From The MPG Institute for Extraterrestrial Physics [MPG Institut für Extraterrestrische Physik](DE): “Serendipitous detection of a rapidly accreting black hole in the early Universe” 

From The MPG Institute for Extraterrestrial Physics [MPG Institut für Extraterrestrische Physik](DE)

1.31.23

Wolf, Julien
phd student
Tel +49 89 30000-3879
Fax +49 89 30000-3569
jwolf@mpe.mpg.de

Salvato, Mara
Senior Scientist
Tel +49 89 30000-3815
Fax +49 89 30000-3569
mara@mpe.mpg.de

Nandra, Kirpal
director
Tel +49 89 30000-3401
Fax +49 89 30000-3569
knandra@mpe.mpg.de

eROSITA telescope finds an X-ray bright, optically faint quasar accreting material at an extremely high rate only about 800 million years after the big bang.

Analyzing data from the eROSITA Final Equatorial-Depth Survey, astronomers at MPE have found a faint X-ray source identified with a very distant supermassive black hole that is accreting material at an extremely high rate. This quasar, at a redshift of z=6.56, is much more luminous in X-rays than expected. This is the most distant blind X-ray detection to date, from an object whose radiation was emitted almost 13 billion years ago and allows the scientists to investigate the growth of black holes in the early Universe.

Supermassive black holes at the centres of galaxies can be detected out to great distances – but only if they accrete matter, which heats up and shines brightly, causing it to become an “active galactic nucleus” (AGN). These “quasars” or quasi-stellar objects then outshine the rest of their galaxy, but at large distances, they nevertheless are difficult to detect and extremely rare. To date, only about 50 quasars with redshift z>5.7, when the Universe was less than one billion years old, have been detected in X-rays.

2
A new, faint X-ray source (right) was found in the eROSITA Final Equatorial-Depth Survey (eFEDS). Using optical follow-up observations (left top), the eROSITA team identified this as a quasar at a redshift of z=6.56. Quasars are powered by a central supermassive black hole, accreting material at a high rate. This is the most distant blind X-ray detection to date and allows the scientists to investigate the growth of black holes in the early Universe. Collage: MPE/Cluster Origins.

Analyzing X-ray data of the eROSITA Final Equatorial-Depth Survey (eFEDS), which were taken during the Performance Verification Phase of the eROSITA telescope in 2019, the eROSITA team found a new point source. In collaboration with colleagues using the Subaru telescope, they identified the X-ray emission with a previously known quasar J0921+0007 at a redshift of 6.56, which was initially discovered by a team searching for distant sources with the Subaru telescope.


Dedicated follow-up observations at infrared wavelengths showed that the black hole has 250 million solar masses, a relatively low mass for a supermassive black hole at this distance. Chandra follow-up observations confirmed the high X-ray luminosity measured by eROSITA, indicating a very high accretion rate.

“We did not expect to find such a low-mass AGN already in our very first mini-survey with eROSITA”, says Julien Wolf, who searches for the most distant supermassive black holes in eROSITA data as part of his Ph.D. at the Max Planck Institute for Extraterrestrial Physics (MPE). “It is the most distant serendipitous X-ray detection to date and its properties are rather atypical for quasars at such high redshifts: it is intrinsically faint in visible light but very luminous in X-rays.”

The quasar detected by eROSITA shows properties, which are similar to so-called narrow-line Seyfert-1 galaxies, a particular class of active galaxies in the local Universe. They are associated with supermassive black holes below 100 million solar masses, accreting matter at a high rate, and could be younger than their higher mass siblings.

“Hunting for rare objects like this needs deep multi-wavelength data complementing the large X-ray survey area. Luckily, most of the sky is mapped at optical and infrared wavelengths, although the Subaru data in eFEDS area are especially deep,” emphasises Mara Salvato, eROSITA spokesperson.

3
X-ray image cutouts in the region of J0921+0007. The eROSITA/eFEDS image is on the left, the high-resolution Chandra image is on the right. © MPE

While the bulk of active galaxies detected at high redshifts (i.e. large distances) host black holes with masses of one to ten billion solar masses, there must also be many with less massive black holes. These, however, need to accrete matter at a very high rate to shine brightly enough so that they can be detected at all.

In addition to this source, the team had earlier found another luminous and similarly distant quasar in the same field. “eROSITA is uniquely suited to performing a census of rare X-ray objects like these powerful high-redshift quasars,” states Kirpal Nandra, director of high-energy physics at MPE. “This is now the second example we’ve found in eFEDS when we expected to find none”.

The early eROSITA data are just a foretaste of what’s to come. Based on these early detections, the scientists expect to find hundreds more examples with the eROSITA all-sky survey. In an effort to find this elusive population of yet unknown distant quasars, the group has developed a large programme exploring the eROSITA all-sky survey. This dedicated survey has already led to the discovery of five new X-ray luminous quasars at z>5.6, which will be presented in a future publication. Simultaneously, a Russian team of researchers have also reported the first eROSITA high-redshift detections in the northern hemisphere.

Objects like these are currently our best way of understanding early black hole formation. If the surprising eFEDS detections are confirmed in the larger dataset, it could represent a challenge for some evolutionary models.

Astronomy & Astrophysics

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

For their astrophysical research, The MPG Institute for Extraterrestrial Physics [MPG Institut für Extraterrestrische Physik]( DE) scientists measure the radiation of far away objects in different wavelenths areas: from millimetere/sub-millimetre and infared all the way to X-ray and gamma-ray wavelengths. These methods span more than twelve decades of the electromagnetic spectrum.

The research topics pursued at MPE range from the physics of cosmic plasmas and of stars to the physics and chemistry of interstellar matter, from star formation and nucleosynthesis to extragalactic astrophysics and cosmology. The interaction with observers and experimentalists in the institute not only leads to better consolidated efforts but also helps to identify new, promising research areas early on.

The structural development of the institute mainly has been directed by the desire to work on cutting-edge experimental, astrophysical topics using instruments developed in-house. This includes individual detectors, spectrometers and cameras but also telescopes and integrated, complete payloads. Therefore the engineering and workshop areas are especially important for the close interlink between scientific and technical aspects.

The scientific work is done in four major research areas that are supervised by one of the directors:

Center for Astrochemical Studies (CAS)
High-Energy Astrophysics
Infrared/Submillimeter Astronomy
Optical & Interpretative Astronomy

Within these areas scientists lead individual experiments and research projects organized in about 25 project teams.

MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] (DE)is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

History

The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

MPG Institutes and research groups

The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

In addition, there are several associated institutes:

International Max Planck Research Schools

International Max Planck Research Schools

Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

• Cologne Graduate School of Ageing Research, Cologne
• International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
• International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
• International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
• International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
• International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
• International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
• International Max Planck Research School for Computer Science, Saarbrücken
• International Max Planck Research School for Earth System Modeling, Hamburg
• International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
• International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
• International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
• International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
• International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
• International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
• International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
• International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
• International Max Planck Research School for Language Sciences, Nijmegen
• International Max Planck Research School for Neurosciences, Göttingen
• International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
• International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
• International Max Planck Research School for Maritime Affairs, Hamburg
• International Max Planck Research School for Molecular and Cellular Biology, Freiburg
• International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
• International Max Planck Research School for Molecular Biology, Göttingen
• International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
• International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
• International Max Planck Research School on Multiscale Bio-Systems, Potsdam
• International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
• International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
• International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
• International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
• International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
• International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
• International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
• International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

Max Planck Schools

• Max Planck School of Cognition
• Max Planck School Matter to Life
• Max Planck School of Photonics

Max Planck Center

• The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
• The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

Max Planck Institutes

Among others:
• Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
• Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
• Max Planck Institute for Biology in Tübingen was closed in 2005;
• Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
• Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
• Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
• Max Planck Institute for Metals Research, Stuttgart
• Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
• Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
• Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
• Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
• Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
• Max Planck Institute for Behavioral Physiology
• Max Planck Institute of Experimental Endocrinology
• Max Planck Institute for Foreign and International Social Law
• Max Planck Institute for Physics and Astrophysics
• Max Planck Research Unit for Enzymology of Protein Folding
• Max Planck Institute for Biology of Ageing