 50 Large

    European Southern Observatory

    1
    Credit: Y. Beletsky (LCO)/ESO

    ESO’s various observatory sites in Chile — Paranal, La Silla, Chajnantor — boast enviably low levels of light pollution. However, the skies overhead are rarely pitch-black!

    As shown in this image of Paranal Observatory, the skies regularly display a myriad of colours and astronomical sights, from the plane of the Milky Way shining brightly overhead to the orange-hued speck of Mars (left), the starry constellations of Scorpius and Orion, and the magenta splash of the Carina Nebula (upper middle). Despite the remote location there are also occasional signs of human activity, for example the sequence of lamps seen in the centre of the frame. These faint lights illuminate the route from the Very Large Telescope (VLT) to the Visible and Infrared Survey Telescope for Astronomy (VISTA) where this image was taken.

    Due to the highly sensitive camera this photograph also showcases a mysterious phenomenon called airglow. The night sky is ablaze with deep red and eerie green hues, caused by the faint glow of Earth’s atmosphere. Because of airglow, no observatory site on Earth could ever be absolutely, completely dark — although ESO’s do come pretty close.

    This image was taken by talented astronomer and photographer Yuri Beletsky, a member of the 2016 ESO Fulldome Expedition team. This team visited Chile to gather spectacular images for use in the ESO Supernova Planetarium & Visitor Centre.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 2:32 pm on September 7, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, The Messenger   

    For ESO: The Joy of “The Messenger” 

    ESO 50 Large

    European Southern Observatory

    I was thrilled and delighted to see that my latest edition of The Messenger had arrived in my mail box from ESO.

    1
    Price €1.99.

    If you are as excited about Astronomy as I am, I urge you to visit ESOshop to get your copy.

    The Messenger is Available for free for educators and media.

    If you are not an educator or in the media, €1.99 is a really small price to pay for all of the knowledge and experience that ESO provides.

    In the current issue:

    Adaptive Optics Facility Status Report: When First Light Is Produced Rather Than Captured
    Solar Activity-driven Variability of Instrument Data Quality
    A Stellar Census in NGC 6397 with MUSE
    First Results from the XXL Survey and Associated Multi-wavelength Programmes
    ALMACAL: Exploiting ALMA Calibrator Scans to Carry Out a Deep and Wide (Sub)millimetre Survey,Free of Cosmic Variance
    Light Phenomena over the ESO Observatories III: Zodiacal Light

    You may also download The Messenger in .pdf here .

    Or visit The Messenger website to subscribe and receive a free printed copy.

    ESO does the best job of any organization in Astronomy in letting the public in on what is happening. Optical Astronomy has a lot to offer still in the current scheme of things which includes Radio Astronomy and space based telescopes. It takes the optics and resolving power of optical telescopes to either get the whole story or put the finishing touches on news finds made with other means.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 1:16 pm on August 24, 2016 Permalink | Reply
    Tags: ESO - European Southern Observatory, , ESOCast 87 video   

    From ESO: “ESOcast 87: Pale Red Dot Results” Video 

    ESO 50 Large

    European Southern Observatory

    Aug 24, 2016


    Watch, enjoy, learn.

    This is the ESOcast that no viewer will want to miss. We discuss the result of the quest to find a planet around the closest star to the Solar System.

    The Pale Red Dot campaign aimed to find a planet orbiting our nearest stellar neighbour, Proxima Centauri. Incredibly, the quest succeeded and the team did indeed find a planet. Even more excitingly, the planet, Proxima b, falls within the habitable zone of its host star. The newly discovered Proxima b is by far the closest potential abode for alien life.

    In this ESOcast, the results of this groundbreaking research are explained in detail, providing insights into the following points:

    • The extensive verification process the team went through to ensure this result was accurate.
    • The factors for and against the possibility of life on Proxima b.
    • The nature of a “habitable zone” around a star.

    The discovery of Proxima b is a major science result, making this ESOcast a must for those of you curious about one of the most intriguing questions in astronomy — “are we alone?”

    More information and download options: http://www.eso.org/public/videos/eso1…

    Subscribe to ESOcast in iTunes! https://itunes.apple.com/podcast/esoc…

    Receive future episodes on YouTube by pressing the Subscribe button above or follow us on Vimeo: https://vimeo.com/esoastronomy

    Watch more ESOcast episodes: http://www.eso.org/public/videos/arch…

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 12:53 pm on August 24, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, , ,   

    From ESO: “Planet Found in Habitable Zone Around Nearest Star” 

    ESO 50 Large

    European Southern Observatory

    24 August 2016
    Guillem Anglada-Escudé (Lead Scientist)
    Queen Mary University of London
    London, United Kingdom
    Tel: +44 (0)20 7882 3002
    Email: g.anglada@qmul.ac.uk

    Pedro J. Amado (Scientist)
    Instituto de Astrofísica de Andalucía – Consejo Superior de Investigaciones Cientificas (IAA/CSIC)
    Granada, Spain
    Tel: +34 958 23 06 39
    Email: pja@iaa.csic.es

    Ansgar Reiners (Scientist)
    Institut für Astrophysik, Universität Göttingen
    Göttingen, Germany
    Tel: +49 551 3913825
    Email: ansgar.reiners@phys.uni-goettingen.de

    James S. Jenkins (Scientist)
    Departamento de Astronomia, Universidad de Chile
    Santiago, Chile
    Tel: +56 (2) 2 977 1125
    Email: jjenkins@das.uchile.cl

    Michael Endl (Scientist)
    McDonald Observatory, The University of Texas at Austin
    Austin, Texas, USA
    Tel: +1 512 471 8312
    Email: mike@astro.as.utexas.edu

    Richard Hook (Coordinating Public Information Officer)
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: proxima@eso.org

    Martin Archer (Public Information Officer)
    Queen Mary University of London
    London, United Kingdom
    Tel: +44 (0) 20 7882 6963
    Email: m.archer@qmul.ac.uk

    Silbia López de Lacalle (Public Information Officer)
    Instituto de Astrofísica de Andalucía
    Granada, Spain
    Tel: +34 958 23 05 32
    Email: silbialo@iaa.es

    Romas Bielke (Public Information Officer)
    Georg August Universität Göttingen
    Göttingen, Germany
    Tel: +49 551 39-12172
    Email: Romas.Bielke@zvw.uni-goettingen.de

    Natasha Metzler (Public Information Officer)
    Carnegie Institution for Science
    Washington DC, USA
    Tel: +1 (202) 939 1142
    Email: nmetzler@carnegiescience.edu

    David Azocar (Public Information Officer)
    Departamento de Astronomia, Universidad de Chile
    Santiago, Chile
    Email: dazocar@das.uchile.cl

    Rebecca Johnson (Public Information Officer)
    McDonald Observatory, The University of Texas at Austin
    Austin, Texas, USA
    Tel: +1 512 475 6763
    Email: rjohnson@astro.as.utexas.edu

    Hugh Jones (Scientist)
    University of Hertfordshire
    Hatfield, United Kingdom
    Tel: +44 (0)1707 284426
    Email: h.r.a.jones@herts.ac.uk

    Jordan Kenny (Public Information Officer)
    University of Hertfordshire
    Hatfield, United Kingdom
    Tel: +44 1707 286476
    Cell: +44 7730318371
    Email: j.kenny@herts.ac.uk

    Yiannis Tsapras (Scientist)
    Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg
    Heidelberg, Germany
    Tel: +49 6221 54-181
    Email: ytsapras@ari.uni-heidelberg.de

    1

    Pale Red Dot campaign reveals Earth-mass world in orbit around Proxima Centauri

    Pale Red Dot

    Astronomers using ESO telescopes and other facilities have found clear evidence of a planet orbiting the closest star to Earth, Proxima Centauri.

    The long-sought world, designated Proxima b, orbits its cool red parent star every 11 days and has a temperature suitable for liquid water to exist on its surface. This rocky world is a little more massive than the Earth and is the closest exoplanet to us — and it may also be the closest possible abode for life outside the Solar System. A paper describing this milestone finding will be published in the journal Nature on 25 August 2016.

    Just over four light-years from the Solar System lies a red dwarf star that has been named Proxima Centauri as it is the closest star to Earth apart from the Sun. This cool star in the constellation of Centaurus is too faint to be seen with the unaided eye and lies near to the much brighter pair of stars known as Alpha Centauri AB.

    During the first half of 2016 Proxima Centauri was regularly observed with the HARPS spectrograph on the ESO 3.6-metre telescope at La Silla in Chile and simultaneously monitored by other telescopes around the world [1]. This was the Pale Red Dot campaign, in which a team of astronomers led by Guillem Anglada-Escudé, from Queen Mary University of London, was looking for the tiny back and forth wobble of the star that would be caused by the gravitational pull of a possible orbiting planet [2].

    As this was a topic with very wide public interest, the progress of the campaign between mid-January and April 2016 was shared publicly as it happened on the Pale Red Dot website and via social media. The reports were accompanied by numerous outreach articles written by specialists around the world.

    Guillem Anglada-Escudé explains the background to this unique search: “The first hints of a possible planet were spotted back in 2013, but the detection was not convincing. Since then we have worked hard to get further observations off the ground with help from ESO and others. The recent Pale Red Dot campaign has been about two years in the planning.”

    The Pale Red Dot data, when combined with earlier observations made at ESO observatories and elsewhere, revealed the clear signal of a truly exciting result. At times Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance [3].

    Guillem Anglada-Escudé comments on the excitement of the last few months: “I kept checking the consistency of the signal every single day during the 60 nights of the Pale Red Dot campaign. The first 10 were promising, the first 20 were consistent with expectations, and at 30 days the result was pretty much definitive, so we started drafting the paper!”

    Red dwarfs like Proxima Centauri are active stars and can vary in ways that would mimic the presence of a planet. To exclude this possibility the team also monitored the changing brightness of the star very carefully during the campaign using the ASH2 telescope at the San Pedro de Atacama Celestial Explorations Observatory in Chile and the Las Cumbres Observatory telescope network. Radial velocity data taken when the star was flaring were excluded from the final analysis.

    2
    ASH2 telescope at the San Pedro de Atacama Celestial Explorations Observatory in Chile

    LCOGT Las Cumbres Observatory Global Telescope Network, Haleakala Hawaii, USA
    LCOGT Las Cumbres Observatory Global Telescope Network, Haleakala Hawaii, USA

    Although Proxima b orbits much closer to its star than Mercury does to the Sun in the Solar System, the star itself is far fainter than the Sun. As a result Proxima b lies well within the habitable zone around the star and has an estimated surface temperature that would allow the presence of liquid water. Despite the temperate orbit of Proxima b, the conditions on the surface may be strongly affected by the ultraviolet and X-ray flares from the star — far more intense than the Earth experiences from the Sun [4].

    Two separate papers discuss the habitability of Proxima b and its climate. They find that the existence of liquid water on the planet today cannot be ruled out and, in such case, it may be present over the surface of the planet only in the sunniest regions, either in an area in the hemisphere of the planet facing the star (synchronous rotation) or in a tropical belt (3:2 resonance rotation). Proxima b’s rotation, the strong radiation from its star and the formation history of the planet makes its climate quite different from that of the Earth, and it is unlikely that Proxima b has seasons.

    This discovery will be the beginning of extensive further observations, both with current instruments [5] and with the next generation of giant telescopes such as the European Extremely Large Telescope (E-ELT). Proxima b will be a prime target for the hunt for evidence of life elsewhere in the Universe. Indeed, the Alpha Centauri system is also the target of humankind’s first attempt to travel to another star system, the StarShot project.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker
    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Guillem Anglada-Escudé concludes: “Many exoplanets have been found and many more will be found, but searching for the closest potential Earth-analogue and succeeding has been the experience of a lifetime for all of us. Many people’s stories and efforts have converged on this discovery. The result is also a tribute to all of them. The search for life on Proxima b comes next…”

    Note: We are aware that there have been rumours regarding this discovery. These rumours have never been confirmed and have not contained any research content. Whilst the rumours are in the public domain and can be reported, the information in this release, the paper itself and the associated visuals have been provided on an embargoed basis and therefore remain strictly under embargo until 19:00 CEST on 24 August 2016. We would be grateful if any questions or concerns are addressed to us before any action is taken. We thank you for your consideration in this matter.
    Notes

    [1] Besides data from the recent Pale Red Dot campaign, the paper incorporates contributions from scientists who have been observing Proxima Centauri for many years. These include members of the original UVES/ESO M-dwarf programme (Martin Kürster and Michael Endl), and exoplanet search pioneers such as R. Paul Butler. Public observations from the HARPS/Geneva team obtained over many years were also included.

    [2] The name Pale Red Dot reflects Carl Sagan’s famous reference to the Earth as a pale blue dot. As Proxima Centauri is a red dwarf star it will bathe its orbiting planet in a pale red glow.

    [3] The detection reported today has been technically possible for the last 10 years. In fact, signals with smaller amplitudes have been detected previously. However, stars are not smooth balls of gas and Proxima Centauri is an active star. The robust detection of Proxima b has only been possible after reaching a detailed understanding of how the star changes on timescales from minutes to a decade, and monitoring its brightness with photometric telescopes.

    [4] The actual suitability of this kind of planet to support water and Earth-like life is a matter of intense but mostly theoretical debate. Major concerns that count against the presence of life are related to the closeness of the star. For example gravitational forces probably lock the same side of the planet in perpetual daylight, while the other side is in perpetual night. The planet’s atmosphere might also slowly be evaporating or have more complex chemistry than Earth’s due to stronger ultraviolet and X-ray radiation, especially during the first billion years of the star’s life. However, none of the arguments has been proven conclusively and they are unlikely to be settled without direct observational evidence and characterisation of the planet’s atmosphere. Similar factors apply to the planets recently found around TRAPPIST-1.

    [5] Some methods to study a planet’s atmosphere depend on it passing in front of its star and the starlight passing through the atmosphere on its way to Earth. Currently there is no evidence that Proxima b transits across the disc of its parent star, and the chances of this happening seem small, but further observations to check this possibility are in progress.

    More information

    The team is composed of Guillem Anglada-Escudé (Queen Mary University of London, London, UK), Pedro J. Amado (Instituto de Astrofísica de Andalucía – CSIC, Granada, Spain), John Barnes (Open University, Milton Keynes, UK), Zaira M. Berdiñas (Instituto de Astrofísica de Andalucia – CSIC, Granada, Spain), R. Paul Butler (Carnegie Institution of Washington, Department of Terrestrial Magnetism, Washington, USA), Gavin A. L. Coleman (Queen Mary University of London, London, UK), Ignacio de la Cueva (Astroimagen, Ibiza, Spain), Stefan Dreizler (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany), Michael Endl (The University of Texas at Austin and McDonald Observatory, Austin, Texas, USA), Benjamin Giesers (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany), Sandra V. Jeffers (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany), James S. Jenkins (Universidad de Chile, Santiago, Chile), Hugh R. A. Jones (University of Hertfordshire, Hatfield, UK), Marcin Kiraga (Warsaw University Observatory, Warsaw, Poland), Martin Kürster (Max-Planck-Institut für Astronomie, Heidelberg, Germany), María J. López-González (Instituto de Astrofísica de Andalucía – CSIC, Granada, Spain), Christopher J. Marvin (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany), Nicolás Morales (Instituto de Astrofísica de Andalucía – CSIC, Granada, Spain), Julien Morin (Laboratoire Univers et Particules de Montpellier, Université de Montpellier & CNRS, Montpellier, France), Richard P. Nelson (Queen Mary University of London, London, UK), José L. Ortiz (Instituto de Astrofísica de Andalucía – CSIC, Granada, Spain), Aviv Ofir (Weizmann Institute of Science, Rehovot, Israel), Sijme-Jan Paardekooper (Queen Mary University of London, London, UK), Ansgar Reiners (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany), Eloy Rodriguez (Instituto de Astrofísica de Andalucía – CSIC, Granada, Spain), Cristina Rodriguez-Lopez (Instituto de Astrofísica de Andalucía – CSIC, Granada, Spain), Luis F. Sarmiento (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany), John P. Strachan (Queen Mary University of London, London, UK), Yiannis Tsapras (Astronomisches Rechen-Institut, Heidelberg, Germany), Mikko Tuomi (University of Hertfordshire, Hatfield, UK) and Mathias Zechmeister (Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany).

    Links

    Research paper in Nature
    Two new papers on Habitability on Proxima b

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 6:50 am on August 10, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, Messier 18   

    From ESO: “Stellar Lab in Sagittarius” 

    ESO 50 Large

    European Southern Observatory

    10 August 2016
    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    rhook@eso.org

    1
    The small smattering of bright blue stars in the upper left of this vast new 615 megapixel ESO image is the perfect cosmic laboratory in which to study the life and death of stars. Known as Messier 18 this star cluster contains stars that formed together from the same massive cloud of gas and dust. This image, which also features red clouds of glowing hydrogen and dark filaments of dust, was captured by the VLT Survey Telescope (VST) located at ESO’s Paranal Observatory in Chile.

    Messier 18 was discovered and catalogued in 1764 by Charles Messier — for whom the Messier Objects are named — during his search for comet-like objects [1]. It lies within the Milky Way, approximately 4600 light-years away in the constellation of Sagittarius, and consists of many sibling stars loosely bound together in what is known as an open cluster.

    There are over 1000 known open star clusters within the Milky Way, with a wide range of properties, such as size and age, that provide astronomers with clues to how stars form, evolve and die. The main appeal of these clusters is that all of their stars are born together out of the same material.

    In Messier 18 the blue and white colours of the stellar population indicate that the cluster’s stars are very young, probably only around 30 million years old. Being siblings means that any differences between the stars will only be due to their masses, and not their distance from Earth or the composition of the material they formed from. This makes clusters very useful in refining theories of star formation and evolution.

    Astronomers now know that most stars do form in groups, forged from the same cloud of gas that collapsed in on itself due to the attractive force of gravity. The cloud of leftover gas and dust — or molecular cloud — that envelops the new stars is often blown away by their strong stellar winds, weakening the gravitational shackles that bind them. Over time, loosely bound stellar siblings like those pictured here will often go their separate ways as interactions with other neighbouring stars or massive gas clouds nudge, or pull, the stars apart. Our own star, the Sun, was most likely once part of a cluster very much like Messier 18 until its companions were gradually distributed across the Milky Way.

    The dark lanes that snake through this image are murky filaments of cosmic dust, blocking out the light from distant stars. The contrasting faint reddish clouds that seem to weave between the stars are composed of ionised hydrogen gas. The gas glows because young, extremely hot stars like these are emitting intense ultraviolet light which strips the surrounding gas of its electrons and causes it to emit the faint glow seen in this image. Given the right conditions, this material could one day collapse in on itself and provide the Milky Way with yet another brood of stars — a star formation process that may continue indefinitely (eso1535).

    This mammoth 30 577 x 20 108 pixel image was captured using the OmegaCAM camera, which is attached to the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile.

    ESO Omegacam on VST at ESO's Cerro Paranal observatory
    ESO Omegacam on VST at ESO’s Cerro Paranal observatory

    Notes

    [1] Messier 18 is also listed in the New General Catalogue as NGC 6613.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 11:56 am on July 9, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, SPHERE   

    From ESO: “SPHERE” 

    ESO 50 Large

    European Southern Observatory

    Spectro-Polarimetric High-contrast Exoplanet REsearch instrument

    First light 4 May 2014 [eso1417]
    Jean-Luc Beuzit
    Institut de Planétologie et d’Astrophysique de Grenoble
    Grenoble, France
    Tel: +33 4 76 63 55 20
    Cell: +33 6 87 39 62 85
    Email: Jean-Luc.Beuzit@obs.ujf-grenoble.fr

    Markus Feldt
    Max-Planck-Institut für Astronomie
    Heidelberg, Germany
    Tel: +49 6221 528 262
    Email: mfeldt@mpia.de

    Markus Kasper
    ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6359
    Email: mkasper@eso.org

    Norbert Hubin
    ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6517
    Email: nhubin@eso.org

    Richard Hook
    ESO education and Public Outreach Department
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1

    One of the most challenging and exciting areas of astronomy is the subject of ongoing research at ESO’s Paranal Observatory: the search for exoplanets — new worlds orbiting other stars. To help in this task, an instrument was carefully planned and, after years of studies and construction, installed on Unit Telescope 3 of the Very Large Telescope (VLT): SPHERE or the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument.

    SPHERE is a powerful planet finder and its objective is to detect and study new giant exoplanets orbiting nearby stars using a method known as direct imaging — in other words, SPHERE is trying to capture images of the exoplanets directly, as though it were taking their photograph. SPHERE can also obtain images of discs of dust and debris around other stars, where planets may be forming. In either case, direct imaging is extremely hard to do.

    More than a thousand exoplanets have been discovered since the 1990s, but only a very few have been detected directly. For example, HARPS, another successful planet finder, uses indirect techniques to find planets by determining radial velocity variations.

    One major obstacle to directly imaging a distant exoplanet is that the light of any star is so powerful from our point of view that something close to it, like a planet orbiting the star, is swamped by the starlight. SPHERE blocks out the central region of the star to reduce its contribution — this type of instrument is called a coronagraph, and is used (as the name suggests!) to study the outer layers of the Sun. But have you ever tried to block the sunlight with your thumb? If you have, then you will probably have noticed a blinding ring of light around your shadowed finger.

    SPHERE is designed to exploit a clever way of suppressing the stellar light contribution. It turns out that the light emitted naturally by stars (including the Sun) is unpolarised, meaning that the electromagnetic waves oscillate randomly in different directions. But when light is reflected by a surface (such as a planet or a dusty disc), the reflected waves are partially polarised, which means that they now oscillate in a well-defined plane. Polarised sunglasses exploit this property: they block the polarised light reflected from the surfaces around us, yielding a crystal-clear view with high contrast and much reduced glare. But SPHERE is looking to pick out the polarised signal — and it’s also possible to isolate this using special filters. “The polarimetric differential imaging mode of SPHERE works on this principle: the light emitted by the central star is unpolarised, but the light scattered by the dusty disc is polarised, so we can use this difference to isolate one from the other and get a very sharp view of the disc itself,” says Juan Carlos Muñoz, ESO astronomer at the VLT.

    So there are three important stages in extracting the direct image of a planet. First, a state-of-the-art adaptive optics system has been incorporated into the instrument to correct for the turbulent effects of the Earth’s atmosphere with the aim of delivering images as sharp as if the telescope were floating in space. Secondly, a coronagraph is used to block out the light from the star itself and increase the contrast still further. Finally, a technique called differential imaging is applied that exploits differences (the filters) between planetary and stellar light in terms of colour or polarisation. The light from the star is blocked out, leaving only the planet — although in practice the process is not so straightforward as this overview suggests!

    The instrument is equipped with 3 subsystems:

    ZIMPOL is a special purpose camera, that can both make very sharp images and measure polarisation in visible light and the near infrared (from 600 to 900 nanometres). Its role is to detect the reflected polarised light of gaseous planets orbiting very close to their host stars, and detect the scattered light from the dusty discs around young stars. It uses a unique trick to detect very faint objects around very bright stars.

    3
    Layout of the SPHERE Common Path Infrastructure

    IRDIS is a camera working at near-infrared wavelengths, from 900nm to 2.3 microns, whose main goal is to image young self-luminous giant planets thanks to advanced observational strategies based on a technique called differential imaging.

    5
    Inside the IFS. Note that the IFS optical bench is not cold, and that it has its own Lyot stop and internal calibration sources.

    IFS is a near-infrared integral field spectrograph that can work simultaneously with IRDIS to provide a spectrum at each given location of the field of view. This enables astronomers to characterise the composition of the atmosphere of giant planets.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 1:02 pm on July 8, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory, Search announced to fill vacancy when Tim de Zeeuw's second 5-year term as Director General ends   

    From ESO: “ESO Council Launches Search for Next Director General” 

    ESO 50 Large

    European Southern Observatory

    1 July 2016
    ESO Council President
    Patrick Roche
    University of Oxford
    Department of Physics
    Denys Wilkinson Building
    Keble Road
    Oxford OX1 3RH, United Kingdom
    Tel: +44 1865 273338
    Email: ESOPresident@physics.ox.ac.uk

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    [This is going to be interesting.]

    1
    Prof. Tim de Zeeuw visiting Paranal Observatory

    The current ESO Director General, Tim de Zeeuw, will complete his second 5-year term as Director General at the end of August 2017. The ESO Council has decided to establish a search committee to help in the selection of the next Director General.

    Tim de Zeeuw has led ESO during a period of outstanding scientific, technical and organisational success. He has overseen ESO’s contributions to the completion of the Atacama Large Millimeter/submillimeter Array (ALMA) Observatory, the selection and acquisition of the site and the approval and start of construction of the European Extremely Large Telescope (E-ELT) together with its first light instruments, the continuing operation and development of the La Silla and Paranal observatories including the Atacama Pathfinder Experiment telescope (APEX) telescope, the completion of the second generation Very Large Telescope array (VLT) instruments, and the completion of the extension of the Headquarters building in Garching and the donation of the ESO Supernova Planetarium & Visitor Centre. The rich scientific harvest from these activities has led to ESO’s position as the world’s most productive astronomical observatory. Council wishes to build on this record of success by appointing an outstanding Director General via an open international search.

    Under the current Director General, the number of Member States has increased to fifteen and a number of other countries are presently at different levels of engagement regarding potential membership. The ESO Council also agreed to gradually increase the Member State contributions over a decade to provide the funding for construction and operations of the E-ELT, whilst supporting continuing exploitation and development of ESO’s La Silla, Paranal, and ALMA facilities. As ESO has grown, it has been restructured to manage these activities.

    The main tasks for the Director General are to manage the ESO programme, and to work with Council to develop and implement the strategies they define, to maintain ESO’s leadership and excellence in astronomical science and oversee the construction of the E-ELT, whilst maintaining the world-leading productivity of the other facilities.

    The ESO Council has approved the construction of the first phase of the E-ELT, and a major role for the Director General will be to keep the E-ELT on track for first light in 2024 and bring it towards full operations. Completion of the full E-ELT capabilities will require additional funds, and the Director General will need to work with Council to secure them and develop a strategy for further developments. This will require balancing ESO’s investments in the most important programmes and projects within strict budgetary constraints.

    The Director General should meet the following requirements:

    Representing ESO with the ambition of leadership in astronomical research: The Director General should have internationally recognised scientific excellence in astronomical research and must be able to project a long-term strategic view of the science to a wide audience. The Director General must be enthusiastic, energetic and committed with excellent communication and leadership skills.
    ESO’s internal management requirements: The Director General should have the ability to lead, direct and manage a team of senior staff in order to execute and implement three large programmes in very different settings (La Silla – Paranal operations, upgrades and evolution, ALMA operations and development in cooperation with ESO’s partners in North America and East Asia, and E-ELT construction, planning and development). They must maintain close links between the different ESO sites and ensure effective deployment and usage of resources. The Director General must ensure a positive work environment with a structure that ensures a highly motivated, responsive and productive staff.
    The need to define ESO’s role in global astronomical research: The Director General should be able to work with the ESO Council in the development and evolution of ESO’s strategy, in developing ESO further as the organisation for astronomical collaboration in the global arena, and in defining the route to full implementation of the E-ELT. The Director General is responsible for implementing the strategy agreed by ESO Council.
    ESO’s international relations requirements: The Director General should understand the political dimension of ESO and be able to maintain and develop good relationships with international partners, both inside and outside Europe; the scientific user community, astronomical expert institutes, international scientific bodies and agencies, governments and the European Union. The maintenance of excellent relations with the Republic of Chile and the Member States is a key requirement.

    A proven record of strong leadership of a well-known and internationally oriented astronomical institute or international organisation is essential. Frequent travel between the ESO Headquarters in Garching, Germany, the observatory sites and Santiago office in Chile and to institutes, agencies and other organisations around the world will be needed. Excellent communication skills and a very good knowledge of English are essential and knowledge of German and/or Spanish is an asset.

    The position of Director General is a full time post, with an initial appointment for a five year term, with the possibility of renewal. Benefits and allowances are in accordance with ESO’s staff rules and regulations.

    Persons wishing to express an interest in this position should contact the ESO Council President, Patrick Roche, including a brief CV and letter of motivation.

    Vacancy notice on ESO job portal

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: