Tagged: ESO – European Southern Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:53 pm on August 9, 2017 Permalink | Reply
    Tags: , , , , ESO - European Southern Observatory, , The star S2   

    From ESO: “First Evidence for Relativity Effects in Stars Orbiting Supermassive Black Hole at Centre of Galaxy” 

    ESO 50 Large

    European Southern Observatory

    9 August 2017
    Marzieh Parsa
    I. Physikalisches Institut, Universität zu Köln
    Köln, Germany
    Tel: +49(0)221/470-3495
    Email: parsa@ph1.uni-koeln.de

    Andreas Eckart
    I. Physikalisches Institut, Universität zu Köln
    Köln, Germany
    Tel: +49(0)221/470-3546
    Email: eckart@ph1.uni-koeln.de

    Vladimir Karas
    Astronomical Institute, Academy of Science
    Prague, Czech Republic
    Tel: +420-226 258 420
    Email: vladimir.karas@cuni.cz

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    A new analysis of data from ESO’s Very Large Telescope and other telescopes [I have asked ESO repeatedly to credit all telscopes used in any project, as they are all supported by public money. They apparently prefer to leave us in the dark.] they reveals for the first time that the orbits of stars around the supermassive black hole at the centre of the Milky Way show the subtle effects predicted by Einstein’s general theory of relativity. The orbit of the star S2 is found to be deviating slightly from the path calculated using classical physics. This tantalising result is a prelude to much more precise measurements and tests of relativity that will be made using the GRAVITY instrument as star S2 passes very close to the black hole in 2018.

    ESO GRAVITY insrument on The VLT

    This artist’s impression shows the orbits of three of the stars very close to the supermassive black hole at the centre of the Milky Way. Analysis of data from ESO’s Very Large Telescope and other telescopes has revealed that the orbits of these stars show the subtle effects predicted by Einstein’s general theory of relativity. The orbit of the star called S2 is found to be deviating slightly from the path calculated using classical physics.
    The position of the supermassive black hole is marked with a white circle with a blue halo. Credit: ESO/M. Parsa/L. Calçada


    The orbit of the star S2 is found to be deviating slightly from the path calculated using classical physics. This tantalising result is a prelude to much more precise measurements and tests of relativity that will be made using the GRAVITY instrument as star S2 passes very close to the black hole in 2018.

    At the centre of the Milky Way, 26 000 light-years from Earth, lies the closest supermassive black hole, which has a mass four million times that of the Sun. This monster is surrounded by a small group of stars orbiting at high speed in the black hole’s very strong gravitational field. It is a perfect environment in which to test gravitational physics, and particularly Einstein’s general theory of relativity.

    A team of German and Czech astronomers have now applied new analysis techniques to the very rich set of existing observations of the stars orbiting the black hole, accumulated using ESO’s Very Large Telescope (VLT) in Chile and others over the last twenty years [1]. They compare the measured star orbits to predictions made using classical Newtonian gravity as well as predictions from general relativity.

    The team found evidence for a small change in the motion of one of the stars, known as S2, that is consistent with the predictions of general relativity [2]. The change due to relativistic effects amounts to only a few percent in the shape of the orbit, as well as only about one sixth of a degree in the orientation of the orbit [3]. This is the first time that a measurement of the strength of the general relativistic effects has been achieved for stars orbiting a supermassive black hole.

    Marzieh Parsa, PhD student at the University of Cologne, Germany and lead author of the paper [The Astropysical Journel], is delighted: “The Galactic Centre really is the best laboratory to study the motion of stars in a relativistic environment. I was amazed how well we could apply the methods we developed with simulated stars to the high-precision data for the innermost high-velocity stars close to the supermassive black hole.”

    3
    The central parts of our Galaxy, the Milky Way, as observed in the near-infrared with the NACO instrument on ESO’s Very Large Telescope. The position of the centre, which harbours the (invisible) black hole known as Sgr A*,with a mass 4 million times that of the Sun, is marked by the orange cross.

    The star S2 will make a close pass around the black hole in 2018 when it will be used as a unique probe of the strong gravity and act as a test of Einstein’s general theory of relativity. Credit: ESO/MPE/S. Gillessen et al.

    The high accuracy of the positional measurements, made possible by the VLT’s near-infrared adaptive optics instruments, was essential for the success of the study [4]. These were vital not only during the star’s close approach to the black hole, but particularly during the time when S2 was further away from the black hole. The latter data allowed an accurate determination of the shape of the orbit and how it is changing under the influence of relativity.

    “During the course of our analysis we realised that to determine relativistic effects for S2 one definitely needs to know the full orbit to very high precision,” comments Andreas Eckart, team leader at the University of Cologne.

    As well as more precise information about the orbit of the star S2, the new analysis also gives the mass of the black hole and its distance from Earth to a higher degree of accuracy [5].

    Co-author Vladimir Karas from the Academy of Sciences in Prague, the Czech Republic, is excited about the future: “It is very reassuring that S2 shows relativistic effects as expected on the basis of its proximity to the extreme mass concentration at the centre of the Milky Way. This opens up an avenue for more theory and experiments in this sector of science.”

    This analysis is a prelude to an exciting period for observations of the Galactic Centre by astronomers around the world. During 2018 the star S2 will make a very close approach to the supermassive black hole. This time the GRAVITY instrument, developed by a large international consortium led by the Max-Planck-Institut für extraterrestrische Physik in Garching, Germany [6], and installed on the VLT Interferometer [7], will be available to help measure the orbit much more precisely than is currently possible. Not only is this expected to reveal the general relativistic effects very clearly, but also it will allow astronomers to look for deviations from general relativity that might reveal new physics.
    Notes

    [1] Data from the near-infrared NACO camera now at VLT Unit Telescope 1 (Antu) and the near-infrared imaging spectrometer SINFONI at the Unit Telescope 4 (Yepun) were used for this study. Some additional published data obtained at the Keck Observatory were also used.

    ESO/NACO

    ESO/SINFONI


    Keck Observatory, Maunakea, Hawaii, USA

    [2] S2 is a 15-solar-mass star on an elliptical orbit around the supermassive black hole. It has a period of about 15.6 years and gets as close as 17 light-hours to the black hole — or just 120 times the distance between the Sun and the Earth.

    [3] A similar, but much smaller, effect is seen in the changing orbit of the planet Mercury in the Solar System. That measurement was one of the best early pieces of evidence in the late nineteenth century suggesting that Newton’s view of gravity was not the whole story and that a new approach and new insights were needed to understand gravity in the strong-field case. This ultimately led to Einstein publishing his general theory of relativity, based on curved spacetime, in 1915.

    When the orbits of stars or planets are calculated using general relativity, rather than Newtonian gravity, they evolve differently. Predictions of the small changes to the shape and orientation of orbits with time are different in the two theories and can be compared to measurements to test the validity of general relativity.

    [4] An adaptive optics system compensates for the image distortions produced by the turbulent atmosphere in real time and allows the telescope to be used at much angular resolution (image sharpness), in principle limited only by the mirror diameter and the wavelength of light used for the observations.

    [5] The team finds a black hole mass of 4.2 × 106 times the mass of the Sun, and a distance from us of 8.2 kiloparsecs, corresponding to almost 27 000 light-years.

    [6] The University of Cologne is part of the GRAVITY team (http://www.mpe.mpg.de/ir/gravity) and contributed the beam combiner spectrometers to the system.

    [7] GRAVITY First Light was in early 2016 and it is already observing the Galactic Centre.

    The team is composed of Marzieh Parsa, Andreas Eckart (I.Physikalisches Institut of the University of Cologne, Germany; Max Planck Institute for Radio Astronomy, Bonn, Germany), Banafsheh Shahzamanian (I.Physikalisches Institut of the University of Cologne, Germany), Christian Straubmeier (I.Physikalisches Institut of the University of Cologne, Germany), Vladimir Karas (Astronomical Institute, Academy of Science, Prague, Czech Republic), Michal Zajacek (Max Planck Institute for Radio Astronomy, Bonn, Germany; I.Physikalisches Institut of the University of Cologne, Germany) and J. Anton Zensus (Max Planck Institute for Radio Astronomy, Bonn, Germany).

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

     
  • richardmitnick 10:52 am on August 2, 2017 Permalink | Reply
    Tags: , , , , ESO - European Southern Observatory, ESOcast 119   

    From ESO: ESOcast 119 AOF First Light 

    ESO 50 Large

    European Southern Observatory

    Published on Aug 2, 2017

    ESO’s new Adaptive Optics Facility has just opened its eyes to the sky for the first time. Coupled with the revolutionary instrument MUSE, this is one of the most advanced and powerful technological systems ever built for ground-based astronomy.

    More information and download options: http://www.eso.org/public/videos/eso1…

    Subscribe to ESOcast in iTunes! https://itunes.apple.com/podcast/esoc…

    Receive future episodes on YouTube by pressing the Subscribe button above or follow us on Vimeo: https://vimeo.com/esoastronomy

    Watch more ESOcast episodes: http://www.eso.org/public/videos/arch…

    Find out how to view and contribute subtitles for the ESOcast in multiple languages, or translate this video on YouTube: http://www.eso.org/public/outreach/pa…

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

     
  • richardmitnick 9:10 am on July 17, 2017 Permalink | Reply
    Tags: , , , , ESO - European Southern Observatory, ,   

    From Manu Garcia of IAC: “NGC 1365, two visions of the same galaxy.” 


    Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    An elegant galaxy in an unusual light.

    1
    NGC 1365.

    A new image taken with the powerful HAWK-I camera from the ESO Very Large Telescope at the Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies and lies about 60 million light years from Earth.

    ESO HAWK-I the ESO Very Large Telescope at the Paranal Observatory in Chile

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    NGC 1365 is one of the best known and most studied barred spiral galaxies and is nicknamed sometimes as the Great Barred Spiral Galaxy because of its remarkable perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the center there is also a second spiral structure and the galaxy is shrouded in dust delicate features.

    This galaxy NGC 1365 is an excellent laboratory for astronomers to study how they form and develop barred spiral galaxies. The new infrared images from HAWK-I, previous image, are less affected by the dust that obscures parts of the galaxy, as with visible light images, see next image, and reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. This information was obtained to help astronomers understand the complex flow of material into the galaxy and how it affects the gas reserves from which can form new galaxies. The huge bar disturbs the shape of the gravitational field of the galaxy and this affects areas where gas is compressed and star formation triggered. Many huge young star clusters outline the main arm each containing hundreds of thousands of bright young stars that are less than ten million years. Galaxy is very remote as to be able to observe individual stars in this image and most visible tiny spots in this picture are really star clusters. Throughout the galaxy they are forming stars at a rate of about three times the mass of our Sun every year.

    2
    Comparison of images of the galaxy NGC 1365 in visible light (left) and infrared (right).

    While the bar of the galaxy consists mainly of older stars that have already passed its fullness, many new stars are born in “stellar nurseries” of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the center of the galaxy, where astronomers have found evidence of the presence of a supermassive black hole, well hidden among a large number of new stars glowing same.

    NGC 1365 , including its two huge outer spiral arms, spreads over 200,000 light-years. A different parts of the galaxy take different times they make a full rotation around the center of the galaxy. The outer parts of the bar completing one circuit in about 350 million years. NGC 1365 and other galaxies of its type have gained more notoriety in recent years with new observations indicating that the Milky Way may also be a barred spiral galaxy. Such galaxies are quite common: two – thirds of spiral galaxies are barred according to recent estimates, and studying others can help astronomers understand our own galactic home.

    ESO Bloc Icon

    Additional Information.
    ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organization in Europe and the most productive astronomical observatory in the world. It is supported by 14 countries: Austria, Belgium, Denmark, Spain, Finland, France, Holland, Italy, Portugal, the United Kingdom, Czech Republic, Sweden and Switzerland. ESO carries out an ambitious program focused on the design, construction and operation of powerful ground-based observing that allow astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organizing cooperation in astronomical research. ESO operates three unique observing sites world-class Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced optical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project. ESO is currently planning a European Extremely Large Telescope, the E-ELT, optical and close to 42 meters in diameter, which will become “the world’s biggest eye on the sky” infrared telescope.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)[/caption

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:04 pm on July 11, 2017 Permalink | Reply
    Tags: , Australia Enters Strategic Partnership with ESO, ESO - European Southern Observatory   

    From ESO: “Australia Enters Strategic Partnership with ESO” 

    ESO 50 Large

    European Southern Observatory

    11 July 2017

    Randal Markey
    Office of the Minister for Industry, Innovation and Science
    Parliament House, Canberra ACT, Australia
    Tel: +61 2 6277 7070
    Email: randal.markey@industry.gov.au

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    At a ceremony today in Canberra, Australia, an arrangement was signed to begin a ten-year strategic partnership between ESO and Australia. The partnership will further strengthen ESO’s programme, both scientifically and technically, and will give Australian astronomers and industry access to the La Silla Paranal Observatory. It may also be the first step towards Australia becoming an ESO Member State.

    In May 2017 the Australian Government announced its intentions to negotiate a strategic partnership with ESO in order to give Australian astronomers access to ESO’s state-of-the-art research infrastructure. This partnership has now been formalised and will begin immediately. It means that Australia will financially contribute to ESO for ten years, with the potential of then obtaining full membership. The proposed partnership was unanimously approved by the ESO Council.

    The signature ceremony was held at the Australian National University (ANU) in Canberra, during the annual meeting of the Astronomical Society of Australia.

    Introductions were made by Nobel Laureate and ANU Vice-Chancellor Brian Schmidt, and were followed by speeches from ESO’s Director General, Tim de Zeeuw, and the Australian Minister for Industry, Innovation and Science, Arthur Sinodinos, who then together signed the arrangement. The ceremony was attended by senior ESO representatives, members of the Department of Industry, Innovation and Science, and distinguished guests.

    Senator Arthur Sinodinos said: “This important partnership with a world-class organisation, such as the European Southern Observatory, will allow Australia to maintain its research excellence in this era of global astronomy, and it provides crucial opportunities for Australian influence and technical and scientific input, stimulating international research and industry collaborations.”

    “Today we sign a strategic arrangement that will give Australian astronomers — as well as technical institutes and industries — access to the La Silla Paranal Observatory,” added ESO Director General Tim de Zeeuw. “An association between Australia and ESO has been a goal for me for more than 20 years, and I am very pleased that it is now becoming a reality.”

    This partnership will allow Australian astronomers to participate in all activities relating to ESO’s La Silla Paranal Observatory facilities — specifically, the Very Large Telescope, the Very Large Telescope Interferometer, VISTA, VST, the ESO 3.6-metre telescope, and the New Technology Telescope. The partnership will also open up opportunities for Australian scientists and industry to collaborate with ESO Member State institutions on upcoming instruments at these observatories.

    Australia’s expertise in instrumentation, including advanced adaptive optics and fibre-optic technology, is ideally matched with ESO’s instrumentation programme. In turn, Australia will gain access to industrial, instrumentation and scientific opportunities at the La Silla Paranal Observatory, essentially being considered a Member State for all matters relating to these facilities. The results of such collaborations are eagerly anticipated by the ESO community.

    Tim de Zeeuw further comments: “Australia’s contributions to the partnership will strengthen ESO, and ESO’s facilities will allow Australian astronomers to make many discoveries and develop the next generation of high-tech instrumentation to the benefit of science and technology worldwide. I believe that this is also a key step towards full membership of ESO in due course.”

    Australia has a long and rich history of internationally acclaimed astronomical research. Its already very active and successful astronomical community will undoubtedly thrive with long-term access to ESO’s cutting-edge facilities. This European–Australian collaboration will lead to fundamental new advances in science and technology that neither could hope to achieve alone.

    Links

    Tim de Zeeuw’s speech at the signing ceremony
    Australian press release
    Australian Decadal Plan

    [From where I sit, I can only experience jealousy. If Australia can join ESO, why not the U.S.A.? True, we have our own great history in Astronomy. But so does Australia, which will be the leader in SKA, even if it is managed from Jodrell Bank. In my work on this blog, I see Australia as a juggernaut in Basic and Applied Scientific research. I see our NSF backing away, especially in Radio Astronomy. Good luck to Australia and ESO in this new relationship.]

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

     
  • richardmitnick 1:14 pm on June 19, 2017 Permalink | Reply
    Tags: 6 Hebe, , , , , , ESO - European Southern Observatory, H-chondrites - 34% of all meteorites found on Earth, SPHERE on the VLT   

    From ESO: “Not the mother of meteorites” 

    ESO 50 Large

    European Southern Observatory

    19 June 2017
    NO writer credit found.

    The region between Mars and Jupiter is teeming with rocky worlds called asteroids. This asteroid belt is estimated to contain millions of small rocky bodies, and between 1.1 and 1.9 million larger ones spanning over one kilometre across. Small fragments of these bodies often fall to Earth as meteorites. Interestingly, 34% of all meteorites found on Earth are of one particular type: H-chondrites. These are thought to have originated from a common parent body — and one potential suspect is the asteroid 6 Hebe, shown here.

    Approximately 186 kilometres in diameter and named for the Greek goddess of youth, 6 Hebe was the sixth asteroid ever to be discovered. These images were taken during a study of the mini-world using the SPHERE instrument on ESO’s Very Large Telescope, which aimed to test the idea that 6 Hebe is the source of H-chondrites.

    ESO/SPHERE extreme adaptive optics system and coronagraphic facility on the VLT

    Astronomers modelled the spin and 3D shape of 6 Hebe as reconstructed from the observations, and used their 3D model to determine the volume of the largest depression on 6 Hebe — likely an impact crater from a collision that could have created numerous daughter meteorites. However, the volume of the depression is five times smaller than the total volume of nearby asteroid families with H-chondrite composition, which suggests that 6 Hebe is not the most likely source of H-chondrites after all.

    1
    Credit: ESO/M. Marsset

    Research paper

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

     
  • richardmitnick 12:09 am on February 10, 2017 Permalink | Reply
    Tags: , , , ESO - European Southern Observatory, Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf,   

    From Hubble: “Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope
    Hubble

    Feb 9, 2017
    Ann Jenkins
    jenkins@stsci.edu
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4488

    Ray Villard
    villard@stsci.edu
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514

    Siyi Xu
    European Southern Observatory, Garching, Germany
    011-49-89-3200-6298
    sxu@eso.org

    1
    Astronomers have found the first evidence of the remains of a comet-like object scattered around a burned-out star. They used NASA’s Hubble Space Telescope to detect the debris, which has polluted the atmosphere of a compact star known as a white dwarf. The icy object, which has been ripped apart, is similar to Halley’s Comet in chemical composition, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies similar to our solar system’s Kuiper Belt orbiting the white dwarf. This is the first evidence of comet-like material polluting a white dwarf’s atmosphere. The results also suggest the presence of unseen, surviving planets around the burned-out star.
    Illustration Credit: NASA, ESA, and Z. Levy (STScI)

    For the first time, scientists using NASA’s Hubble Space Telescope have witnessed a massive object with the makeup of a comet being ripped apart and scattered in the atmosphere of a white dwarf, the burned-out remains of a compact star. The object has a chemical composition similar to Halley’s Comet, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur.

    These findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system’s Kuiper Belt. These icy bodies apparently survived the star’s evolution as it became a bloated red giant and then collapsed to a small, dense white dwarf.

    As many as 25 to 50 percent of white dwarfs are known to be polluted with infalling debris from rocky, asteroid-like objects, but this is the first time a body made of icy, comet-like material has been seen polluting a white dwarf’s atmosphere.

    The results also suggest the presence of unseen, surviving planets which may have perturbed the belt and worked as a “bucket brigade” to draw the icy objects into the white dwarf. The burned-out star also has a companion star which may disturb the belt, causing objects from the belt to travel toward the burned-out star.

    Siyi Xu of the European Southern Observatory in Garching, Germany led the team that made the discovery. According to Xu, this was the first time that nitrogen was detected in the planetary debris that falls onto a white dwarf. “Nitrogen is a very important element for life as we know it,” Xu explained. “This particular object is quite rich in nitrogen, more so than any object observed in our solar system.”

    Our own Kuiper Belt, which extends outward from Neptune’s orbit, is home to many dwarf planets, comets, and other small bodies left over from the formation of the solar system. Comets from the Kuiper Belt may have been responsible for delivering water and the basic building blocks of life to Earth billions of years ago.

    The new findings are observational evidence supporting the idea that icy bodies are also present in other planetary systems, and have survived throughout the history of the star’s evolution.

    To study the white dwarf’s atmosphere, the team used both Hubble and the W. M. Keck Observatory. The measurements of nitrogen, carbon, oxygen, silicon, sulfur, iron, nickel, and hydrogen all come from Hubble, while Keck provides the calcium, magnesium, and hydrogen. The ultraviolet vision of Hubble’s Cosmic Origins Spectrograph (COS) allowed the team to make measurements that are very difficult to do from the ground.

    This is the first object found outside our solar system that is akin to Halley’s Comet in composition. The team used the famous comet for comparison because it has been so well studied.

    The white dwarf is roughly 170 light-years from Earth in the constellation Boötes, the Herdsman. It was first recorded in 1974 and is part of a wide binary system, with a companion star separated by 2,000 times the distance that the Earth is from the sun.

    The science paper by S. Xu et al. (PDF document)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 2:13 pm on January 3, 2017 Permalink | Reply
    Tags: Drone flight over Cerro Paranal, ESO - European Southern Observatory   

    From ESO: Drone flight Over Paranal – Video 

    ESO 50 Large

    European Southern Observatory

    This short video was captured by a drone flying over the ESO Paranal site in the Chilean Atacama desert, home to the ESO Very Large Telescope (VLT).

    ESO/ Liam Young


    Access mp4 video here .
    Credit: ESO/ Liam Young

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 8:38 am on December 24, 2016 Permalink | Reply
    Tags: , , , , ESO - European Southern Observatory,   

    From ESO: “Orbit of Proxima Centauri Determined After 100 Years” 

    ESO 50 Large

    European Southern Observatory

    22 December 2016
    Pierre Kervella
    Universidad de Chile, CNRS UMI 3386 & LESIA, Paris Observatory
    Camino El Observatoria 1515, Las Condes
    Santiago, Chile
    Email:
    pkervell@das.uchile.cl

    Frédéric Thévenin
    Observatoire de la Côte d’Azur
    Boulevard de l’Observatoire
    Nice, France
    Email:
    Frederic.Thevenin@oca.eu

    Tel: +33 4 92 00 30 26

    Christophe Lovis
    Observatoire astronomique de l’Université de Genève,
    51 Ch. des Maillettes,
    1290 Versoix, Switzerland
    Email:
    christophe.lovis@unige.ch

    Peter Grimley
    ESO Assistant Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6383
    Email:
    pgrimley@partner.eso.org

    1
    Interest in our neighbouring Alpha Centauri star system has been particularly high since the recent discovery of an Earth-mass planet, known as Proxima b, orbiting the system’s third star — and the closest star to the Sun — Proxima Centauri. While the system’s larger stellar pair, Alpha Centauri A and B, appear to have a proper motion on the sky that is very similar to that of the smaller, fainter Proxima Centauri, it has not been possible to demonstrate that the three stars do actually form a single, gravitationally bound, triple system.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker
    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Now three astronomers, Pierre Kervella, Frédéric Thévenin and Christophe Lovis, have concluded that the three stars do indeed form a bound system. In the century since it was discovered, Proxima Centauri’s faintness has made it extremely difficult to reliably measure its radial velocity — the speed at which it moves towards and away from Earth. But now ESO’s planet-hunting HARPS instrument has provided an extremely precise measurement of Proxima Centauri’s radial velocity, and even greater accuracy has been achieved by accounting for other subtle effects [1].

    ESO/HARPS
    ESO 3.6m telescope & HARPS at LaSilla
    ESO 3.6m telescope & HARPS at Cerro LaSilla, Chile

    As a result, the astronomers have been able to deduce very similar values for the radial velocities of the Alpha Centauri pair and Proxima Centauri, lending credence to the idea that they form a bound system. Taking account of these new measurements, calculations of the orbits of the three stars indicate that the relative velocity between Proxima Centauri and the Alpha Centauri pair is well below the threshold above which the three stars would not be bound together by gravity.

    This result has significant implications for our understanding of the Alpha Centauri system and the formation of planets there. It strongly suggests that Proxima Centauri and the Alpha Centauri pair are the same age (about 6 billion years), and that in turn provides a good estimate of the age of the orbiting planet, Proxima b.

    The astronomers speculate that the planet may have formed around Proxima Centauri on a more extended orbit and then been brought to its current position, very close to its parent star, as a result of the close passage of Proxima Centauri to its cousins in the Alpha Centauri pair. Alternatively, the planet may have formed around the Alpha Centauri pair, and was later captured by the gravity of Proxima Centauri. If one of these hypotheses is correct, it is possible that the planet was once an icy world that underwent a meltdown and now has liquid water on its surface.

    Notes

    [1] Measurements of the stars’ velocities were made by observing specific features in their light known as spectral lines. Certain physical effects can shift the observed wavelengths of these lines, leading to incorrect measurements of the velocities. If a star has an unstable surface, it can cause what is known as convectiveblueshift of the spectral lines, while its gravity can lead to a gravitational redshift.
    More Information

    This research is presented in a paper to appear in the journal Astronomy and Astrophysics.

    The team is composed of P. Kervella, CNRS UMI 3386, University of Chile and LESIA, Paris Observatory; F. Thévenin, Côte d’Azur Observatory, France; and Christophe Lovis, Observatoire astronomique de l’Université de Genève, Switzerland.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
  • richardmitnick 11:11 am on December 21, 2016 Permalink | Reply
    Tags: , , , ESO - European Southern Observatory, First Light for Band 5 at ALMA   

    From ALMA and ESO: “First Light for Band 5 at ALMA” 

    ALMA Array

    ALMA

    ESO 50 Large

    European Southern Observatory

    21 December 2016
    Leonardo Testi
    European ALMA Programme Scientist, ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6541
    Email: ltesti@eso.org

    Robert Laing
    ESO ALMA Scientist
    Garching bei München, Germany
    Tel: +49 89 3200 6625
    Email: rlaing@eso.org

    Nicolás Lira T.
    Education and Public Outreach Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Richard Hook
    Public Information Officer, ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory Tokyo, Japan
    Tel: +81 422 34 3630
    E-mail: hiramatsu.masaaki@nao.ac.jp

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    With the First Light for Band 5, the Atacama Large Millimeter/submillimeter Array (ALMA) has begun observing in a new range of the electromagnetic spectrum. This has been made possible thanks to new receivers installed at the telescope’s antennas, which can detect radio waves with wavelengths from 1.4 to 1.8 millimeters — a range previously untapped by ALMA. This upgrade allows astronomers to detect faint signals of water in the nearby Universe.

    The Atacama Large Millimeter/submillimeter Array (ALMA) in Chile has begun observing in a new range of the electromagnetic spectrum. This has been made possible thanks to new receivers installed at the telescope’s antennas, which can detect radio waves with wavelengths from 1.4 to 1.8 millimetres — a range previously untapped by ALMA. This upgrade allows astronomers to detect faint signals of water in the nearby Universe.

    ALMA observes radio waves from the Universe, at the low-energy end of the electromagnetic spectrum. With the newly installed Band 5 receivers, ALMA has now opened its eyes to a whole new section of this radio spectrum, creating exciting new observational possibilities.

    The European ALMA Programme Scientist, Leonardo Testi, explains the significance: “The new receivers will make it much easier to detect water, a prerequisite for life as we know it, in our Solar System and in more distant regions of our galaxy and beyond. They will also allow ALMA to search for ionised carbon in the primordial Universe.”

    2
    The compound view shows a new ALMA Band 5 view of the colliding galaxy system Arp 220 (in red) on top of an image from the NASA/ESA Hubble Space Telescope (blue/green). With the newly installed Band 5 receivers, ALMA has now opened its eyes to a whole new section of this radio spectrum, creating exciting new observational possibilities and improving the telescope’s ability to search for water in the Universe. This image is one of the first taken using Band 5 and was intended to verify the scientific capability of the new receivers. Credit: ALMA(ESO/NAOJ/NRAO)/NASA/ESA and The Hubble Heritage Team (STScI/AURA)

    It is ALMA’s unique location, 5000 metres up on the barren Chajnantor plateau in Chile, that makes such an observation possible in the first place. As water is also present in Earth’s atmosphere, observatories in less elevated and less arid environments have much more difficulty identifying the origin of the emission coming from space. ALMA’s great sensitivity and high angular resolution mean that even faint signals of water in the local Universe can now be imaged at this wavelength [1].

    The Band 5 receiver, which was developed by the Group for Advanced Receiver Development (GARD) at Onsala Space Observatory, Chalmers University of Technology, Sweden, has already been tested at the APEX telescope in the SEPIA instrument. These observations were also vital to help select suitable targets for the first receiver tests with ALMA.

    The first production receivers were built and delivered to ALMA in the first half of 2015 by a consortium consisting of the Netherlands Research School for Astronomy (NOVA) and GARD in partnership with the National Radio Astronomy Observatory (NRAO), which contributed the local oscillator to the project. The receivers are now installed and being prepared for use by the community of astronomers.

    6
    Band 5 receiver integrated with receivers for all the other current ALMA Bands (3 to 10). Credit: N. Tabilo – ALMA (ESO/NAOJ/NRAO).

    To test the newly installed receivers observations were made of several objects including the colliding galaxies Arp 220, a massive region of star formation close to the centre of the Milky Way, and also a dusty red supergiant star approaching the supernova explosion that will end its life [2].

    7
    This picture shows one of the Band 5 receiver cartridges built for the Atacama Large Millimeter/submillimeter Array (ALMA). Extremely weak signals from space are collected by the ALMA antennas and focussed onto the receivers, which transform the faint radiation into an electrical signal. The Band 5 receivers detect electromagnetic radiation with wavelengths between about 1.4 and 1.8 millimeters (211 and 163 gigahertz). The receivers were originally designed, developed, and prototyped by Onsala Space Observatory’s Advanced Receiver Development group, based at Chalmers University of Technology in Gothenburg, Sweden, in collaboration with the Rutherford Appleton Laboratory, UK, and the European southern Observatory (ESO), under the European Commission (EC) supported Framework Programme FP6 (ALMA Enhancement). Band 5 of ALMA achieved first fringes in July 2015 and first science observations were made in late 2016. Credit: Onsala Space Observatory/Alexey Pavolotsky

    To process the data and check its quality, astronomers, along with technical specialists from ESO and the European ALMA Regional Centre (ARC) network, gathered at the Onsala Space Observatory in Sweden, for a “Band 5 Busy Week” hosted by the Nordic ARC node [3]. The final results have just been made freely available to the astronomical community worldwide.

    7
    This picture shows one of the Band 5 receiver cartridges built for the Atacama Large Millimeter/submillimeter Array (ALMA). Extremely weak signals from space are collected by the ALMA antennas and focussed onto the receivers, which transform the faint radiation into an electrical signal. The Band 5 receivers detect electromagnetic radiation with wavelengths between about 1.4 and 1.8 millimeters (211 and 163 gigahertz). The receivers were originally designed, developed, and prototyped by Onsala Space Observatory’s Advanced Receiver Development group, based at Chalmers University of Technology in Gothenburg, Sweden, in collaboration with the Rutherford Appleton Laboratory, UK, and ESO, under the European Commission (EC) supported Framework Programme FP6 (ALMA Enhancement). Band 5 of ALMA achieved first fringes in July 2015 and the first science observations were made in late 2016. Credit: Onsala Space Observatory/B. Billade

    Team member Robert Laing at ESO is optimistic about the prospects for ALMA Band 5 observations: “It’s very exciting to see these first results from ALMA Band 5 using a limited set of antennas. In the future, the high sensitivity and angular resolution of the full ALMA array will allow us to make detailed studies of water in a wide range of objects including forming and evolved stars, the interstellar medium and regions close to supermassive black holes.”
    Notes

    [1] A key spectral signature of water lies in this expanded range — at a wavelength of 1.64 millimetres.

    [2] The observations were performed and made possible by the ALMA Extension of Capabilities team in Chile.

    [3] The ESO Band 5 Science Verification team includes: Elizabeth Humphreys, Tony Mroczkowski, Robert Laing, Katharina Immer, Hau-Yu (Baobab) Liu, Andy Biggs, Gianni Marconi and Leonardo Testi. The team working on processing the data included: Tobia Carozzi, Simon Casey, Sabine König, Ana Lopez-Sepulcre, Matthias Maercker, Iván Martí-Vidal, Lydia Moser, Sebastien Muller, Anita Richards, Daniel Tafoya and Wouter Vlemmings.

    See the full ESO article here .
    Seethe full CfA article here .
    See the full ALMA article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small

    ESO 50 Large

    NAOJ

     
  • richardmitnick 11:22 am on December 16, 2016 Permalink | Reply
    Tags: , , ESO - European Southern Observatory,   

    From ESO: “3D Map of Distant Galaxies Completed” 

    ESO 50 Large

    European Southern Observatory

    15 December 2016
    Luigi Guzzo
    Dipartimento di Fisica, Università Statale di Milano
    & INAF – Osservatorio Astronomico di Brera
    Milano, Italy
    Mobile: +39 366 773 9704
    Email: luigi.guzzo@unimi.it

    Peter Grimley
    ESO Assistant Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6383
    Email: pgrimley@partner.eso.org

    VLT survey shows distribution in space of 90 000 galaxies

    1

    For nearly eight years, the VIsible MultiObject Spectrograph (VIMOS) on ESO’s Very Large Telescope (VLT) in Chile has been piecing together a three-dimensional map of galaxies in two patches of the southern sky. A total of 440 hours of observing time has gone into measuring the spectra of more than 90 000 distant galaxies, producing a map of a 24-square-degree region on the sky, out to a distance corresponding to when the Universe was around half its current age [1].

    ESO VIMOS
    ESO VIMOS

    In 2013, ESO reported that the international team of astronomers behind the VIMOS Public Extragalactic Survey (VIPERS) had collected data for around 60% of their target galaxies. With the full set of observations now completed, this is the largest redshift survey ever undertaken with ESO telescopes [2] and it provides a view of structures in the younger Universe with an unprecedented combination of detail and spatial extent. By surveying how galaxies were distributed in space several billion years ago, astronomers are able to learn more about the distribution of matter on the largest scales in the cosmos, as well as to further probe the effect that the mysterious dark energy had on the young Universe, when it acquired some of the properties we see today.

    Using these unique data, astronomers are already obtaining exciting new results concerning how galaxies have evolved since the Universe was much younger, and how this connects to the details of large-scale structures, such as filaments, clusters and voids. The full set of data from the survey was released to the public in November 2016 and is now available in standard form on the ESO archive.

    Notes

    [1] Light has a finite speed limit, so the more distant an object, the more time it has taken for the light from it to reach us. This means that we see distant objects as they were long in the past.

    [2] The light from each galaxy is spread out into its component colours within the VIMOS instrument. Careful analysis allows astronomers to work out how fast the galaxy is moving away from us — usually expressed as its redshift. This in turn reveals its distance from us and, when combined with its position on the sky, its location in the Universe.
    More information

    The team is composed of astronomers in Italy, France, Poland and the UK. Full details are available on the VIPERS website.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    LaSilla

    ESO VLT
    VLT

    ESO Vista Telescope
    VISTA

    ESO NTT
    NTT

    ESO VLT Survey telescope
    VLT Survey Telescope

    ALMA Array
    ALMA

    ESO E-ELT
    E-ELT

    ESO APEX
    Atacama Pathfinder Experiment (APEX) Telescope

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: