Tagged: ESA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:02 am on March 2, 2017 Permalink | Reply
    Tags: , , , , ESA, Rapid changes point to origin of ultra-fast black hole winds   

    From ESA: “Rapid changes point to origin of ultra-fast black hole winds” 

    ESA Space For Europe Banner

    European Space Agency

    1 March 2017
    Markus Bauer








    ESA Science and Robotic Exploration Communication Officer









    Tel: +31 71 565 6799









    Mob: +31 61 594 3 954









    Email: markus.bauer@esa.int

    Michael Parker
    Institute of Astronomy, Cambridge, UK
    Email: mlparker@ast.cam.ac.uk

    Andrew Fabian
    Institute of Astronomy, Cambridge, UK
    Email: acf@ast.cam.ac.uk

    Norbert Schartel
    XMM-Newton project scientist
    Email: Norbert.Schartel@esa.int

    1
    Black hole with ultrafast winds. No image credit

    ESA and NASA space telescopes have made the most detailed observation of an ultra-fast wind flowing from the vicinity of a black hole at nearly a quarter of the speed of light.

    Outflowing gas is a common feature of the supermassive black holes that reside in the centre of large galaxies. Millions to billions of times more massive than the Sun, these black holes feed off the surrounding gas that swirls around them. Space telescopes see this as bright emissions, including X-rays, from the innermost part of the disc around the black hole.

    Occasionally, the black holes eat too much and burp out an ultra-fast wind. These winds are an important characteristic to study because they could have a strong influence on regulating the growth of the host galaxy by clearing the surrounding gas away and therefore suppressing the birth of stars.

    Using ESA’s XMM-Newton and NASA’s NuStar telescopes, scientists have now made the most detailed observation yet of such an outflow, coming from an active galaxy identified as IRAS 13224–3809.

    ESA/XMM Newton
    ESA/XMM Newton

    NASA/NuSTAR
    NASA/NuSTAR

    The winds recorded from the black hole reach 71 000 km/s – 0.24 times the speed of light – putting it in the top 5% of fastest known black hole winds.

    XMM-Newton focused on the black hole for 17 days straight, revealing the extremely variable nature of the winds.

    “We often only have one observation of a particular object, then several months or even years later we observe it again and see if there’s been a change,” says Michael Parker of the Institute of Astronomy at Cambridge, UK, lead author of the paper published in Nature this week that describes the new result.

    “Thanks to this long observation campaign, we observed changes in the winds on a timescale of less than an hour for the first time.”

    The changes were seen in the increasing temperature of the winds, a signature of their response to greater X-ray emission from the disc right next to the black hole.

    Furthermore, the observations also revealed changes to the chemical fingerprints of the outflowing gas: as the X-ray emission increased, it stripped electrons in the wind from their atoms, erasing the wind signatures seen in the data.

    “The chemical fingerprints of the wind changed with the strength of the X-rays in less than an hour, hundreds of times faster than ever seen before,” says co-author Andrew Fabian, also from the Institute of Astronomy and principal investigator of the project.

    “It allows us to link the X-ray emission arising from the infalling material into the black hole, to the variability of the outflowing wind farther away.”

    “Finding such variability, and finding evidence for this link, is a key step in understanding how black hole winds are launched and accelerated, which in turn is an essential part of understanding their ability to moderate star formation in the host galaxy,” adds Norbert Schartel, ESA’s XMM-Newton project scientist.

    The response of relativistic outflowing gas to the inner accretion disk of a black hole,” by M. Parker et al. is published in Nature.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:59 am on February 11, 2017 Permalink | Reply
    Tags: Andromeda constellation, , , , ESA   

    From ESA: “A spiral in Andromeda” 

    ESA Space For Europe Banner

    European Space Agency

    2
    Andromeda Galaxy NGC 7640 NASA/ESA

    Not to be confused with our neighbouring Andromeda Galaxy, the Andromeda constellation is one of the 88 modern constellations. More importantly for this image, it is home to the pictured NGC 7640.

    Andromeda Galaxy Adam Evans
    Andromeda Galaxy Adam Evans

    Many different classifications are used to identify galaxies by shape and structure — NGC 7640 is a barred spiral type. These are recognisable by their spiral arms, which fan out not from a circular core, but from an elongated bar cutting through the galaxy’s centre. Our home galaxy, the Milky Way, is also a barred spiral galaxy. NGC 7640 might not look much like a spiral in this image, but this is due to the orientation of the galaxy with respect to Earth — or to Hubble, which acted as photographer in this case! We often do not see galaxies face on, which can make features such as spiral arms less obvious.

    There is evidence that NGC 7640 has experienced some kind of interaction in its past. Galaxies contain vast amounts of mass, and therefore affect one another via gravity. Sometimes these interactions can be mild, and sometimes hugely dramatic, with two or more colliding and merging into a new, bigger galaxy. Understanding the history of a galaxy, and what interactions it has experienced, helps astronomers to improve their understanding of how galaxies — and the stars within them — form.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:46 am on February 11, 2017 Permalink | Reply
    Tags: Blue jets, ESA,   

    From ESA: “Blue jets studied from Space Station” 

    ESA Space For Europe Banner

    European Space Agency
    NASA/ESA

    1
    For years, their existence has been debated: elusive electrical discharges in the upper atmosphere that sport names such as red sprites, blue jets, pixies and elves. Reported by pilots, they are difficult to study as they occur above thunderstorms.

    ESA astronaut Andreas Mogensen during his mission on the International Space Station in 2015 was asked to take pictures over thunderstorms with the most sensitive camera on the orbiting outpost to look for these brief features.

    Denmark’s National Space Institute has now published the results, confirming many kilometre-wide blue flashes around 18 km altitude, including a pulsating blue jet reaching 40 km. This image is a still from a video recorded by Andreas as he flew over the Bay of Bengal at 28 800 km/h on the Station shows the electrical phenomena clearly – a first of its kind.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 3:27 pm on January 14, 2017 Permalink | Reply
    Tags: Bed bugs, ESA, Hungary joins ESA’s Europe-wide technology network   

    From ESA: “Hungary joins ESA’s Europe-wide technology network” 

    ESA Space For Europe Banner

    European Space Agency

    This post is dedicatd to JBMT, especially for its last line.

    13 January 2017
    No writer credit found.

    ESA’s Europe-wide network dedicated to finding down-to-Earth uses for space technologies has added Hungary, the Agency’s latest member.

    Under ESA leadership, European space industry develops top-notch space technologies, many of which offer valuable attributes to terrestrial industries as well, solving production problems or forming the basis of new products or services.

    The Agency’s long-running Technology Transfer Programme supports this spin-off process, working with local industry and national technology institutes.

    The Programme oversees an expert network of technology transfer brokers across 16 European countries – now including Hungary – to find new terrestrial homes for space technologies.

    2
    Joining ceremony

    This broker network boosts Europe’s global competitiveness, injecting businesses across our continent with advanced space technology and knowhow.

    “Space technology should respond to everyday problems we are facing here on Earth,” comments Dr Károly Balázs Solymár, Deputy State Secretary of Infocommunications at Hungary’s Ministry of National Development.

    “Our top priority duties are to secure the prosperity of our country and increase the efficiency of industrial production, with space industry an important tool to help reach these goals.

    “A new opportunity is now open for Hungarian companies to make their top technology developments serve these objectives, both inside and outside the country.”

    3

    Hungary formally became ESA’s 22nd Member State on 4 November.

    “The country will benefit in three ways,” explains Aude de Clercq of ESA’s technology transfer office. “In help for space and non-space industries to collaborate and generate new business opportunities, as well as connecting Hungary and its companies to knowhow and technology from other ESA Member States.

    “It will also strengthen Hungary’s overall innovation and technology transfer capacity.”

    Hungary’s participation in the broker network will be managed by the Hungarian Space Board, operating within the Ministry of National Development, with the active involvement of the Hungarian Academy of Sciences’ Wigner Research Centre for Physics, which is serving as the national technology transfer point.

    Péter Lévai, Director General of the Research Centre, emphasised: “ESA’s decision is based on the fact that Wigner Research Centre for Physics researchers have been participating in diverse space programmes for decades, with the support of the Hungarian Space Board, consequently acquiring a broad expertise in certain areas of space technology.

    “Simultaneously the Centre’s innovation activity has strengthened significantly in recent years, allowing well-experienced experts to help solve problems arising during technology transfers.”

    As a first step, three-years of cooperation will explore and support as many initiatives and start-ups as possible in utilising space technologies and knowhow across non-space areas. The aim is to further the international market reach of Hungarian enterprise, contribute to economic growth, strengthen competitiveness and create new businesses and jobs.

    In operation for more than a quarter of a century, ESA’s technology transfer has chalked up many successes. For instance, long-distance ultrasound systems originally developed to examine astronauts in orbit are now serving pregnant women and other patients in remote clinics. Technology designed for ESA’s Rosetta probe to sniff out organic chemistry around its target comet is now being used to detect bedbugs in top hotels.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 10:44 am on December 21, 2016 Permalink | Reply
    Tags: ESA, Full Go Ahead for Building EXO Mars 2020   

    From ESA: “Full Go Ahead for Building EXO Mars 2020” 

    ESA Space For Europe Banner

    European Space Agency

    19 December 2016
    Markus Bauer

    ESA Science and Robotic Exploration Communication Officer


    Tel: +31 71 565 6799


    Mob: +31 61 594 3 954

    Email: Markus.Bauer@esa.int

    The first ExoMars mission arrived at the Red Planet in October and now the second mission has been confirmed to complete its construction for a 2020 launch.

    ESA and Thales Alenia Space signed a contract today that secures the completion of the European elements of the next mission.

    The main objective of the ExoMars programme is to address one of the most outstanding scientific questions of our time: is there, or has there ever been, life on Mars?

    ESA/ExoMars
    ESA/ExoMars

    The Trace Gas Orbiter will soon be exploring this question from orbit: it will take a detailed inventory of trace gases, such as methane, that might be linked to biological or geological processes. The first test of the orbiter’s science instruments was recently completed.

    ESA/ExoMars Trace Gas Orbiter
    ESA/ExoMars Trace Gas Orbiter

    It will also act as a communications relay for various craft – in particular for 2020’s rover and surface platform.

    ESA’s rover will be the first capable of drilling 2 m into Mars, where ancient biomarkers may still be preserved from the harsh radiation environment on the surface.

    The Russian platform will carry instruments focused on the local atmosphere and surroundings.

    ExoMars is a joint endeavour between ESA and Roscosmos, with important contribution from NASA.

    The contract signed in Rome, Italy, secures the completion of the European elements and the rigorous tests to prove they are ready for launch.

    These include the rover itself, which will be accommodated within the Russian descent module, along with the carrier module for cruise and delivery to Mars.

    ESA is also contributing important elements of the descent module, such as the parachute, radar, inertial measurement unit, UHF radio elements, and the onboard computer and software.

    The science instruments for the rover and surface platform are funded by national agencies of ESA member states, Roscosmos and NASA following calls to the scientific community.

    The structural models of the carrier and rover are expected to be delivered in January and February 2017, respectively, along with structural and thermal models of the various descent module elements.

    “ExoMars is a cornerstone of ESA’s exploration programme,” says David Parker, ESA’s Director of Human Spaceflight and Robotic Exploration. “Using its miniaturised life-search laboratory and advanced robotic technology, the mission will explore the Red Planet in search of new evidence to answer questions that have long fascinated humanity.

    “Following the renewed support demonstrated by ESA member states in the recent Ministerial Council, this new contract allows us to complete the flight models of the European elements and keeps us on track for a July 2020 launch.”

    “The steadfastness and tenacity of both the European and Italian space agencies has reassured all program partners, and enabled us to continue our production work so we can go ahead with this new and very complex mission,” says Donato Amoroso, Deputy CEO of Thales Alenia Space.

    The landing site for the mission is still under consideration, with Oxia Planum a strong candidate. The target region shows evidence for a past wet environment that may have had suitable conditions for preserving ancient biosignatures. ESA and Roscosmos are expected to confirm the landing site around six months before launch.

    Read the Thales Alenia Space press release on today’s event here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 7:56 am on December 10, 2016 Permalink | Reply
    Tags: , , ESA, GR740 next-generation microprocessor   

    From ESA: “GR740 next-generation microprocessor” 

    ESA Space For Europe Banner

    European Space Agency

    1

    A close-up of the next-generation microprocessor that will serve a wide variety of future space missions.

    Standard terrestrial chips wouldn’t last very long in orbit under the harsh blast of space radiation. So ESA has had a long history of working with industry on specially ‘rad-hardened’ designs for space.

    This GR740 microprocessor, developed by Cobham Gaisler in Sweden and manufactured by France-based STMicroelectronics, is a quadcore design combining four embedded LEON4 cores. The LEON4 is the latest member of a series of chips that began with the LEON2-FT, developed at ESA from the second half of the 1990s.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 7:28 am on December 3, 2016 Permalink | Reply
    Tags: , , ESA, Optical stabilising reference cavity   

    From ESA: “Optical stabilising reference cavity” 

    ESA Space For Europe Banner

    European Space Agency

    30/11/2016

    1
    Optical stabilising reference cavity. National Physical Laboratory.

    What looks like an abstract sculpture is actually the laser equivalent of a tuning fork – to serve a new generation of space instruments.

    “This is an ‘optical stabilising reference cavity’, through which laser light is contained between a pair of super-polished mirrors kept a precise distance apart,” explains ESA physicist Eamonn Murphy.

    ”This laser light is then used to lock the frequency of the laser – and prevent it drifting – in a similar principle to a tuning fork, as applied to musical instruments.”

    Such lasers will serve at the heart of next-generation ‘optical atomic clocks’, improving on current microwave atomic clocks used for timing and navigation, as well as enabling ultrasensitive gravity detectors.

    This 5 cm cube cavity was developed for ESA by the National Physical Laboratory, NPL, which is the national measurement institute of the UK, specialised in extremely precise measuring techniques.

    NPL used ultra-low expansion glass, resistant to changing size with temperature. A pathway was then drilled through the middle, with mirrors placed at either end.

    The working version of the cavity is enclosed in a vacuum chamber to prevent any disturbance by air molecules, followed by a thermal shroud to maintain its temperature to within a tiny fraction of a degree. It can then be placed on an acoustic damping baseplate to further isolate it from any microvibrations.

    This effort began back in 2009 with three parallel projects within ESA’s Basic Technology Research Programme, working with the national measuring institutes France and Germany as well as the UK.

    Expertise and elements from all the resulting designs will soon be incorporated into a new working prototype, supported through ESA’s General Support Technology Programme, which finalises hardware for space.

    “Our aim is to deliver a six order-of-magnitude improvement in laser linewidth from initial laser performance,” adds Eamonn, “to maintain a stable drift-free frequency, insensitive to even minute accelerations.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 6:12 am on December 3, 2016 Permalink | Reply
    Tags: , , ESA, Germany awards approximately two billion euro to space projects   

    From DLR: “ESA Council meeting at ministerial level in Lucerne – Germany awards approximately two billion euro to space projects” 

    DLR Bloc

    German Aerospace Center

    02 December 2016

    Contacts
    Sabine Hoffmann
    German Aerospace Center (DLR)
    Corporate Communications, Head of Department
    Tel.: +49 2203 601-2116
    Fax: +49 2203 601-3249

    Andreas Schütz
    Deutsches Zentrum für Luft- und Raumfahrt (DLR) – German Aerospace Center
    Tel.: +49 2203 601-2474
    Fax: +49 2203 601-3249

    1

    The highest decision-making body of the European Space Agency (ESA) met this year on 1 and 2 December at the Culture and Convention Centre (KKL) in Lucerne, Switzerland, to set the financial and programme-based course for European space travel for the coming years. Ministers in charge of space in Europe last came together exactly two years ago on 2 December 2014 in Luxembourg.

    ESA Icon II

    The German Federal Government was represented by Brigitte Zypries, Parliamentary State Secretary at the Federal Ministry for Economic Affairs and Energy (BMWi). Brigitte Zypries, who is also aerospace coordinator, was supported by Pascale Ehrenfreund, Chair of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) Executive Board and Gerd Gruppe, Member of the DLR Executive Board responsible for the Space Administration, which, in close collaboration with the BMWi, prepared the German position for the ESA Council meeting at ministerial level.

    “Our commitment to the application programmes, in particular, leads to concrete benefits for people. Satellite-based Earth observation is the basis for improved climate protection. In addition, innovative business models are created for German companies through the use of satellite data,” emphasised Brigitte Zypries. “We have also succeeded in supporting small and medium-sized enterprises in space investment.” At the same time, from a German perspective, the focus was on the ESA programmes, which, with excellent research, fundamentally expand the understanding of the Universe and Earth and are the basis for strategic international cooperation. The International Space Station (ISS) also wants to make further use of Germany: “We are taking responsibility for a central global project at the ISS, and the Space Station offers excellent opportunities for research under space conditions, and the German industry is also benefiting from results, for example in the field of materials research. And we are looking forward to Alexander Gerst’s mission in 2018,” added Zypries.

    “With our investments in the programme, we are ensuring the necessary continuity, but are also placing new emphasis on particularly future-oriented topics. The German contribution has succeeded in establishing the European participation in the ISS reliably and in the long term by 2024. With 29 million euro for ExoMars, Germany has maintained its commitments and is thus a strong partner in this international cooperation with the US and Russia,” adds DLR Chair Pascale Ehrenfreund, and emphasises: “With our scientific and technological expertise and our stakeholders in programmes such as Earth observation, we can make a decisive contribution to international development assistance and the implementation of the global sustainability and environmental targets of the United Nations.”

    ESA/ExoMars
    ESA/ExoMars

    At the ESA Council meeting at ministerial level, financial resources totalling around 10.3 billion euro were awarded. Germany provided two billion euro and is thus one of the largest ESA contributors. More specifically, Germany accounted for around 903 million euro for the ESA compulsory programmes, which in addition to the general budget, include the science programme and the European spaceport in French Guiana. Around 1.2 billion euro of the German contribution was allocated to the so-called optional programmes: more specifically, around 300 million euro to Earth observation, some 160 million euro to telecommunications, around 63 million euro to technology programmes and around 346 million euro to continuing operation of the International Space Station (ISS) until 2019 and about 88 million for research under space conditions. In addition, Germany is supporting the extension of ISS operation until 2024 in the form of a political declaration.

    German financial contributions in detail:

    E3P – new framework programme for research and exploration

    All robotic and astronautical activities for exploration are combined in the new European Exploration Envelope (framework) Programme (E3P). This combines the European science and technology programme for use of near-Earth orbit for space research with exploration of the Moon and Mars. Subprogrammes here include the ISS (German share: 346 million euro) and its utilisation programme SciSpacE (German share: 88 million euro) in low Earth orbit. Germany is thereby taking on the leading role. For the continuation of the ExoMars mission the member countries contributed a further 339 million euro, of which Germany;s share was about 28 million. In addition, Germany is investing 21 million euro in ExPeRT (exploration, preparation, research and technology), a programme for mission studies and technology development for further exploration, including a commercial approach.

    Launchers

    In terms of launchers, the central decisions lay with the ‘Launchers Exploitation Accompaniment’ (LEAP) and Centre Spatial Guyanais (CSG) operating programmes. Germany contributed 155 million euro here and is the strongest partner after France.

    From 2020, Ariane 6 will be the new launcher to transport payloads into space. Germany is contributing with a share of around 23 percent in the total costs of Ariane 6 development; the principal industrial contractors are Airbus Safran Launchers (in Germany with sites in Bremen and Ottobrunn) and MT Aerospace in Augsburg and Bremen.

    To remain competitive over the long term, too, innovative technologies, processes and system concepts need to be developed and made market ready. These New Economic Opportunities (NEOs) are set to drastically reduce development and subsequent production costs while at the same time decreasing the development risk. Germany has contributed 52 million euro to this Future Launchers Preparation Programme (FLPP).

    Science

    By 2035, seven average-sized and three large-scale exploration missions, along with further analyses of the Solar System and galaxies, are set to begin within the ESA science programme. Financing of this programme depends on the economic power of the Member States. At 20 percent, Germany is the largest contributor to this programme, contributing 542 million euro.

    Of particular German interest is the PLATO mission, which is set to survey large portions of the sky for exoplanets and bright stars from 2025.

    ESA/PLATO
    ESA/PLATO

    The DLR Institute of Planetary Research in Berlin is taking the scientific lead here and also developing the payload for the mission. The German aerospace industry, and in particular OHB and Airbus Defence & Space, are playing a particularly decisive role. The data centre is being built to a significant degree at the Max Planck Institute for Solar System Research in Göttingen. The DLR Space Administration has primary responsibility to ESA for delivery of the payload.

    Germany is contributing to six out of a total of 11 instruments for the Jupiter moon mission JUICE (planned launch date: 2022), two of which are being managed by Germany.

    ESA/Juice spacecraft
    ESA/Juice spacecraft

    BepiColombo, the European–Japanese mission to the closest planet to the sun, Mercury, is set to launch in April 2018, bringing new insights into the formation of the Solar System. German research institutes are contributing to the mission with six instruments.

    ESA/BepiColombo
    ESA/BepiColombo

    At the end of 2020, the Euclid mission is set to explore the question of ‘dark matter’ and dark energy in the Universe.

    ESA/Euclid spacecraft
    ESA/Euclid spacecraft

    German partners include the Max Planck Institute for Extraterrestrial Physics in Garching, the Max Planck Institute for Astronomy in Heidelberg, the University Observatory Munich and the University of Bonn

    Earth observation

    From climate research and global environmental monitoring to increasingly precise weather forecasts and satellite-based disaster relief, Germany, together with the UK, is the largest contributor to Earth observation programmes, contributing 300 million euro, and wants to retain its leading international position in this field. German industry and research groups have been and are to a large extent involved in successful missions such as GOCE, Cryosat 2, SWARM and SMOS as well as in the future missions ADM / Aeolus, BIOMASS, FLEX and EarthCARE. The ESA Climate Initiative (GMECV +) is currently providing 12 essential climate variables and was extended at the ESA Council meeting at ministerial level.

    ESA/GOCE Spacecraft
    ESA/GOCE Spacecraft

    ESA/CryoSat 2
    ESA/CryoSat 2

    ESA/Swarm
    ESA/Swarm

    ESA/SMOS
    ESA/SMOS

    Satellite communications

    In the field of satellite communications (ARTES programme), the main goal is to support innovative technologies and products for the global commercial market. Germany contributed around 160 million euro. Here, German industry has made a several-year head start with the development of laser communication terminals. Germany has therefore contributed 26 million euro to the new Skylight programme to further develop optical technologies. Furthermore, Germany is financing commercially focused integrated applications (‘NewSpace’ activities) with around 18 million euro. A further 64 million euro have been awarded to develop ‘Electra’, one of the small satellite buses with electric motors led by Bremen-based company OHB. The SmallGEO platform built in Germany for the smaller telecommunications satellites market segment is being further developed. On 27 January 2017, the first SmallGEO satellite will be launched from French Guiana.

    Space situational awareness

    Germany awarded 16 million euro to the ‘Space Situational Awareness’ (SSA) programme, with a focus on space weather. Better knowledge of space weather makes a valuable contribution to the preservation and sustainable use of space-based and terrestrial infrastructures, such as in the case of global navigation satellite systems and for science. It also represents important data for the German Space Situational Awareness Centre.

    Technological development

    The German programme contribution to the so-called General Support Technology Programme (GSTP) aims in particular to maintain, expand and strengthen the industrial competitiveness of German SMEs, particularly start-ups. The German contribution is around 63 million euro.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    DLR Center

    DLR is the national aeronautics and space research centre of the Federal Republic of Germany. Its extensive research and development work in aeronautics, space, energy, transport and security is integrated into national and international cooperative ventures. In addition to its own research, as Germany’s space agency, DLR has been given responsibility by the federal government for the planning and implementation of the German space programme. DLR is also the umbrella organisation for the nation’s largest project management agency.

    DLR has approximately 8000 employees at 16 locations in Germany: Cologne (headquarters), Augsburg, Berlin, Bonn, Braunschweig, Bremen, Goettingen, Hamburg, Juelich, Lampoldshausen, Neustrelitz, Oberpfaffenhofen, Stade, Stuttgart, Trauen, and Weilheim. DLR also has offices in Brussels, Paris, Tokyo and Washington D.C.

     
  • richardmitnick 7:35 am on November 24, 2016 Permalink | Reply
    Tags: EDRS-A, ESA, GlobeNet, Start of service for Europe’s SpaceDataHighway   

    From ESA: “Start of service for Europe’s SpaceDataHighway” 

    ESA Space For Europe Banner

    European Space Agency

    23 November 2016
    No writer credit

    1
    EDRS-A is the first node of the European Data Relay System (EDRS). ESA

    EDRS is designed to transmit data between low earth orbiting satellites and the EDRS payloads in geostationary orbit using innovative laser communication technology.

    Composed of a hosted payload (EDRS-A) on a commercial telecom satellite and a dedicated satellite (EDRS-C) in geostationary orbit, the system will dramatically increase the speed of data transmission for satellites in lower orbits and airborne platforms to relay their information to users on the ground. Nicknamed the ‘SpaceDataHighway’ by industry, EDRS complements current downlink infrastructures and allows for near-realtime services on a global scale.

    EDRS-A was launched in January 2016, with EDRS-C to follow a year later. The system has Mission Operations Centres in Ottobrunn (DE) and Redu (BE), Spacecraft/Payload Control Centres in Oberpfaffenhofen (DE) and ground stations in Redu (BE), Harwell (GB) and two in Weilheim (DE).

    The European Data Relay System began servicing Europe’s Earth observing Copernicus programme yesterday, transferring observations in quasi-real time using cutting-edge laser technology.

    The EDRS–SpaceDataHighway will now begin providing a commercial service to the European Commission’s Copernicus Sentinels – the first and only of its kind. EDRS is a public–private partnership between ESA and Airbus Defence and Space, with ESA supporting the initial technology development and the company providing the commercial service. The European Commission is EDRS’s anchor customer through its Sentinel-1 and -2 missions.

    EDRS accelerates the transmission of data from low-orbiting satellites like the Sentinels to the end user on the ground. It does so by locking onto the satellites with a laser beam as they pass below, and immediately relaying the information to European ground stations via a high-speed radio beam.

    Low-orbiting satellites must usually wait until they travel within view of a ground station to downlink the data they have gathered, resulting in a delay of up to 90 minutes per 100-minute orbit. This is because most ground stations that serve low-orbiting satellites are located in the polar regions, although the Sentinels have additional stations in Italy and Spain.

    Nevertheless, Earth observation satellite data are increasingly being used for time-sensitive applications like disaster response, maritime surveillance and security, where speed is of the essence.

    EDRS will help to solve this problem. As the world’s first optical satellite communication network in ‘geostationary’ orbit – where satellites takes 24hr to circle Earth and thus appear to ‘hang’ in the sky – it will relay unprecedented amounts of potentially life-saving data per day in near-real time.

    The EDRS-A first node will now start collecting data from Sentinel-1A. The two satellites will link via laser beam up to 15 times per day.

    The EDRS-C second node will be launched in 2017 to help transfer the massive amounts of data being sent back and forth over Europe.

    Unlike EDRS-A, which is hosted on a Eutelsat commercial satellite, EDRS-C is a dedicated satellite built specifically for the system.

    Both nodes carry a TESAT payload with a laser intersatellite terminal developed under funding by the DLR German Aerospace Center. EDRS-A also carries a high-speed Ka-band intersatellite payload to relay data to and from the International Space Station.

    2
    GlobeNet. ESA.

    The first two satellites are planned to be complemented by the EDRS-D third node over Asia in 2020.

    EDRS-D is part of a programme called GlobeNet, which will extend the EDRS quasi-realtime data relay coverage from Europe to worldwide.

    GlobeNet will also link to both manned and remotely piloted aircraft, providing two-way communications that can be used for command, control and the rapid download of sensor data, complementing those obtained from Earth observation satellites.

    The net result will be that Earth observation data can be received anywhere on Earth in near-real time, greatly increasing its value for a host of time-critical applications such as disaster and emergency response.

    “As the first commercial data relay service in the world to use lasers, the EDRS–SpaceDataHighway represents forward-thinking innovation at its best. ESA will continue working with our partners, Airbus Defence and Space and the European Commission, to keep pushing the envelope of technological progress by extending this success to worldwide coverage with GlobeNet,” said Magali Vaissiere, ESA’s Director of Telecommunications and Integrated Applications.

    “The EDRS–SpaceDataHighway offers a new dimension of data access from our Sentinel satellites, allowing faster access to images as well as a back-up capacity to classical ground receiving stations. This becomes increasingly important to satisfy the increasing demands of our user communities,” says Josef Aschbacher, ESA’s Director of Earth Observation Programmes.

    “SpaceDataHighway is no longer science fiction, it will revolutionise satellite communications,” added Evert Dudok, Head of Communications, Intelligence & Security at Airbus Defence and Space.

    “It will totally change the way humanitarian crisis, maritime safety and the protection of environment can be managed.”

    “Germany has strategically invested in optical communication and intends to continue with the evolution in the ESA ‘ScyLight’ programme. Now we have chance to transform the European technological leadership into a market leadership,” said Dr Gerd Gruppe of DLR’s Executive Board, responsible for space administration.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:33 am on October 26, 2016 Permalink | Reply
    Tags: , , , ESA, , , , Next step towards a gravitational-wave observatory in space   

    From ESA: “Next step towards a gravitational-wave observatory in space” 

    ESA Space For Europe Banner

    European Space Agency

    25 October 2016

    1
    Merging black holes. No image credit.

    Today, ESA has invited European scientists to propose concepts for the third large mission in its science programme, to study the gravitational Universe.

    A spaceborne observatory of gravitational waves – ripples in the fabric of spacetime created by accelerating massive objects – was identified in 2013 as the goal for the third large mission (L3) in ESA’s Cosmic Vision plan.

    A Gravitational Observatory Advisory Team was appointed in 2014, composed of independent experts. The team completed its final report earlier this year, further recommending ESA to pursue the mission having verified the feasibility of a multisatellite design with free-falling test masses linked over millions of kilometres by lasers.

    Now, following the first detection of the elusive waves with ground-based experiments and the successful performance of ESA’s LISA Pathfinder mission, which demonstrated some of the key technologies needed to detect gravitational waves from space, the agency is inviting the scientific community to submit proposals for the first space mission to observe gravitational waves.

    ESA/LISA Pathfinder
    ESA/LISA Pathfinder

    ESA/eLISA
    ESA/eLISA

    Gravitational waves promise to open a new window for astronomy, revealing powerful phenomena across the Universe that are not accessible via observations of cosmic light,” says Alvaro Gimenez, ESA’s Director of Science.

    Predicted a century ago by Albert Einstein’s general theory of relativity, gravitational waves remained elusive until the first direct detection by the ground-based Laser Interferometer Gravitational-Wave Observatory and Virgo collaborations, made in September 2015 and announced earlier this year.

    LIGO bloc new
    Caltech/MIT Advanced aLigo Hanford, WA, USA installation
    Caltech/MIT Advanced aLigo Hanford, WA, USA installation
    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA
    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    The signal originated from the coalescence of two black holes, each with some 30 times the mass of the Sun and about 1.3 billion light-years away. A second detection was made in December 2015 and announced in June, and revealed gravitational waves from another black hole merger, this time involving smaller objects with masses around 7 and 14 solar masses.

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project
    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    1
    LISA Pathfinder performance. No image credit.

    Meanwhile, the LISA Pathfinder mission was launched in December 2015 and started its scientific operations in March this year, testing some of the key technologies that can be used to build a space observatory of gravitational waves.

    Data collected during its first two months showed that it is indeed possible to eliminate external disturbances on test masses placed in freefall at the level of precision required to measure passing gravitational waves disturbing their motion.

    While ground-based detectors are sensitive to gravitational waves with frequencies of around 100 Hz – or a hundred oscillation cycles per second – an observatory in space will be able to detect lower-frequency waves, from 1 Hz down to 0.1 mHz. Gravitational waves with different frequencies carry information about different events in the cosmos, much like astronomical observations in visible light are sensitive to stars in the main stages of their lives while X-ray observations can reveal the early phases of stellar life or the remnants of their demise.

    In particular, low-frequency gravitational waves are linked to even more exotic cosmic objects than their higher-frequency counterparts: supermassive black holes, with masses of millions to billions of times that of the Sun, that sit at the centre of massive galaxies. The waves are released when two such black holes are coalescing during a merger of galaxies, or when a smaller compact object, like a neutron star or a stellar-mass black hole, spirals towards a supermassive black hole.

    Observing the oscillations in the fabric of spacetime produced by these powerful events will provide an opportunity to study how galaxies have formed and evolved over the lifetime of the Universe, and to test Einstein’s general relativity in its strong regime.

    Concepts for ESA’s L3 mission will have to address the exploration of the Universe with low-frequency gravitational waves, complementing the observations performed on the ground to fully exploit the new field of gravitational astronomy. The planned launch date for the mission is 2034.

    Lessons learned from LISA Pathfinder will be crucial to developing this mission, but much new technology will also be needed to extend the single-satellite design to multiple satellites. For example, lasers much more powerful than those used on LISA Pathfinder, as well as highly stable telescopes, will be necessary to link the freely falling masses over millions of kilometres.

    Large missions in ESA’s Science Programme are ESA-led, but also allow for international collaboration. The first large-class mission is Juice, the JUpiter ICy moons Explorer, planned for launch in 2022, and the second is Athena, the Advanced Telescope for High-ENergy Astrophysics, an X-ray observatory to investigate the hot and energetic Universe, with a planned launch date in 2028.

    esa-juice-spacecraft
    ESA/Juice spacecraft

    ESA/Athena spacecraft
    ESA/Athena spacecraft

    Letters of intent for ESA’s new gravitational-wave space observatory must be submitted by 15 November, and the deadline for the full proposal is 16 January 2017. The selection is expected to take place in the first half of 2017, with a preliminary internal study phase planned for later in the year.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: